Processing math: 3%

CBSE Questions for Class 12 Commerce Maths Three Dimensional Geometry Quiz 7 - MCQExams.com

The acute angle between two lines such that the direction cosines l,m,n of each of them satisfy the equations l+m+n=0 and l2+m2n2=0 is :-

  • 30
  • 45
  • 60
  • 15
Find in a symmetrical form, the equations of the line formed by the planes x+y+z+1=0,4x+y2z+2=0 and find its direction-cosines.
  • x131=y+232=z01;16,26,16
  • x131=y232=z01;16,26,16
  • x+131=y+232=z+01;16,26,16
  • x+131=y232=z+01;16,26,16
The equation of plane passing through (4, 5, -1) having normal 3\hat{i}-\hat{j}+\hat{k} is ___________.
  • 4x-5y+z=6
  • 3x-y+z=6
  • 3x+y+z=6
  • 4x+5y-z=6
Vector equation of line \dfrac{3-x}{3}=\dfrac{2y-3}{5}=\dfrac{z}{2} is __________ k\in R.
  • \bar{r}=(3, 5, 2)+k(3, 3, 0)
  • \bar{r}=\left(3, \dfrac{3}{2}, 0\right)+k(-6, 5, 4)
  • \bar{r}=(3, 3, 0)+k(3, 5, 2)
  • \bar{r}=(-6, 5, 4)+ k\left( 3, \dfrac{3}{2}, 0\right)
The vector equation of the plane which is at distance of 10 unit from the origin and perpendicular to the vector 4i+4j-2k is
  • r.(4i+4j-2k)=10
  • r.(4i+4j-2k)=20
  • r.(4i+4j-2k)=30
  • r.(4i+4j-2k)=60
A line making angles 45^o and 60^o with the positive direction of x- axis and y- axis respectively. Then the angle made by the line with positive direction of z- axis is 
  • 60^o
  • 120^o
  • 60^o or 120^o
  • None\ of\ these
If the direction cosine of a directed line be a, 3a, 7a then a =
  • \pm 1/\sqrt{59}
  • \pm 1/9
  • \pm 2/7
  • None of these
The direction ratios of the line 6x - 2 = 3y + 1 = 2z - 2 are 
  • \dfrac{1}{\sqrt{3}} , \dfrac{1}{\sqrt{3}} ,\dfrac{1}{\sqrt{3}}
  • \dfrac{1}{\sqrt{14}} , \dfrac{2}{\sqrt{14}} , \dfrac{3}{\sqrt{14}}
  • 1, 2, 3
  • None of these
If O is the origin and the coordinates of P is (1, 2, -3), then find the equation of the plane passing through P and perpendicular to OP.
  • x-2y-3z=-15
  • x+2y-3z=14
  • x-2y+3z=15
  • x-2y-3z=15
The direction cosines of two lines are related by l+m+n=0 and al^2+bm^2+cn^2=0. The lines are parallel if
  • a+b+c=0
  • a^{-1}+b^{-1}+c^{-1}=0
  • a=b=c
  • None\ of\ these
The direction cosines of a line segment AB are - \dfrac{2}{{\sqrt {17} }},\dfrac{3}{{\sqrt {17} }}, - \dfrac{2}{{\sqrt {17} }}. If AB=\sqrt {17} and the coordinates of A are (3,-6,10), then the coordinates of B are 
  • (1,-2,4)
  • (2,5,8)
  • (-1,3,-8)
  • (1,-3,8)
The foot of the perpendicular drawn from the origin to a plane is (1, 2, -3). Find the equation of the plane.
  • x-2y-3z=14
  • x-2y+3z=14
  • x+2y-3z=14
  • x+2y+3z=14
If l,m,n are d.c's of vector \overline {OP} then maximum value of lmn is
  • \dfrac{1}{{\sqrt 3 }}
  • \dfrac{1}{{2\sqrt 3 }}
  • \dfrac{1}{{3\sqrt 3 }}
  • \dfrac{2}{{\sqrt 3 }}
If a  line has the direction ratios 4, -12,18 then find its direction cosines.
