Processing math: 1%

CBSE Questions for Class 12 Commerce Maths Three Dimensional Geometry Quiz 3 - MCQExams.com

Find the direction cosines of vector r which is equally inclined to OX,OY and OZ. Find total number of such vectors.
  • 13,13,13;6

  • 13,±13,13;8

  • ±13,±13,±13;8

  • None of these
lf \theta is the angle between two lines whose d.c.s are l_{1},m_{1},n_{1} and l_{2}, m_{2}, n_{2}, then the d.cs of one of the angular bisectors of the two lines are
  • \displaystyle \dfrac{l_{1}+l_{2}}{2}, \displaystyle \dfrac{m_{1}+m_{2}}{2}, \displaystyle \dfrac{n_{1}+n_{2}}{2}

  • \displaystyle \dfrac{l_{1}+l_{2}}{2\cos(\dfrac{\theta}{2})},\dfrac{m_{1}+m_{2}}{2\cos(\dfrac{\theta}{2})},\dfrac{n_{1}+n_{2}}{2\cos(\dfrac{\theta}{2})}

  • \displaystyle \dfrac{l_{1}+l_{2}}{\cos (\dfrac{\theta}{2})},\dfrac{m_{1}+m_{2}}{\cos(\dfrac{\theta}{2})},\dfrac{n_{1}+n_{2}}{\cos(\dfrac{\theta}{2})}

  • \displaystyle \dfrac{l_{\mathrm{I}}+l_{2}}{2\sin(\dfrac{\theta}{2})}\dfrac{m_{1}+m_{2}}{2\sin(\dfrac{\theta}{2})}\dfrac{n_{]}+n_{2}}{2\sin(\dfrac{\theta}{2})}

If l_{1},m_{1},n_{1} and 1_{2},m_{2},n_{2} are the direction cosines of two lines, then (l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2})^{2}+\displaystyle\sum(m_{1}n_{2}-m_{2}n_{1})^{2}=
  • 0
  • -1
  • 1
  • 2
The coordinates of a point P are (3,12,4) w.r.t origin O, then the direction cosines of OP are
  • 3,12,4
  • \displaystyle \dfrac{1}{4}, \dfrac{1}{3}, \dfrac{1}{2}

  • \displaystyle \dfrac{3}{\sqrt{13}},\dfrac{1}{\sqrt{13}},\dfrac{2}{\sqrt{13}}

  • \displaystyle \dfrac{3}{13},\dfrac{12}{13},\dfrac{4}{13}

ox, oy are positive \mathrm{x}-axis, positive {y}-axis respectively where {O}=(0, 0,0) . The {d.c.}s of the llne which bisects \angle xoy are
  • 1, 1, 0
  • \displaystyle \dfrac{1}{\sqrt{2}}, \displaystyle \dfrac{1}{\sqrt{2}},0
  • \displaystyle \dfrac{1}{\sqrt{2}},0, \displaystyle \dfrac{1}{\sqrt{2}}
  • 0, 0, 1
If (2, 1, 3) and (-1, 2, 4) are the extremities of a diagonal of a rhombus then the d.rs of the other diagonal are
  • 2, 3, -9
  • -2, 3, -9
  • 1, -2, 4
  • 2, 3,1
A = (1, 2, 3), B = (4, 5, 7), C = (-4, 3, -6), D =(2, k, 2) are four points. If the lines AB and CD are parallel, then k =
  • 0
  • -9
  • 9
  • 2
lf a line makes angles \alpha, \beta,\gamma with OX, OY, OZ respectively where {O}=(0,0,0), then \cos 2\alpha+\cos 2 \beta+\cos 2 \gamma=
  • 1
  • 0
  • 2
  • -1
The direction cosines of the line passing through \mathrm{P}(2,3,-1) and the origin are
  • \displaystyle \dfrac{2}{\sqrt{14}},\dfrac{3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}

  • \displaystyle \dfrac{2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}

  • \displaystyle \dfrac{-2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}

  • \displaystyle \dfrac{2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{-1}{\sqrt{14}}

