1√3,1√3,1√3;6
1√3,±1√3,1√3;8
±1√3,±1√3,±1√3;8
Explanation
Let l,m,n be the direction cosines of →r.
Since →r is equally inclined with x,y and z axis, l=m=n
∴
\therefore direction cosines of \overrightarrow { r } are \displaystyle \pm \dfrac { 1 }{ \sqrt { 3 } } ,\pm \dfrac { 1 }{ \sqrt { 3 } } ,\pm \dfrac { 1 }{ \sqrt { 3 } }
Now, \displaystyle \overrightarrow { r } =\left| \overrightarrow { r } \right| \left( li+mj+nk \right) =\overrightarrow { r } =\left| \overrightarrow { r } \right| \left( \pm \dfrac { 1 }{ \sqrt { 3 } } i\pm \dfrac { 1 }{ \sqrt { 3 } } j\pm \dfrac { 1 }{ \sqrt { 3 } } k \right)
Since + and - signs can be arranged at three places,
\Rightarrow there are eight vectors, i.e 2\times 2\times 2 which are equally inclined to axes.
\displaystyle \dfrac{l_{1}+l_{2}}{2}, \displaystyle \dfrac{m_{1}+m_{2}}{2}, \displaystyle \dfrac{n_{1}+n_{2}}{2}
\displaystyle \dfrac{l_{1}+l_{2}}{2\cos(\dfrac{\theta}{2})},\dfrac{m_{1}+m_{2}}{2\cos(\dfrac{\theta}{2})},\dfrac{n_{1}+n_{2}}{2\cos(\dfrac{\theta}{2})}
\displaystyle \dfrac{l_{1}+l_{2}}{\cos (\dfrac{\theta}{2})},\dfrac{m_{1}+m_{2}}{\cos(\dfrac{\theta}{2})},\dfrac{n_{1}+n_{2}}{\cos(\dfrac{\theta}{2})}
\displaystyle \dfrac{l_{\mathrm{I}}+l_{2}}{2\sin(\dfrac{\theta}{2})}\dfrac{m_{1}+m_{2}}{2\sin(\dfrac{\theta}{2})}\dfrac{n_{]}+n_{2}}{2\sin(\dfrac{\theta}{2})}
Let the direction cosines of the line be l_{1},m_{1},n_{1}.
Hence, l_{1}=\cos\alpha, m_{1}=\cos\beta, n_{1}=\cos\gamma
Similarly, for another line
l_{2}=\cos\alpha', m_{2}=\cos\beta', n_{2}=\cos\gamma'
Now the direction cosines of the angle bisector will be,
\displaystyle \cos\left(\dfrac{\alpha-\alpha'}{2}+\alpha'\right),\cos \left(\dfrac{\beta-\beta'}{2}+\beta' \right),\cos\left(\dfrac{\gamma-\gamma'}{2}+\gamma'\right)
=\cos\left(\dfrac{\alpha+\alpha'}{2}\right),\cos\left(\dfrac{\beta+\beta'}{2}\right),\cos\left(\dfrac{\gamma+\gamma'}{2}\right)
=l,m,n
Now consider \cos\left(\dfrac{\alpha+\alpha'}{2}\right)
Multiplying and dividing by \displaystyle 2\cos\left(\dfrac{\alpha-\alpha'}{2}\right), we get
\displaystyle \dfrac{2\cos\left(\dfrac{\alpha-\alpha'}{2}\right)\cos\left(\dfrac{\alpha+\alpha'}{2}\right)}{2\cos\left(\dfrac{\alpha-\alpha'}{2}\right)}
=\displaystyle \dfrac{\cos\alpha+\cos\alpha'}{2\cos(\dfrac{\alpha-\alpha'}{2})}
=\displaystyle \dfrac{l_{1}+l_{2}}{2\cos(\dfrac{\alpha-\alpha'}{2})}
=l
Hence, l = \dfrac{l_1+l_2}{2 \cos \left(\dfrac{\theta}{2} \right) }
Similarly,
m=\displaystyle \dfrac{m_{1}+m_{2}}{2\cos(\dfrac{\beta-\beta'}{2})}
n=\displaystyle \dfrac{n_{1}+n_{2}}{2\cos(\dfrac{\gamma-\gamma'}{2})}
Hence, option B is correct.