  • -\dfrac{2}{11},-\dfrac{6}{11},-\dfrac{9}{11}
  • -\dfrac{2}{11},\dfrac{6}{11},-\dfrac{9}{11}
  • \dfrac{2}{11},-\dfrac{6}{11},\dfrac{9}{11}
  • \dfrac{2}{11},\dfrac{6}{11},\dfrac{9}{11}
A mirror and a source of light are situated at the origin {\rm O} and at a point on {\rm O}X, respectively. A ray of light from the source strikes the mirror and is reflected. If the direction ratios of the normal to the plane are 1,\, - 1,\,1, then find the DCs of the reflected ray.
  • \dfrac {1}{3},\dfrac {2}{3},\dfrac {2}{3}
  • -\dfrac {1}{3},\dfrac {2}{3},\dfrac {2}{3}
  • -\dfrac {1}{3},-\dfrac {2}{3},-\dfrac {2}{3}
  • -\dfrac {1}{3},-\dfrac {2}{3},\dfrac {2}{3}
The direction`cosines of a line equally inclined to three mutually perpendicular lines having D.C.'s as {\ell _1}{m_1}{n_1}:{\ell _2}{m_2}{n_2}:{\ell _3}{m_3}{n_3}\,\, are 
  • {l _1} + {l _2} + {l _3},\,{m_1} + {m_2} + {m_3},\,{n_1} + {n_2} + {n_3}
  • \left( \pm \dfrac{1}{\sqrt{3}},\pm \dfrac{1}{\sqrt{3}},\pm \dfrac{1}{\sqrt{3}} \right)
  • \left( \pm \dfrac{1}{\sqrt{2}},\pm \dfrac{1}{\sqrt{3}},\pm \dfrac{1}{\sqrt{4}} \right)
  • none of these
\overrightarrow a ,\overrightarrow b ,\overrightarrow c are three non-zero vectors, no two of which are collinear and the vector \overrightarrow a + \overrightarrow b is collinear with \overrightarrow c ,  \overrightarrow b + \overrightarrow a is collinear with \overrightarrow a , then \overrightarrow a + \overrightarrow b + \overrightarrow c is equal to -
  • \overrightarrow a
  • \overrightarrow b
  • \overrightarrow c
  • none
 \dfrac{2}{\sqrt{3}}, \dfrac{-2}{\sqrt{3}}, \dfrac{-1}{\sqrt{3}} can be the direction ratios of a directed line.
  • True
  • False
A line passes through the point (6,-7, -1) and (2,-3,1). if the angle \alpha which the line makes with the positive direction of x-axis is acute, the direction cosines of the line are,
  • 2/3, -2/3 , -1/3
  • 2/3 , 2/3 , -1/3
  • 2/3, -2/3 , 1/3
  • 2/3 , 2/3, 1/3
In a line OP through the origin O makes angles of {90^ \circ },\,{60^ \circ }\,and\,{60^ \circ } with x, y and z axis respectively then the direction cosines of OP are  
  • \left( A \right)\,\,\dfrac{1}{2},\dfrac{1}{{\sqrt 2 }},\dfrac{{\sqrt 3 }}{2}
  • \left( B \right)\,\,\sqrt 2 ,\,2\,\sqrt 6
  • \left( C \right)\,\,\dfrac{{\sqrt 3 }}{2},\,\dfrac{1}{{\sqrt 2 }},\,\dfrac{1}{2}
  • None of these
The direction cosines of the line which is perpendicular to the lines with direction cosines proportional to (1, -2, -2) & (0, 2, 1) are
  • \left( {\dfrac{2}{3}, - \dfrac{1}{3},\dfrac{2}{3}} \right)
  • \left( {\dfrac{2}{3},\dfrac{1}{3},\dfrac{2}{3}} \right)
  • \left( {\dfrac{2}{3},\dfrac{1}{3},\dfrac{{ - 2}}{3}} \right)
  • \left( {\dfrac{{ - 2}}{3},\dfrac{1}{3},\dfrac{2}{3}} \right)
The projection of the join of the points (3,4,2),(5,1,8) on the line whose d.c's are \left( {\frac{2}{7},\frac{3}{7},\frac{6}{7}} \right) is 
  • 7
  • \frac{{31}}{{7}}
  • \frac{{42}}{{13}}
  • \frac{{38}}{{13}}
Direction ratios of the normal to the plane passing through the points (0, 1, 1),(1, 1, 2) and (-1, 2, -2) are
  • (1, 1, 1)
  • (2, 1, -1)
  • (1, 2, -1)
  • (1, -2, -1)
A lines makes angles \dfrac{\alpha }{2},\dfrac{\beta }{2},\dfrac{\gamma }{2} with positive direction of coordinate axes, then \cos \alpha  + \cos \beta  + \cos \gamma is equal to
  • -1
  • 1
  • 2
  • 3
State whether the following statement is true or false.
If l, m, n are the direction cosines of a line, then l^2+m^2+n^2=1
  • True
  • False
A vector \vec{V} is inclined at equal angles to axes OX, OY and OZ. If the magnitude of \vec{V} is 6 units, then \vec{V} is?
  • 2\sqrt{3}(\hat{i}+\hat{j}+\hat{k})
  • 2\sqrt{3}(\hat{i}-\hat{j}+\hat{k})
  • \sqrt{2}(\hat{i}+\hat{j}+\hat{k})
  • 2\sqrt{3}(\hat{i}+\hat{j}-\hat{k})
 The points with position vectors \vec {a}=\hat {i}-2\hat {j}+3\hat {k}, \vec {b}=2\hat {i}+3\hat {j}-4\hat {k} & -7\hat {j}+10\hat {k} are collinear.
  • True
  • False
A point at a distance of \sqrt6 from the origin which lies on the straight line \frac{x-1}{1}=\frac{y-2}{2}=\frac{z+1}{3} will be
  • (1, -1, 2)
  • (1, 2, -1)
  • \left( \frac{5}{7}, \frac{10}{7}, \frac{-13}{7}\right)
  • \left( \frac{5}{7}, \frac{2}{7}, \frac{-6}{7}\right)
The angle between the lines whose direction cosines satisfy the equations l+m+n=0 and l^{2}+m^{2}+n^{2} is
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{3}
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{6}
A line passes through the points (6,-7,-1) and (2,-3, 1). If the angle a which the line makes with the positive direction of x-axis is acute, the direction cosines of the line are.
  • (2/3),(-2/3),(-1/3)
  • (2/3),(2/3), (-1/3)
  • (2/3), (-7/3), (1/3)
  • (8/3), (2/3), (1/3)
The equation to the altitude of the altitude triangle formed by \left( {1,1,1} \right).\left( {1,2,3} \right),\left( {2, - 1,1} \right) through \left( {1,1,1} \right)  is 
  • \bar r = \left( {\bar i + \bar j + \bar k} \right) + t\left( {\bar i - \bar j - 2\bar k} \right)
  • \bar r = \left( {\bar i - \bar j + \bar k} \right) + t\left( {\bar i + \bar j - 2\bar k} \right)
  • \bar r = \left( {\bar i + \bar j + \bar k} \right) + t\left( {\bar i - \bar j + 2\bar k} \right)
  • \bar r = \left( {\bar i - \bar j - \bar k} \right) + t\left( {\bar i + \bar j - 2\bar k} \right)
Equation of pair of lines passing through origin and making and angle {\tan ^{ - 1}}2 with the lines 4x-3y+7=0.
  • {\left( {4x - 3y} \right)^2} - 4{\left( {3x + 4y} \right)^2} = 0
  • {\left( {4x - 3y} \right)^2} - {\left( {3x + 4y} \right)^2} = 0
  • {\left( {4x - 3y} \right)^2} - 3{\left( {3x + 4y} \right)^2} = 0
  • 4{\left( {4x - 3y} \right)^2} - {\left( {3x + 4y} \right)^2} = 0
Prove that the points A=(1,2,3),B(3,4,7),C(-3,-2,-5) are collinear & find the ratio in which B divides AC
  • 2:5
  • 2:3
  • 2:8
  • 2:7
If \vec { a } ,\vec { b } ,\vec { c } are three non-zero vectors, no two of which are collinear and the vector \vec { a } +\vec { b }  is collinear with \vec { c }, \vec { b } +\vec { c } is collinear with \vec {a}, then \vec { a } +\vec { b } +\vec { c } is equal to -
  • \vec {a}
  • \vec {b}
  • \vec {c}
  • none\ of\ these
Find the equation of the plane if the foot of the perpendicular from origin to the plane is (2, 3, -5 )
  • 2x+3y+5y=38
  • 2x+3y-5y=38
  • 2x-3y-5y=38
  • None of these
If the points with position vectors 10\hat { i } +\lambda \hat { j } ,3\hat { i } -\hat { j } and 4\hat { i } +5\hat { j } are collinear then \lambda is 
  • 41
  • -41
  • 42
  • -42
If the points with position vectors 60\hat{i}+3\hat{j}, 40\hat{i}-8\hat{j} and a\hat{i}-52j are collinear, then a=?
  • -40
  • -20
  • 20
  • 40
If A ( 2 \overline{i} - \overline{j} - 3 \overline{k} , B ( 4 \overline {i} + \overline{j} - \overline{k} ) and D( \overline{i} - \overline{j} - 2 \overline{k}) then the vector equation of the plane parallel to \overline{ABC} and passing through the centroid of the tetrahedron ABCD is :
  • \overline{r} = ( 2 \overline{i} - \overline{j} - \overline{k} + s ( 2 \overline{i} + 2 \overline{j} + 2 \overline{k} ) + t (\overline{i} - \overline{k} )
  • \overline{r} = ( 2 \overline{i} - \overline{j} -3 \overline{k})+ s ( \overline{i} + \overline{j} + \overline{k} ) + t (\overline{i} - \overline{k} )
  • \overline{r} = ( 2 \overline{i} - \overline{j} - \overline{k} )+ s ( \overline{i} + \overline{j} + \overline{k} ) + t (\overline{i} + \overline{j} -5 \overline{k} )
  • \overline{r} = ( 2 \overline{i} - \overline{j} - \overline{k} )+ s ( \overline{i} + \overline{j} + \overline{k} ) + t (\overline{i} + \overline{j} +5 \overline{k} )
The distance of the point 3\hat{i}+5\hat{k} from the line parallel to the vector 6\hat{i}+\hat{j}-2\hat{k} and passing through the point 8\hat{i}+3\hat{j}+\hat{k} is 
  • 1
  • 2
  • 3
  • 4
A=(-1, 2, -3), B=(5, 0, -6), C=(0, 4, -1) are the vertices of a triangle. The d.c's of the internal bisector of \angleBAC are?
  • \left(\dfrac{25}{\sqrt{714}}, \dfrac{-8}{\sqrt{714}}, \dfrac{-5}{\sqrt{714}}\right)
  • \left(\dfrac{5}{\sqrt{74}}, \dfrac{6}{\sqrt{74}}, \dfrac{8}{\sqrt{74}}\right)
  • \left(\dfrac{25}{\sqrt{714}}, \dfrac{8}{\sqrt{714}}, \dfrac{5}{\sqrt{714}}\right)
  • \left(\dfrac{-5}{\sqrt{74}}, \dfrac{6}{\sqrt{74}}, \dfrac{-8}{\sqrt{74}}\right)
Let \overrightarrow{p}=3a{x}^{2}\hat{i}-2\left(x-1\right)\hat{j} and \overrightarrow{q}=b\left(x-1\right)\hat{i}+x\hat{j}. If ab<0 then \overrightarrow{p} and \overrightarrow{q} are parallel for 
  • atleast one x is \left(0,1\right)
  • atleast one x is \left(-1,0\right)
  • atleast one x is \left(1,2\right)
  • none of these
If \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} are non-coplanar and \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\alpha\overrightarrow{d}\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d}=\beta\overrightarrow{a} then \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d}=
  • 0
  • \alpha\overrightarrow{a}
  • \beta\overrightarrow{b}
  • \left(\alpha+\beta\right)\overrightarrow{c}
If the angle between the line  x = \dfrac { y - 1 } { 2 } = \dfrac { z - 3 } { \lambda } and the plane  x + 2 y + 3 z = 4 \text { is } \cos ^ { - 1 } \left( \sqrt { \frac { 5 } { 14 } } \right) , then  \lambda equals:-
  • \frac{2}{5}
  • \frac{5}{3}
  • \frac{2}{3}
  • \frac{3}{2}
If the points whose position vectors are 2i+j+k, 6i-j+2k and 14i-5j+pk are collinear, then the value of p is?
  • 2
  • 4
  • 6
  • 8
The projection of a vector on three coordinate axes are 6,-3, 2 respectively. The direction cosines of the vector are
  • \left(6,-3,2\right)
  • \left(\dfrac{6}{5},\dfrac{-5}{5},\dfrac{2}{5} \right)
  • \left(\dfrac{6}{7},\dfrac{-3}{7},\dfrac{2}{7}\right)
  • \left(\dfrac{-6}{7},\dfrac{-3}{7},\dfrac{2}{7}\right)
If a line makes angles \alpha ,\beta & \gamma with OX,OY & OZ respectively then \cos ^{ 2 }{ \alpha  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \gamma  } =-1
  • True
  • False
The vector form of the equation of the line passing through points (3,4, 7) and (5,1,6) is-
  • \vec { r } =(3\hat { i } +4\hat { j } -7\hat { k } )+\lambda (2\hat { i } -3\hat { j } +13\hat { k } )
  • \vec { r } =(3\hat { i } +4\hat { j } -7\hat { k } )+\lambda (8\hat { i } +5\hat { j } -\hat { k } )
  • \vec { r } =(3\hat { i } +4\hat { j } +7\hat { k } )+\lambda (2\hat { i } -3\hat { j } -\hat { k } )
  • \vec { r } =(3\hat { i } +4\hat { j } -7\hat { k } )+\lambda (2\hat { i } -3\hat { j } -13\hat { k } )
The line perpendicular to the plane 2x-y+5z=4 passing through the point (-1,0,1) is ?
  • \dfrac{x+1}{2}=-y=\dfrac{z-1}{-5}
  • \dfrac{x+1}{-2}=y=\dfrac{z-1}{-5}
  • \cfrac{x+1}{2}=-y=\cfrac{z-1}{5}
  • \dfrac{x+1}{2}=y=\dfrac{z-1}{-5}
If a straight line makes an angle { cos }^{ -1 }\left( \frac { 1 }{ \sqrt { 3 }  }  \right)   with each of the positive x, y and z-axis, a vector parallel to that line is
  • \overset { - }{ i }
  • \overline { i } +\overline { j }
  • \overline { j } +\overline { k }
  • \overline { i } +\overline { j } +\overline { k }
A line makes angles \alpha, \beta, \gamma with the positive direction of the axes of reference. The value of \cos{2\alpha}+\cos{2\beta}+\cos{2\gamma} is
  • 1
  • 3
  • -1
  • 0
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers