1√3,1√3,1√3;6
1√3,±1√3,1√3;8
±1√3,±1√3,±1√3;8
Explanation
Let l,m,n be the direction cosines of →r.
Since →r is equally inclined with x,y and z axis, l=m=n
∴l2+m2+n2⇒3l3=1⇒l=±1√3
∴ direction cosines of →r are ±1√3,±1√3,±1√3
Now, →r=|→r|(li+mj+nk)=→r=|→r|(±1√3i±1√3j±1√3k)
Since + and − signs can be arranged at three places,
⇒ there are eight vectors, i.e 2×2×2 which are equally inclined to axes.
l1+l22,m1+m22,n1+n22
l1+l22cos(θ2),m1+m22cos(θ2),n1+n22cos(θ2)
l1+l2cos(θ2),m1+m2cos(θ2),n1+n2cos(θ2)
lI+l22sin(θ2)m1+m22sin(θ2)n]+n22sin(θ2)
Let the direction cosines of the line be l1,m1,n1.
Hence, l1=cosα, m1=cosβ, n1=cosγ
Similarly, for another line
l2=cosα′, m2=cosβ′, n2=cosγ′
Now the direction cosines of the angle bisector will be,
cos(α−α′2+α′),cos(β−β′2+β′),cos(γ−γ′2+γ′)
=cos(α+α′2),cos(β+β′2),cos(γ+γ′2)
=l,m,n
Now consider cos(α+α′2)
Multiplying and dividing by 2cos(α−α′2), we get
2cos(α−α′2)cos(α+α′2)2cos(α−α′2)
=cosα+cosα′2cos(α−α′2)
=l1+l22cos(α−α′2)
=l
Hence, l=l1+l22cos(θ2)
Similarly,
m=m1+m22cos(β−β′2)
n=n1+n22cos(γ−γ′2)
Hence, option B is correct.
14,13,12
3√13,1√13,2√13
313,1213,413
2√14,3√14,1√14
2√14,−3√14,1√14
−2√14,−3√14,1√14
2√14,−3√14,−1√14
We have, (cos(π3))2+(cos(π4))2+(cos(γ))2=1⇒cos2γ=14
⇒cosγ=±12⇒γ=π3 or 2π3
Given 3lm−4ln+mn=0 ...(1)
and l+2m+3n=0 ....(2)
From equation (2), l=−(2m+3n), putting in equation (1), we get
−3(2m+3n)m+4(2m+3n)n+mn=0⇒−6m2+12n2=0⇒m=±√2n
Now, m=±√2n⇒l=−(2√2n+3n)=−(2√2+3)n
∴l:m:n=−(3+2√2)n:√2n:n=−(3+2√2):−√2:1
Also, m=−√2n⇒l=−(−2√2+3)n
∴l:m:n=−(3−2√2)n:−√2n:n=−(3−2√2):−√2:1
⇒cosθ=(3+2√2)(3−2√2)+(√2)(−√2)+1.1√(3+2√2)2+(√2)2+12√(3−2√2)2+(−√2)2+12
⇒θ=π2
Let P(3,4,5) Q(4,6,3) R(−1,2,4) and S(1,0,5) be any four points.
The dr's of the line PQ are (1,2,−2)
The dr's of the line RS are (2,−2,1)
The projection of RS on PQ will be RS×cosθ
RScosθ = PQ×RS|PQ|
= (i+2j−2k).(2i−2j+k)3 = 43
2√41,3√41,−1√41
Lines are l+m+n=0⇒−l=(m+n)
and l2−m2+n2=0⇒l2=m2−n2
Solving them gives,
(−(m+n))2=m2+n2+2mn=m2−n2⇒2n(n+m)=0
Now, For n=0
m=−l, so d.c's (1√2,−1√2,0)
And for n=−m
l=0 so d.c's (0,1√2,−1√2)
Angle between the lines |cosθ|=|12|⇒θ=π3
(6√3,6√3,6√3)
Assertion (A) . The direction ratios of the line joining origin and point (x,y,z) must be x,y,z
Reason (R): lf P(x,y,z) is a point in space and |OP|=r, then the direction cosines of OP are xr , yr , zr
x=12,y=4,z=3
Direction cosines \displaystyle =\dfrac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} ,\displaystyle \dfrac{y}{\sqrt{x^{2}+y^{2}+z^{2}}},\dfrac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}
\displaystyle = \dfrac{12}{13},\dfrac{4}{13},\dfrac{3}{13}
Hence, option 'B' is correct.
For waht value of \lambda , the three numbers 2\lambda - 1 , \frac{1}{4}, \lambda -\frac{1}{2} can be the direction cosines of a straight line?
{\textbf{Step - 1: Find direction ratio}}
{\text{Let the foot of the perpendicular be P(a,b,c)}}{\text{.}}
{\text{Then, direction ratios of OP are }} {\text{a - 0,b - 0,c - 0 }}\;{\text{i}}{\text{.e}}{\text{ a,b,c}}
{\textbf{Step - 2: Make equation}}
{\text{So, the equation of the plane passing through P(a,b,c), }}
{\text{the direction ratios of the normal to which are a,b,c is}}
{\text{a(x - a) + b(y - b) + c(z - c) = 0}}
\Rightarrow {\text{ax + by + cz = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + }}{{\text{c}}^2}{\text{.}}
{\textbf{Hence,correct answer is option C}}{\text{.}}
Please disable the adBlock and continue. Thank you.