\displaystyle \dfrac{1}{4}, \dfrac{1}{3}, \dfrac{1}{2}
\displaystyle \dfrac{3}{\sqrt{13}},\dfrac{1}{\sqrt{13}},\dfrac{2}{\sqrt{13}}
\displaystyle \dfrac{3}{13},\dfrac{12}{13},\dfrac{4}{13}
\displaystyle \dfrac{2}{\sqrt{14}},\dfrac{3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}
\displaystyle \dfrac{2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}
\displaystyle \dfrac{-2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}
\displaystyle \dfrac{2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{-1}{\sqrt{14}}
We have, \left (\cos\left (\dfrac {\pi}{3}\right)\right)^{2}+\left (\cos\left (\dfrac {\pi}{4}\right)\right)^{2}+(\cos(\gamma))^{2}=1\Rightarrow \cos^{2}\gamma = \dfrac {1}{4}
\displaystyle \Rightarrow \cos \gamma = \pm \frac{1}{2}\Rightarrow \gamma=\dfrac {\pi}{3} or \dfrac {2 \pi}{3}
Given 3lm-4ln+mn=0 ...(1)
and l+2m+3n=0 ....(2)
From equation (2), l=-(2m+3n), putting in equation (1), we get
-3\left( 2m+3n \right) m+4\left( 2m+3n \right) n+mn=0\\ \Rightarrow -6{ m }^{ 2 }+12{ n }^{ 2 }=0\Rightarrow m=\pm \sqrt { 2 } n
Now, m=\pm \sqrt { 2 } n\Rightarrow l=-\left( 2\sqrt { 2 } n+3n \right) =-\left( 2\sqrt { 2 } +3 \right) n
\therefore l:m:n=-\left( 3+2\sqrt { 2 } \right) n:\sqrt { 2 } n:n=-\left( 3+2\sqrt { 2 } \right) :-\sqrt { 2 } :1
Also, m=-\sqrt { 2 } n\Rightarrow l=-\left( -2\sqrt { 2 } +3 \right) n
\therefore l:m:n=-\left( 3-2\sqrt { 2 } \right) n:-\sqrt { 2 } n:n=-\left( 3-2\sqrt { 2 } \right) :-\sqrt { 2 } :1
\displaystyle \Rightarrow \cos { \theta } =\dfrac { \left( 3+2\sqrt { 2 } \right) \left( 3-2\sqrt { 2 } \right) +\left( \sqrt { 2 } \right) \left( -\sqrt { 2 } \right) +1.1 }{ \sqrt { { \left( 3+2\sqrt { 2 } \right) }^{ 2 }+{ \left( \sqrt { 2 } \right) }^{ 2 }+{ 1 }^{ 2 } } \sqrt { { \left( 3-2\sqrt { 2 } \right) }^{ 2 }+{ \left( -\sqrt { 2 } \right) }^{ 2 }+{ 1 }^{ 2 } } }
\displaystyle \Rightarrow \theta =\dfrac { \pi }{ 2 }
Let P(3,4,5) Q(4,6,3) R(-1,2,4) and S(1,0,5) be any four points.
The dr's of the line PQ are (1,2,-2)
The dr's of the line RS are (2,-2,1)
The projection of RS on PQ will be RS \times \cos \theta
RS \cos\theta = \displaystyle \dfrac{PQ \times RS}{|PQ|}
= \displaystyle \dfrac{(i+2j-2k).(2i-2j+k)}{3} = \displaystyle \dfrac{4}{3}
\displaystyle \dfrac{2}{\sqrt{41}},\dfrac{3}{\sqrt{41}},\dfrac{-1}{\sqrt{41}}
Lines are l+m+n=0\Rightarrow -l=\left( m+n \right)
and { l }^{ 2 }-{ m }^{ 2 }+{ n }^{ 2 }=0\Rightarrow { l }^{ 2 }={ m }^{ 2 }-{ n }^{ 2 }
Solving them gives,
{ \left( -\left( m+n \right) \right) }^{ 2 }={ m }^{ 2 }+{ n }^{ 2 }+2mn={ m }^{ 2 }-{ n }^{ 2 }\Rightarrow 2n\left( n+m \right) =0
Now, For n=0
m=-l, so d.c's \displaystyle \left( \dfrac { 1 }{ \sqrt { 2 } } ,-\dfrac { 1 }{ \sqrt { 2 } } ,0 \right)
And for n=-m
l=0 so d.c's \displaystyle \left( 0,\dfrac { 1 }{ \sqrt { 2 } } ,-\dfrac { 1 }{ \sqrt { 2 } } \right)
Angle between the lines \displaystyle \left| \cos { \theta } \right| =\left| \dfrac { 1 }{ 2 } \right| \Rightarrow \theta =\dfrac { \pi }{ 3 }
(\displaystyle \dfrac{6}{\sqrt{3}}, \dfrac{6}{\sqrt{3}}, \dfrac{6}{\sqrt{3}})
Assertion ({A}) . The direction ratios of the line joining origin and point (x,y, z) must be x, y, {z}
Reason (R): lf P(x, y, z) is a point in space and |{OP}|={r}, then the direction cosines of {O}{P} are \displaystyle \dfrac{x}{r} , \displaystyle \dfrac{y}{r} , \displaystyle \dfrac{z}{r}
x=12,y=4,z=3
Direction cosines \displaystyle =\dfrac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} ,\displaystyle \dfrac{y}{\sqrt{x^{2}+y^{2}+z^{2}}},\dfrac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}
\displaystyle = \dfrac{12}{13},\dfrac{4}{13},\dfrac{3}{13}
Hence, option 'B' is correct.
For waht value of \lambda , the three numbers 2\lambda - 1 , \frac{1}{4}, \lambda -\frac{1}{2} can be the direction cosines of a straight line?
{\textbf{Step - 1: Find direction ratio}}
{\text{Let the foot of the perpendicular be P(a,b,c)}}{\text{.}}
{\text{Then, direction ratios of OP are }} {\text{a - 0,b - 0,c - 0 }}\;{\text{i}}{\text{.e}}{\text{ a,b,c}}
{\textbf{Step - 2: Make equation}}
{\text{So, the equation of the plane passing through P(a,b,c), }}
{\text{the direction ratios of the normal to which are a,b,c is}}
{\text{a(x - a) + b(y - b) + c(z - c) = 0}}
\Rightarrow {\text{ax + by + cz = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + }}{{\text{c}}^2}{\text{.}}
{\textbf{Hence,correct answer is option C}}{\text{.}}
Please disable the adBlock and continue. Thank you.