If A is (2, 4, 5), and B is (-7, -2, 8), then which of the following is collinear withA and B is
  • (1, 2, 6)
  • (2, -1,6)
  • (-1, 2, 6)
  • (2, 6, -1)

lf a line makes \dfrac{\pi }{3},\dfrac{\pi }{4} with the x-axis, {y}-axis respectively, then the angle made by that line with the z- axis is
  • \displaystyle \frac{\pi}{2}
  • \displaystyle \frac{\pi}{3}
  • \displaystyle \frac{\pi}{4}
  • \displaystyle \frac{5\pi}{12}
If l, m, n are the d.cs of the line joining (5, -3, 8) and (6, -1, 6) then l + m + n=
  • 1
  • \displaystyle \dfrac{1}{3}
  • -1
  • \displaystyle \dfrac{5}{3}
If \dfrac{1}{2}, \displaystyle \dfrac{1}{2}, n(n<0) are the dcs of a line, then the angle made by that line with OZ where O=(0,0,0) is
  • \displaystyle \dfrac{-1}{\sqrt{2}}
  • 45^{o}
  • 60^{o}
  • 135^{o}
If the direction ratios of two lines are given by 3lm-4ln+mn=0 and l+2m+3n=0, then the angle between the lines is
  • \displaystyle \dfrac { \pi  }{ 6 }
  • \displaystyle \dfrac { \pi  }{ 4 }
  • \displaystyle \dfrac { \pi  }{ 3 }
  • \displaystyle \dfrac { \pi  }{ 2 }
If P = (3, 4, 5), Q= (4, 6, 3), R= (-1, 2, 4) and S=(1, 0, 5) are four points, then the projection of RS on PQ is
  • \displaystyle \dfrac{8}{3}
  • \displaystyle \dfrac{4}{3}
  • 4
  • 0
If the projections of the line segment AB on the coordinate axes are 2, 3, 6, then the square of the sine of the angle made by AB with x=0, is
  • \displaystyle \dfrac{3}{7}
  • \displaystyle \dfrac{3}{49}
  • \displaystyle \dfrac{4}{7}
  • \displaystyle \dfrac{40}{49}
If the d.rs of OA and OB are 1, -1, -1 and 2, -1, 1, then the d.cs of the line perpendicular to both OA and OB are
  • 0,1, -1
  • -2, -3,1
  • \displaystyle \dfrac{-2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}

  • \displaystyle \dfrac{2}{\sqrt{41}},\dfrac{3}{\sqrt{41}},\dfrac{-1}{\sqrt{41}}

The projection of the line segment joining (0, 0, 0) and (5, 2, 4) on the line whose direction ratios are 2, -3, 6 is
  • 28
  • 4
  • \displaystyle \dfrac{40}{7}
  • \sqrt{45}
lf {P}(x,y,z) is a point on the line segment  joining {A}(2,2,4) and {B}(3,5,6) such that projection of \overline{OP} on axes are \displaystyle \dfrac{13}{5},\dfrac{19}{5},\dfrac{26}{5} respectively, then {P} divide {A}{B} in the ratio
  • 3: 2
  • 2 : 3
  • 1 : 2
  • 1 : 3
The projections of a line segment on x,y\ and\ z axes are respectively \sqrt{2},3,5. The length of the line segment is
  • 6
  • 11
  • 8
  • 5
If the d.rs of two lines are 1, -2, 3 and 2, 0, 1, then the d.rs of the line perpendicular to both the given lines is
  • -2,5, 4
  • 2,-5,4
  • 2,5,-4
  • 1,5,-4
lf {A}=(3,1, -2), {B}=(-1,0,1) and l,m are the projections of {A}{B} on the {y}-axis, zx-plane respectively, then 3l^{2}-m+1=
  • -1
  • 0
  • 1
  • 9
If the projections of the line segment AB on the coordinate axes are 12, 3, k and AB = 13, then k^{2}-2k+3 is equal to:
  • 0
  • 1
  • 11
  • 27
The d.rs of the lines x=  ay + b, z= cy + d are:
  • 1, a, c
  • a, 1, c
  • b, 1, c
  • c, a, 1
Find the angles between the lines, whose direction cosines are give by the equation { l }^{ 2 }-{ m }^{ 2 }+{ n }^{ 2 }=0,l+m+n=0
  • 0
  • \displaystyle \frac{\pi}{6}
  • \displaystyle \frac{\pi}{4}
  • \displaystyle \frac{\pi}{3}
lf AB \perp BC, then the value of \lambda equal, where  A(2k,2,3), B(k,1,5),C(3+k,2,1)
  • 3
  • \displaystyle \dfrac{1}{3}
  • -3
  • -\displaystyle \dfrac{1}{3}
If the projections of the line segment AB on the coordinate axes are 2, 3, 6, then the sum of the d.cs of the line AB is
  • 11
  • 1
  • \displaystyle \frac{11}{49}
  • \displaystyle \frac{11}{7}
lf the \mathrm{D.R}s of two lines are given by the equations l+m+n=0 and l^{2}+m^{2}-n^{2}=0, then the angle between the two lines is:
  • 60^{o}
  • 30^{o}
  • 45^{o}
  • 90^{o}
lf the projections ofthe line segment{A}{B} on the yz-plane, zx-plane, xy-plane are \sqrt{160}, \sqrt{153},5 respectively, then the projection of {A}{B} on the {z}-axis is
  • \sqrt{12}
  • \sqrt{13}
  • 12
  • 144
A line OP where O = (0, 0, 0) makes equal angles with ox, oy, oz. The point on OP, which is at a distance of 6 units from O is:
  • (\displaystyle \dfrac{6}{\sqrt{3}}, \dfrac{6}{\sqrt{3}}, \dfrac{6}{\sqrt{3}})

  • (2\sqrt{3}, -2\sqrt{3},2\sqrt{3})
  • -(2\sqrt{3},2\sqrt{3},2\sqrt{3})
  • (6\sqrt{3},6\sqrt{3},6\sqrt{3})
A point P lies on a line whose ends are A(1,2,3) and B(2,10,1). If z component of P is 7, then the coordinates of P are
  • (-1,-14,7)
  • (1,-14,7)
  • (-1,14,7)
  • (1,14,7)
If l,m,n are the d.cs of a line and l=\displaystyle \dfrac{1}{3}, then the maximum value of l\times m\times n is
  • 4
  • \displaystyle \dfrac{4}{9}
  • \displaystyle \dfrac{27}{4}
  • \displaystyle \dfrac{4}{27}
lf the direction ratios of two lines are given by the equations 2l+2m-n=0 and ml+nl+lm=0, then the angle between the two lines is
  • 60^{o}
  • 30^{o}
  • 45^{o}
  • 90^{o}
The angle between the lines 2x=3y=-z and 6x=-y=-4z is 
  • 0^{0}
  • 90^{0}
  • 45^{0}
  • 30^{0}
If OA is equally inclined to OX, OY and OZ and if A is \sqrt{3} units from the origin, then A is
  • (3, 3, 3)
  • ( 1, -1, -1)
  • ( -1, 1, -1)
  • (1,1,1)
If the d.rs of two lines are given by the equations l+m+n=0 and 2lm-mn+2nl=0, then the angle between the two lines is
  • 120^{o}
  • 45^{o}
  • 90^{\mathrm{o}}
  • 30^{\mathrm{o}}
The line passing through the points (5,1,a) and (3,b,1) crosses the yz-plane at the point \left (0,\dfrac {17}{2}, \dfrac {-13}{2}\right), then 
  • a=11,\ b=4
  • a=8,\ b=2
  • a=2,\ b=8
  • a=4,\ b=6

Assertion ({A}) . The direction ratios of the line joining origin and point (x,y, z) must be x, y, {z}

Reason (R): lf P(x, y, z) is a point in space and |{OP}|={r}, then the direction cosines of {O}{P} are \displaystyle \dfrac{x}{r} , \displaystyle \dfrac{y}{r} , \displaystyle \dfrac{z}{r}

  • Both A and R are individually true and R is the correct explanation of A
  • Both A and R individually true but R is not the correct explanation of A
  • A is true but R is false
  • A is false but R is true
The projection of a directed line segment on the co-ordinate axes are 12,4,3, then the direction cosines of the line are
  • \displaystyle \dfrac{-12}{13},\dfrac{-4}{13},\dfrac{-3}{13}
  • \displaystyle \dfrac{12}{13},\dfrac{4}{13},\dfrac{3}{13}
  • \displaystyle \dfrac{12}{13},\dfrac{-4}{13},\dfrac{3}{13}
  • \displaystyle \dfrac{12}{13},\dfrac{4}{13},\dfrac{-3}{13}

For waht value of \lambda , the three numbers 2\lambda  - 1 , \frac{1}{4}, \lambda -\frac{1}{2} can be the direction cosines of a straight line?

  • \displaystyle \frac{1}{2} \pm \frac{{\sqrt 3 }}{4}
  • \displaystyle \frac{3}{4}
  • \displaystyle \pm \frac{3}{4}
  • \displaystyle \frac{{\sqrt 3 }}{2} \pm \frac{1}{4}
The direction ratios of a normal to the plane through (1, 0, 0) and (0, 1, 0), which makes an angle of \dfrac {\pi}{4} with the plane x+y=3, are:
  • < 1, \sqrt 2, 1 >
  • < 1, 1, \sqrt 2 >
  • < 1, 1, 2 >
  • < \sqrt 2, 1, 1 >
What is the equation of the plane which passes through the z-axis and its perpendicular to the line \dfrac {x-a}{cos\theta}=\dfrac {y+2}{sin\theta}=\dfrac {z-3}{0} ?
  • x+y tan\theta=0
  • y+xtan\theta=0
  • x cos\theta-y sin\theta=0
  • x sin\theta-y cos\theta=0
If points \hat i + \hat j, \hat i - \hat j and p \hat i + q \hat j + r \hat k are collinear, then
  • p = 1
  • r = 0
  • q \in R
  • q \neq 1
If a line makes an angle of \dfrac {\pi}{4} with the positive direction of each of x-axis and y-axis, then the angle that the line makes with the positive direction of z-axis is-
  • \dfrac {\pi}{3}
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{2}
  • \dfrac {\pi}{6}
The equation of the plane passing through the lines \frac {x-4}{1}=\frac {y-3}{1}=\frac {z-2}{2} and \frac {x-3}{1}=\frac {y-2}{-4}=\frac {z}{5} is-
  • 11x-y-3z=35
  • 11x+y-3z=35
  • 11x-y+3z=35
  • None of these.
A line makes an angle \theta with each of the x- and z- axes. If the angle \beta, which it makes with the y-axis, is such that \sin^2\beta=3 \sin^2\theta, then \cos^2\theta equals-
  • \dfrac {2}{3}
  • \dfrac {1}{5}
  • \dfrac {3}{5}
  • \dfrac {2}{5}
If the foot of the perpendicular from the origin to a plane is P(a, b, c), the equation of the plane is-
  • \dfrac {x}{a}+\dfrac {y}{b}+\dfrac {z}{c}=3
  • ax+by+cz=3
  • ax+by+cz=a^2+b^2+c^2
  • ax+by+cz=a+b+c
A straight line L on the xy-plane bisects the angle between OX and OY. What are the direction cosines of L?
  • (1/\sqrt 2, 1/\sqrt 2, 0)
  • ( 1/2, \sqrt 3/2, 0 )
  • (0, 0, 1)
  • (2/3, 2/3, 1/3)
If the points (-1, 3, 2), (-4, 2, -2) and (5, 5, \lambda) are collinear, then \lambda is equal to
  • -10
  • 5
  • -5
  • 10
If the points (0, 1, -2), (3, \lambda, -1) and (\mu, -3, -4) are collinear, the point on the same line is
  • (12, 9, 2)
  • (1, -1, -2)
  • (5, -3, 4)
  • (0, 0, 0)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers