Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Three Dimensional Geometry Quiz 8 - MCQExams.com
CBSE
Class 12 Commerce Maths
Three Dimensional Geometry
Quiz 8
ABC is a triangle where
A
=
(
2
,
3
,
5
)
,
B
=
(
−
1
,
2
,
2
)
and
C
(
λ
,
5
,
μ
)
if the median through A is equally inclined to the positive axis then
λ
+
μ
is
Report Question
0%
7
0%
6
0%
15
0%
9
Explanation
A
D
is median
D
(
λ
−
1
2
,
7
2
,
μ
+
2
2
)
→
A
D
=
(
λ
−
1
2
−
2
,
7
2
−
3
,
μ
+
2
2
−
5
)
→
A
D
is equally in lined.
∴
paralle to
(
1
,
1
,
1
)
λ
−
5
2
=
1
2
=
μ
+
8
2
λ
=
6
μ
=
9
λ
+
μ
=
15
Then,
Option
C
is correct answer.
Projection of a vector on
3
coordinate axes are
6
,
−
3
,
2
respectively. Then DC's of vector are-
Report Question
0%
6
,
−
3
,
2
0%
6
5
,
−
3
5
,
2
5
0%
−
6
7
,
−
3
2
,
2
7
0%
6
7
,
−
3
7
,
2
7
Explanation
Projection of a vector on coordinate axis are
X
2
−
X
1
,
Y
2
−
Y
1
,
Z
2
−
Z
1
X
2
−
X
1
=
6
,
Y
2
−
Y
1
=
−
3
,
Z
2
−
Z
1
=
2
√
(
X
2
−
X
1
)
2
+
(
Y
2
−
Y
1
)
2
+
(
Z
2
−
Z
1
)
2
=
√
36
+
9
+
4
=
7
The Direction cosines of the vector are
6
7
,
−
3
7
,
2
7
If the foot of the perpendicular from
(
0
,
0
,
0
)
to a plane is
P
(
1
,
2
,
2
)
. Then, the equation of the plane is
Report Question
0%
−
x
+
2
y
+
8
z
−
9
=
0
0%
x
+
2
y
+
2
z
−
9
=
0
0%
x
+
y
+
z
−
5
=
0
0%
x
+
2
y
−
3
z
+
3
=
0
Explanation
Equation of normal
⇒
ˆ
i
+
2
ˆ
j
+
2
ˆ
k
equation of plane
⇒
(
x
−
1
)
1
+
(
x
y
−
2
)
2
+
(
z
−
2
)
2
=
0
x
−
1
+
2
y
−
4
+
2
z
−
4
=
0
x
+
2
y
+
2
z
−
9
=
0
P
(
1
,
1
,
1
)
and
Q
(
λ
,
λ
,
λ
)
are two points in the space such that
P
Q
=
√
27
,
the value of
λ
can be
Report Question
0%
−
4
0%
−
2
0%
2
0%
0
Explanation
P
Q
2
=
(
λ
−
1
)
2
+
(
λ
−
1
)
2
+
(
λ
−
1
)
2
⇒
3
(
λ
−
1
)
2
=
27
⇒
(
λ
−
1
)
2
=
9
⇒
λ
−
1
=
±
3
⇒
λ
=
1
±
3
⇒
λ
=
1
+
3
,
or
1
−
3
∴
λ
=
4
,
or
−
2
A
(
2
,
3
,
7
)
,
B
(
−
1
,
3
,
2
)
and
C
(
q
,
5
,
r
)
are the vertices of
Δ
A
B
C
. If the median through A is equally inclined to the coordinate axes then the coordinates of the vertex C is
Report Question
0%
(
7
,
5
,
14
)
0%
(
7
,
5
,
12
)
0%
(
7
,
5
,
10
)
0%
(
7
,
5
,
16
)
If the points
ˉ
a
+
ˉ
b
,
ˉ
a
−
ˉ
b
,
ˉ
a
+
k
ˉ
b
are collinear, then
Report Question
0%
k
has only one real value
0%
k
has two real value
0%
k
has no real values
0%
k
has infinite number of real values
Explanation
As the
3
point should be collinear area of triangle termed by then should be zero
considering
2
direction to be
(
ˉ
a
+
ˉ
b
)
−
(
ˉ
a
−
ˉ
b
)
=
2
ˉ
b
&
(
ˉ
a
+
ˉ
b
)
−
(
ˉ
a
+
k
ˉ
b
)
=
(
1
−
k
)
ˉ
b
(
2
ˉ
b
)
×
(
1
−
k
)
ˉ
b
=
0
this will be for any value of
k
as cross produced of
2
linear vector
=
0
A line
A
B
in three-dimensional space males angles
45
o
and
120
o
with the positive x-axis and the positive y-axis respectively. If
A
B
makes an acute angle
θ
with the positive z-axis, then
θ
equal
Report Question
0%
45
o
0%
60
o
0%
75
o
0%
30
o
Explanation
'l', 'm', 'n' be the Direction cosine of the line
l
=
c
o
s
α
=
c
o
s
45
∘
=
1
√
2
m
=
c
o
s
β
=
c
o
s
120
∘
=
−
1
2
n
=
c
o
s
θ
we know
l
2
+
m
2
+
n
2
=
1
⇒
d
1
2
+
1
4
+
c
o
s
2
θ
=
1
⇒
c
o
s
2
θ
=
1
−
1
2
−
1
4
⇒
c
o
s
2
θ
=
1
4
⇒
c
o
s
=
1
2
∴
θ
=
60
∘
If the points
(
α
,
−
1
)
,
(
2
,
1
)
and
(
4
,
5
)
are collinear, then find
α
by vector method.
Report Question
0%
4
0%
1
0%
8
0%
None of these
Explanation
If there points are collinear then vectors from one to another will have scalar triple produced
0
.Point
(
α
,
−
1
)
,
(
2
,
1
)
,
(
4
,
5
)
(
2
−
α
)
ˆ
i
+
2
ˆ
j
−
ˉ
A
2
ˆ
i
+
4
ˆ
j
−
ˉ
B
(
4
−
α
)
ˆ
i
+
6
ˆ
j
−
ˉ
C
ˉ
A
.
(
ˉ
B
×
ˉ
C
)
=
0
(
(
2
−
α
)
ˆ
i
+
2
ˆ
j
)
(
2
ˆ
i
+
4
ˆ
j
)
×
(
(
4
−
α
)
ˆ
i
+
6
ˆ
j
)
(
(
2
−
α
)
ˆ
i
+
2
ˆ
j
)
.
[
12
ˆ
k
−
16
ˆ
k
+
4
α
ˆ
k
]
=
0
4
α
=
4
α
=
1
Also the direction vector will be proportion
(
2
−
α
,
2
)
=
λ
(
4
−
2.5
−
1
)
(
2
−
α
,
2
)
=
λ
(
2
,
4
)
λ
=
1
2
as
2
=
4
λ
2
−
α
=
1
∴
α
=
1
The Cartesian equation of line
6
x
−
2
=
3
y
+
1
=
2
z
−
2
is given by
Report Question
0%
3
x
−
1
3
=
3
y
+
1
6
=
z
−
1
3
0%
3
x
+
1
3
=
3
y
−
1
6
=
z
−
1
3
0%
3
x
−
1
3
=
3
y
−
1
6
=
z
−
1
3
0%
3
x
−
1
6
=
3
y
−
1
3
=
z
−
1
3
Explanation
Solution -
6
x
−
2
=
3
y
+
1
=
2
z
−
2
6
x
−
2
6
=
3
y
+
1
6
=
2
z
−
2
6
x
−
1
3
1
=
y
+
1
3
2
=
z
−
1
3
DR
(
1
,
2
,
3
)
Point passing through line
(
1
/
3
,
−
1
/
3
,
1
)
3
x
−
1
3
=
3
y
+
1
6
=
z
−
1
3
A is correct.
The direction ratios of the joining
A
(
1
,
2
,
1
)
and
(
2
,
1
,
2
)
are
Report Question
0%
3
,
3
,
3
0%
−
1
,
1
,
−
1
0%
3
,
1
,
3
0%
1
√
3
,
1
√
3
,
1
√
3
Explanation
We have given points are:-
A
(
1
,
2
,
1
)
B
(
2
,
1
,
2
)
Now,
→
B
A
=
(
1
−
2
)
ˆ
i
+
(
2
−
1
)
ˆ
j
+
(
1
−
2
)
ˆ
k
=
−
ˆ
i
+
ˆ
j
−
ˆ
k
direction ratio are
a
=
−
1
b
=
1
c
=
−
1
Hence,
option
B
is correct.
The direction ratios of
A
B
are
−
2
,
2
,
1
. If coordinates of A are
(
4
,
1
,
5
)
and
l
(
A
B
)
=
6
, then coordinates of
B
?
Report Question
0%
(
0
,
5
,
−
7
)
0%
(
8
,
−
3
,
3
)
0%
(
0
,
7
,
5
)
0%
(
8
,
3
,
3
)
If the lines
L
1
a
n
d
L
2
are given by
ˉ
r
=
(
ˉ
i
+
2
ˉ
j
−
ˉ
k
)
+
t
(
¯
2
i
−
3
ˉ
j
+
ˉ
k
)
a
n
d
ˉ
r
=
(
ˉ
i
+
ˉ
j
+
ˉ
k
)
+
s
(
2
ˉ
i
+
ˉ
j
−
ˉ
k
)
, then
Report Question
0%
L
1
a
n
d
L
2
are perpendicular
0%
L
1
a
n
d
L
2
are parallel
0%
(
L
1
,
L
2
)
=
45
o
0%
(
L
1
,
L
2
)
=
60
o
The vector equation of line passing through the point
(
−
1
,
−
1
,
2
)
and parallel to the line
2
x
−
2
=
3
y
+
1
=
6
z
−
2
Report Question
0%
(
−
ˆ
i
−
ˆ
j
+
2
ˆ
k
)
+
λ
(
3
ˆ
i
+
2
ˆ
j
+
ˆ
k
)
0%
(
−
ˆ
i
−
ˆ
j
+
2
ˆ
k
)
+
λ
(
2
ˆ
i
+
3
ˆ
j
+
6
ˆ
k
)
0%
(
−
ˆ
i
−
ˆ
j
+
2
ˆ
k
)
+
λ
(
ˆ
i
+
2
ˆ
j
+
3
ˆ
k
)
0%
(
−
ˆ
i
−
ˆ
j
+
2
ˆ
k
)
+
λ
(
2
ˆ
i
+
3
ˆ
j
+
ˆ
k
)
Explanation
Given
L
1
:
2
x
−
2
=
3
y
+
1
=
6
z
−
2
⇒
2
(
x
−
1
)
=
3
(
y
+
1
3
)
=
6
(
z
−
1
3
)
⇒
x
−
1
3
=
y
+
1
3
2
=
z
−
1
3
1
Equation of line passing through
(
−
1
,
−
1
,
2
)
parallel to
L
1
x
+
1
3
=
y
+
1
2
=
z
−
2
1
vector equation is
(
−
ˆ
i
−
ˆ
j
+
2
ˆ
k
)
+
λ
(
3
ˆ
i
+
2
ˆ
j
+
ˆ
k
)
If
ˉ
a
,
ˉ
b
and
ˉ
c
are non-zero non collinear vectors and
θ
(
≠
0
,
π
)
is the angle between
ˉ
b
and
ˉ
c
if
(
ˉ
a
×
ˉ
b
)
×
ˉ
c
=
1
2
|
ˉ
b
|
ˉ
c
|
ˉ
a
. then
sin
θ
=
Report Question
0%
√
2
3
0%
√
3
2
0%
4
√
2
3
0%
2
√
2
3
Explanation
We have
(
→
a
×
→
b
)
×
→
c
=
1
2
|
→
b
|
|
→
c
|
→
a
→
c
×
(
→
a
×
→
b
)
=
1
2
|
→
b
|
|
→
c
|
→
a
−
[
(
→
c
.
→
b
)
→
a
−
(
→
c
.
→
a
)
→
b
]
=
1
2
|
→
b
|
|
→
c
|
→
a
(
→
c
.
→
a
)
→
b
−
(
→
c
.
→
b
)
→
a
=
1
2
|
→
b
|
|
→
c
|
→
a
→
c
.
→
a
=
0
→
c
.
→
a
=
−
1
2
|
→
b
|
|
→
c
|
cos
θ
=
−
1
2
⇒
θ
=
2
π
3
∴
sin
θ
=
√
3
2
Hence,
B
is the correct answer.
If
A
=
(
1
,
2
,
−
1
)
,
B
=
(
2
,
0
,
3
)
,
C
=
(
3
,
−
1
,
2
)
then the angle between
¯
A
B
and
¯
A
C
is
Report Question
0%
0
o
0%
90
o
0%
cos
−
1
(
20
√
21
√
22
)
0%
cos
−
1
(
15
√
21
√
11
)
Explanation
Given
A
(
1
,
2
,
−
1
)
,
B
=
(
2
,
0
,
3
)
,
C
=
(
3
,
−
1
,
2
)
Drs of
A
B
=
(
1
,
−
2
,
4
)
Drs of
A
C
=
(
2
,
−
3
,
3
)
cos
θ
=
2
+
6
+
12
√
1
+
4
+
16
√
4
+
9
+
9
⇒
cos
θ
=
20
√
21
√
22
⇒
θ
=
cos
−
1
(
20
√
21
√
22
)
A line d.c's proportional to
(
2
,
1
,
2
)
meets each of the lines
x
=
y
+
a
=
z
and
x
+
a
=
2
y
=
2
z
. Then the coordinates of each of the points of intersection are given by
Report Question
0%
(
3
a
,
2
a
,
3
a
)
;
(
a
,
a
,
2
a
)
0%
(
3
a
,
2
a
,
3
a
)
;
(
a
,
a
,
a
)
0%
(
3
a
,
3
a
,
3
a
)
;
(
a
,
a
,
a
)
0%
(
2
a
,
3
a
,
3
a
)
;
(
2
a
,
a
,
a
)
Explanation
L
1
:
x
1
=
y
+
a
1
=
z
1
L
2
:
x
+
a
2
=
y
1
=
z
1
Any point on
L
1
A
(
k
1
,
k
1
−
1
,
k
1
)
Any point on
L
2
B
(
2
k
2
−
1
,
k
2
,
k
2
)
Drs of
A
B
=
(
k
1
−
2
k
2
+
a
,
k
1
−
k
2
−
a
,
k
1
−
k
−
2
)
=
k
1
−
2
k
2
+
a
2
=
k
1
−
k
2
−
a
1
=
k
1
−
k
2
2
⇒
k
1
−
2
k
2
+
a
=
2
k
1
−
2
k
2
−
2
a
⇒
3
a
=
k
1
∴
2
k
1
−
2
k
2
−
2
a
=
k
1
−
k
2
⇒
2
k
1
−
k
1
−
k
2
=
2
a
⇒
k
1
−
k
2
=
2
a
⇒
k
2
=
a
∴
A
(
3
a
,
2
a
,
3
a
)
B
(
a
,
a
,
a
)
If
x
−
14
l
=
y
−
2
m
=
z
+
1
n
is the equation of the line through (1,2,-1) and (-1,0,1), then (l,m,n) is
Report Question
0%
(-1,0,1)
0%
(1,1,-1)
0%
(1,2,-1)
0%
(0,1,0)
If
A
=
(
1
,
2
,
3
)
,
B
=
(
2
,
10
,
1
)
,
Q
are collinear points and
Q
x
=
−
1
then
Q
z
is
Report Question
0%
−
3
0%
7
0%
−
14
0%
−
7
The direction cosines to two lines at right angles are (1,2,3) and (-2,
1
2
,
1
3
), then the direction cosine perpendicular to both given lines are:
Report Question
0%
√
25
2198
,
√
19
2198
,
√
729
2198
0%
√
24
2198
,
√
38
2198
,
√
730
2198
0%
1
3
,-2,
−
7
2
0%
None of the above
Explanation
Direction cosines of
L
1
=
(
1
,
2
,
3
)
Direction cosines of
L
2
=
(
−
2
,
1
2
,
1
3
)
Let direction ratios of required line be a,b,c then
a
+
2
b
+
3
c
=
0
→
1
and
−
2
a
+
b
2
+
c
3
=
0
⇒
−
12
a
+
3
b
+
2
c
=
0
→
2
Solving
1
and
2
a
+
2
b
+
3
c
=
0
−
12
a
+
3
b
+
2
c
=
0
⇒
a
4
−
9
=
b
−
36
−
2
=
c
3
+
24
⇒
a
+
5
=
b
+
38
=
c
−
27
⇒
a
=
+
5
,
b
=
+
38
,
c
=
−
27
∴
Direction cosines are
5
√
5
2
+
38
2
+
(
27
)
2
,
38
√
5
2
+
38
2
+
(
−
27
)
2
,
−
27
√
5
2
+
38
2
+
(
−
27
)
2
5
√
2198
,
38
√
2198
,
−
27
√
2198
The direction cosines of a vector
→
A
are
cos
α
=
4
5
√
2
,
cos
β
=
1
√
2
,
cos
γ
=
3
5
√
2
then, the vector
→
A
is
Report Question
0%
4
ˆ
i
+
ˆ
j
+
3
ˆ
k
0%
4
ˆ
i
+
5
ˆ
j
+
3
ˆ
k
0%
4
ˆ
i
−
5
ˆ
j
+
3
ˆ
k
0%
4
ˆ
i
−
ˆ
j
−
3
ˆ
k
If
ˉ
a
,
ˉ
b
,
ˉ
c
are non-coplaner vector , then the vectors
2
ˉ
a
−
4
ˉ
b
+
4
ˉ
c
,
ˉ
a
−
2
ˉ
b
+
4
ˉ
c
and
−
ˉ
a
+
2
ˉ
b
+
4
ˉ
c
are parellel.
Report Question
0%
True
0%
False
The angle between the lines
x
−
2
3
=
y
+
1
−
2
,
z
=
2
and
x
−
1
1
=
2
y
+
3
3
=
z
+
5
2
is equal to
Report Question
0%
π
/
2
0%
π
/
3
0%
π
/
6
0%
none of these
The direction ratios of the line joining the points
(
4
,
3
,
−
5
)
and
(
−
2
,
1
,
−
8
)
are
Report Question
0%
6
7
,
2
7
,
3
7
0%
6
,
2
,
3
0%
5
,
8
,
0
0%
3
,
7
,
9
Explanation
Given points
P
(
4
,
3
,
−
5
)
Q
(
−
2
,
1
,
−
8
)
Direction ratios of
P
Q
=
Position vector of
P
−
Position vector of
Q
=
4
−
(
−
2
)
,
3
−
1
,
−
5
−
(
−
8
)
=
6
,
2
,
3
If
(
1
2
,
1
3
,
n
)
are the direction cosines of a line then the value of
n
is
Report Question
0%
√
23
6
0%
23
6
0%
2
3
0%
3
2
Explanation
Given direction cosines are
1
2
,
1
3
,
n
we have that if
l
,
m
,
n
are direction cosines of a line then
l
2
+
m
2
+
n
2
=
1
1
4
+
1
9
+
n
2
=
1
⇒
n
2
=
1
−
(
13
36
)
=
23
36
n
=
√
23
6
The angle between the pair of lines with direction ratios (1, 1, 2) and
(
√
3
−
1
,
−
√
3
−
1
,
4
)
is
Report Question
0%
30
o
0%
45
o
0%
60
o
0%
90
o
Explanation
c
o
s
θ
=
1
(
√
3
−
1
)
+
1
(
−
√
3
−
1
)
+
2
(
4
)
√
1
2
+
1
2
+
2
2
√
(
√
3
−
1
)
2
+
(
−
√
3
−
1
)
2
+
4
2
=
√
3
−
1
−
√
3
−
1
+
8
√
6
.
√
4
−
2
√
3
+
4
+
2
√
3
+
16
=
6
√
6
.
√
24
=
6
12
=
1
2
θ
=
60
o
A line makes angles
α
,
β
,
γ
,
δ
with the four diagonals of a cube then
cos
2
α
+
cos
2
β
+
cos
2
γ
+
cos
2
δ
is equal to
Report Question
0%
1
0%
4
/
3
0%
3
/
4
0%
4
/
5
Explanation
REF.Image
Take 'O' as a corner
O
A
,
O
B
,
O
C
are 3 edges through
the axes
Let
O
A
=
O
B
=
O
C
=
a
coordinates of
O
=
(
o
,
o
,
o
)
A
(
a
,
o
,
o
)
B
(
o
,
a
,
o
)
C
(
o
,
o
,
a
)
P
(
a
,
a
,
o
)
L
(
o
,
a
,
a
)
M
(
a
,
o
,
a
)
N
(
a
,
a
,
o
)
The four diagonals
O
P
,
A
L
,
B
M
,
C
N
Direction cosine of
O
P
:
a
−
o
,
a
−
o
,
a
−
o
=
a
,
a
,
a
=
1
,
1
,
1
Direction cosine of
A
L
:
o
−
a
,
a
−
o
,
a
−
o
=
−
a
,
a
,
a
=
−
1
,
1
,
1
Direction cosine of
B
M
:
a
−
o
,
o
−
a
,
a
−
o
=
a
,
−
a
,
a
=
1
,
−
1
,
1
Direction cosine of
C
N
:
a
−
o
,
a
−
o
,
o
−
a
=
a
,
a
,
−
a
=
1
,
1
,
−
1
∴
DC's of OP are
1
√
3
,
1
√
3
,
1
√
3
DC's of AL are
−
1
√
3
,
1
√
3
,
1
√
3
DC's of BM are
1
√
3
,
−
1
√
3
,
1
√
3
DC's of CN are
1
√
3
,
1
√
3
,
−
1
√
3
Let l,m,n be dc's of line and line makes angle
α
with OP :-
cos
α
=
l
(
1
√
3
)
+
m
(
1
√
3
)
+
n
(
1
√
3
)
=
l
+
m
+
n
√
3
Similarly
cos
β
=
−
l
+
m
+
n
√
3
cos
δ
=
l
+
m
−
n
√
3
cos
γ
=
l
−
m
+
n
√
3
suaring and adding all the four
i.e ;
cos
2
α
+
cos
2
β
+
cos
2
γ
+
cos
2
δ
=
1
3
[
(
l
+
m
+
n
)
2
+
(
−
l
+
m
+
n
)
2
+
(
l
−
m
+
n
)
2
+
(
l
+
m
−
n
)
2
]
=
1
3
[
4
l
2
+
4
m
2
+
4
n
2
]
=
4
3
(
l
2
+
m
2
+
n
2
)
[
∵
l
2
+
m
2
+
n
2
=
1
]
=
4
3
∴
cos
2
α
+
cos
2
β
+
cos
2
γ
+
cos
2
δ
=
4
3
The direction ratios of the line, given by the planes x - y + z - 5 = 0, x - 3y - 6 = 0 are
Report Question
0%
(3, 1, -2)
0%
(2, -4, 1)
0%
(1,-1, 1)
0%
(0,2,1)
Explanation
Given,
x
–
y
+
z
–
5
=
0
=
x
–
3
y
–
6
⇒
x
–
y
+
z
–
5
=
0
x
–
3
y
–
6
=
0
⇒
x
–
y
+
z
–
5
=
0
(1)
x
=
3
y
+
6
(2)
From (1) and (2) we get,
3
y
+
6
–
y
+
z
–
5
=
0
2
y
+
z
+
1
=
0
y
=
−
z
−
1
2
Also,
y
=
x
−
6
3
From (2)
∴
x
−
6
3
=
y
=
−
z
−
1
2
So, the given equation can be re-written as
x
−
6
3
=
y
1
=
z
+
1
−
2
Hence the direction ratios of the given line are proportional to
3
,
1
,
−
2
If
¯
O
A
=
3
¯
i
+
¯
j
−
¯
k
,
|
¯
A
B
|
=
2
√
6
and AB has the direction ratios 1, -1 , 2 then
|
O
B
|
=
Report Question
0%
√
35
0%
√
41
0%
√
26
0%
√
55
Explanation
→
O
A
=
3
ˆ
i
+
ˆ
j
−
ˆ
k
|
→
A
B
|
=
2
√
6
has dr's
(
1
,
−
1
,
2
)
Unit vector with above dr's are
→
A
B
=
(
1
√
6
ˆ
i
−
1
√
6
ˆ
j
+
2
√
6
ˆ
k
)
(
2
√
6
)
→
A
B
=
2
ˆ
i
−
2
ˆ
j
+
4
ˆ
k
→
A
B
=
→
O
B
−
→
O
A
→
O
B
=
(
2
ˆ
i
−
2
ˆ
j
+
4
ˆ
k
)
+
(
3
ˆ
i
+
ˆ
j
−
ˆ
k
)
→
O
B
=
(
5
ˆ
i
−
ˆ
j
+
3
ˆ
k
)
|
O
B
|
=
√
25
+
1
+
9
=
√
35
.
The direction cosines of a vector A are
cos
α
=
4
5
√
2
,
c
o
s
β
=
1
√
2
,
and
c
o
s
γ
=
3
5
√
2
,
then vector A is
Report Question
0%
4
i
+
j
+
3
k
0%
4
i
+
5
j
+
3
k
0%
4i-5j-3k
0%
none
Explanation
→
A
=
a
ˆ
i
+
b
ˆ
j
+
c
ˆ
k
cos
α
=
a
√
a
2
+
b
2
+
c
2
cos
β
=
b
√
a
2
+
b
2
+
c
2
cos
γ
=
c
√
a
2
+
b
2
+
c
2
√
4
2
+
5
2
+
3
2
=
√
16
+
25
+
9
=
√
50
=
5
√
2
→
A
=
4
ˆ
i
+
5
ˆ
j
+
3
ˆ
k
The vector
a
=
α
1
+
2
j
+
β
k
lies in the plane of the vectors
b
=
i
+
j
t
and
c
=
j
+
k
and bisects the angle between
b
and
c
. Then which one of the following gives possible values
α
and
β
.
Report Question
0%
α
=
1
,
β
=
2
0%
α
=
2
,
β
=
1
0%
α
=
1
,
β
=
1
0%
α
=
2
,
β
=
2
Let
l
1
,
m
1
,
n
1
;
l
2
,
m
2
,
n
2
;
l
3
,
m
3
,
n
3
be the direction cosines of three mutually perpendicular line then
|
l
1
m
1
n
1
l
2
m
2
n
2
l
3
m
3
n
3
|
Report Question
0%
0
0%
±
1
0%
±
2
0%
±
1
2
The point where
→
x
which is perpendicular to
(
2
,
−
3
,
1
)
and
(
1
,
−
2
,
3
)
and which satisfies the condition
→
x
⋅
(
ˆ
i
+
2
ˆ
j
−
7
ˆ
k
)
=
10
Report Question
0%
(
3
,
5
,
1
)
0%
(
7
,
−
5
,
1
)
0%
(
3
,
−
5
,
1
)
0%
(
7
,
5
,
1
)
Explanation
ˉ
x
=
(
a
,
b
,
c
)
ˉ
x
⊥
(
2
,
−
3
,
1
)
&
x
⊥
(
1
,
−
2
,
3
)
⇒
x
.
(
2
,
−
3
,
1
)
=
0
&
x
.
(
1
,
−
2
,
3
)
=
0
⇒
2
a
−
3
b
+
c
=
0
__(1) &
a
−
2
b
+
3
c
=
0
__(2)
ˉ
x
.
(
ˆ
i
+
2
ˆ
j
−
7
ˆ
k
)
=
10
⇒
a
+
2
b
−
7
c
=
10
__(3)
(
1
)
⇒
c
=
3
b
−
2
a
(
2
)
⇒
a
=
2
b
−
3
c
}
Put in (3)
a
+
2
b
−
7
c
=
10
2
b
−
3
c
+
2
b
−
7
c
=
10
⇒
4
b
−
10
c
=
10
__(4)
(1)
⇒
a
=
−
c
+
3
b
2
a
=
3
b
−
c
2
=
2
b
−
3
c
⇒
3
b
−
c
=
4
b
−
6
c
⇒
b
=
5
c
__(5)
from (4) & (5)
c
=
1
,
b
=
5
,
a
=
7
⇒
ˉ
x
=
(
7
,
5
,
1
)
The equation of the plane through
(
0
,
−
5
,
1
)
which is perpendicular to the planes
2
x
+
4
y
+
2
z
+
3
=
0
,
2
x
+
5
y
+
3
z
+
4
=
0
is
Report Question
0%
x
+
y
+
z
=
6
0%
x
−
y
+
z
=
6
0%
x
−
y
−
z
=
6
0%
x
+
y
+
z
+
6
=
0
If
A
(
p
,
q
,
r
)
and
B
=
(
p
′
,
q
′
,
r
′
)
are two points on the line
λ
x
=
μ
y
=
y
z
such that
O
A
=
3
,
O
B
=
4
then
p
p
′
+
q
q
′
+
r
r
′
is equal to
Report Question
0%
7
0%
12
0%
5
0%
N
o
n
e
o
f
t
h
e
s
e
The angle between the lines whose de's satisfy the equation
l
+
m
+
m
=
0
and
l
2
+
m
2
−
n
2
=
0
is
Report Question
0%
π
6
0%
π
2
0%
π
3
0%
π
4
Explanation
Given that the equations
l
+
m
+
n
=
0
………..
(
1
)
l
+
m
=
−
n
⇒
−
(
l
+
m
)
=
n
and
l
2
+
m
2
+
n
2
=
0
……….
(
2
)
Put the value of n in equation
(
2
)
l
2
+
m
2
+
n
2
=
0
⇒
l
2
+
m
2
−
(
−
(
l
+
m
)
)
2
=
0
⇒
l
2
+
m
2
−
(
l
2
+
m
2
−
2
m
l
)
=
0
⇒
l
2
+
m
2
−
l
2
−
m
2
+
2
m
l
=
0
⇒
2
m
l
0
⇒
m
l
=
0
⇒
m
=
0
,
l
=
0
Let us put
m
=
0
in equation
(
3
)
l
+
o
+
n
=
0
l
=
−
n
Hence, direction rates
(
l
,
m
,
o
)
=
(
1
,
0
,
−
1
)
Let us put
l
=
0
, we get
m
=
−
n
Here, direction ratios
(
l
,
m
,
n
)
=
(
0
,
1
,
−
1
)
we know that,
cos
θ
=
→
b
1
⋅
→
b
2
|
→
b
1
|
|
→
b
2
|
=
(
1
,
0
,
−
1
)
⋅
(
0
,
1
,
−
1
)
√
1
2
+
0
2
+
(
−
1
)
2
√
0
2
+
1
2
+
(
−
1
)
2
=
1
√
2
√
2
cos
θ
=
1
2
cos
θ
=
cos
π
3
θ
=
π
3
Hence, this is the answer.
The angle between the lines, whose direction ratios are
1
,
1
,
2
and
√
3
−
1
,
−
√
3
−
1
,
4
,
is
Report Question
0%
45
∘
0%
30
∘
0%
60
∘
0%
90
∘
Explanation
The direction ratios are
(
1
,
1
,
2
)
and
(
√
3
−
1
,
−
√
3
−
1
,
4
)
Angle between them is given by
cos
θ
=
1
(
√
3
−
1
)
+
1
(
−
√
3
−
1
)
+
2
/
4
)
√
1
2
+
1
2
+
2
2
√
(
√
3
−
1
)
2
+
(
−
√
3
−
1
)
2
+
4
2
=
√
3
−
1
−
√
3
−
1
+
8
√
6
√
8
+
16
=
6
√
6
√
24
=
6
√
144
=
6
12
=
1
2
cos
θ
=
1
2
⇒
θ
=
π
3
=
60
o
.
The directions cosines of the line which is perpedicular to the lines whose direction cosines are proportional to (1, -1, 2) and (2,-1,-1) are:
Report Question
0%
1
√
35
,
−
5
√
35
3
√
35
0%
−
1
√
35
,
5
√
35
3
√
35
0%
1
√
35
,
5
√
35
3
√
35
0%
None of these
If a plane passes through the point
(
1
,
1
,
1
)
and is perpendicular to the line
x
−
1
3
=
y
−
1
0
=
z
−
1
4
then its perpendicular distance from the origin is
Report Question
0%
3
4
0%
4
3
0%
7
5
0%
1
Explanation
L
e
t
e
q
u
n
o
f
p
l
a
n
e
b
e
:
a
(
x
−
1
)
+
b
(
y
−
1
)
+
(
z
−
1
)
=
0
3
(
x
−
1
)
+
0
(
y
−
1
)
+
4
(
z
−
1
)
=
0
3
x
+
4
z
=
7
p
e
r
p
e
n
d
i
c
u
l
a
r
d
i
s
tan
c
e
f
r
o
m
o
r
i
g
i
n
d
=
7
5
H
e
n
c
e
,
t
h
e
o
p
t
i
o
n
C
i
s
c
o
r
r
e
c
t
a
n
s
w
e
r
.
The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as
l
1
,
m
1
,
n
1
;
l
2
,
m
2
,
n
2
and
l
3
,
m
3
,
n
3
are
Report Question
0%
l
1
+
l
2
+
l
3
,
m
1
+
m
2
+
m
3
,
n
1
+
n
2
+
n
3
0%
l
1
+
l
2
+
l
3
√
3
,
m
1
+
m
2
+
m
3
√
3
,
n
1
+
n
2
+
n
3
√
3
0%
l
1
+
l
2
+
l
3
3
,
m
1
+
m
2
+
m
3
3
,
n
1
+
n
2
+
n
3
3
0%
N
o
n
e
o
f
t
h
e
s
e
l
=
m
=
n
=
1
represent the direction cosines of the
Report Question
0%
x
−
axis
0%
y
−
axis
0%
z
−
axis
0%
n
o
n
e
o
f
t
h
e
s
e
Explanation
l
=
m
=
n
=
1
(
1
,
1
,
1
)
represent direction ratio of line equally inclined to
x
,
y
&
z
a
x
i
s
Hence,
option
D
is correct answer.
If the points (p. 0), (0, q) and (1, 1) are collinear then
1
p
+
1
q
is equal to
Report Question
0%
-1
0%
1
0%
2
0%
0
Explanation
If the area of triangle is zero, then the points are collinear.
Points are collinear.
Point are
(
p
,
o
)
(
o
,
q
)
(
i
,
q
)
Δ
=
1
2
[
p
(
q
−
1
)
−
0
(
1
−
0
)
+
1
(
0
−
q
)
]
⇒
1
2
[
p
(
q
−
1
)
−
q
]
⇒
1
2
[
p
(
q
−
1
)
−
q
]
⇒
1
2
[
p
q
−
(
p
+
q
)
]
=
o
⇒
p
q
=
p
+
q
⇒
p
+
q
p
q
=
1
⇒
1
p
+
1
q
=
1
The direction ratios of the line
x
−
y
+
z
−
5
=
0
=
x
−
3
y
−
6
a
r
e
Report Question
0%
3
,
1
,
−
2
0%
2
,
−
4
,
1
0%
3
√
14
,
1
√
14
,
−
2
√
14
0%
2
√
41
,
−
4
√
41
,
1
√
41
Explanation
x
−
y
+
z
−
5
=
0
=
x
−
3
y
−
6
x
−
y
+
z
−
5
=
0
--(I)
x
−
3
y
−
6
=
0
--(II)
The Direction ratios of the line is
(
ˆ
i
−
ˆ
j
+
ˆ
k
)
×
(
ˆ
i
−
3
ˆ
j
)
=
3
ˆ
i
+
ˆ
j
−
2
ˆ
k
Hence,the direction ratios is (3,1,-2).
Hence, Option A is correct
The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as
l
1
,
m
1
,
n
1
:
l
2
,
m
2
,
n
2
and
l
3
,
m
3
,
n
3
are
Report Question
0%
l
1
+
l
2
+
l
3
,
m
1
+
m
2
+
m
3
,
n
1
+
n
2
+
n
3
0%
l
1
+
l
2
+
l
3
√
3
,
m
1
+
m
2
+
m
3
√
3
,
n
1
+
n
2
+
n
3
√
3
0%
l
1
+
l
2
+
l
3
3
,
m
1
+
m
2
+
m
3
3
,
n
1
+
n
2
+
n
3
3
0%
None of these
If
A
(
3
ˆ
i
+
2
ˆ
j
+
3
ˆ
k
)
,
B
(
−
ˆ
i
−
ˆ
j
+
8
ˆ
k
)
,
C
(
−
4
ˆ
i
+
4
ˆ
j
+
6
ˆ
k
)
are the vertices of a triangle then the equation of the line passing through the circumcentre and parallel to
→
A
B
is
Report Question
0%
ˆ
r
=
(
−
4
3
ˆ
i
+
5
3
ˆ
j
+
17
3
ˆ
k
)
+
t
(
2
ˆ
i
+
3
ˆ
j
−
5
ˆ
k
)
0%
ˆ
r
=
(
4
3
ˆ
i
+
5
3
ˆ
j
+
17
3
ˆ
k
)
+
t
(
2
ˆ
i
+
3
ˆ
j
−
5
ˆ
k
)
0%
ˆ
r
=
(
−
4
3
ˆ
i
+
5
3
ˆ
j
−
17
3
ˆ
k
)
+
t
(
2
ˆ
i
+
3
ˆ
j
−
5
ˆ
k
)
0%
ˆ
r
=
(
4
3
ˆ
i
−
5
3
ˆ
j
+
17
3
ˆ
k
)
+
t
(
2
ˆ
i
+
3
ˆ
j
−
5
ˆ
k
)
The cartesian from of equation a line passing through the point position vector
2
ˆ
i
−
ˆ
j
+
2
ˆ
k
and is in the direction of
−
2
ˆ
i
+
ˆ
j
+
ˆ
k
, is
Report Question
0%
x
−
2
−
2
=
y
+
1
1
=
z
−
2
1
0%
x
+
4
−
2
=
y
−
1
1
=
z
+
2
1
0%
x
+
2
4
=
y
−
1
−
1
=
z
−
1
2
0%
N
o
n
e
o
f
t
h
e
s
e
Explanation
Equation of a line passing through a point with position vector
→
a
and parallel to
→
b
is
→
r
=
→
a
+
λ
→
b
Here
→
a
=
2
ˆ
i
−
ˆ
j
+
2
ˆ
k
and
→
b
=
−
2
ˆ
i
+
ˆ
j
+
ˆ
k
So,
→
r
=
2
ˆ
i
−
ˆ
j
+
2
ˆ
k
+
λ
(
−
2
ˆ
i
+
ˆ
j
+
ˆ
k
)
Equation of the line in vector form is
2
ˆ
i
−
ˆ
j
+
2
ˆ
k
+
λ
(
−
2
ˆ
i
+
ˆ
j
+
ˆ
k
)
Since the line passes through a point with position vector
2
ˆ
i
−
ˆ
j
+
2
ˆ
k
∴
x
1
=
2
,
y
1
=
−
1
,
z
1
=
2
Also, line is in the direction of
−
2
ˆ
i
+
ˆ
j
+
ˆ
k
Direction ratios :
a
=
−
2
,
b
=
1
,
c
=
1
Equation of line in cartesian form is
x
−
2
−
2
=
y
+
1
1
=
z
−
2
1
If
cos
α
,
cos
β
,
cos
γ
are the direction cosine of a line, then find the value of
c
o
s
2
α
+
(
cos
β
+
sin
γ
)
(
cos
β
−
sin
γ
)
Report Question
0%
2
0%
0
0%
−
1
0%
1
x
−
2
1
=
y
−
3
1
=
z
−
4
−
1
&
x
−
1
k
=
y
−
4
2
=
z
−
5
2
are coplanar then k=?
Report Question
0%
any value
0%
exactly one value
0%
exactly
2
values
0%
exactly
3
values
Explanation
If this two lines are co-planar
|
1
1
−
1
k
2
2
2
−
1
3
−
4
4
−
5
|
=
0
|
1
1
1
k
2
2
1
−
1
−
1
|
=
0
1
(
−
2
+
2
)
−
1
(
−
k
−
2
)
−
1
(
−
k
−
2
)
=
0
k
+
2
+
k
+
2
=
0
k
=
−
2
The plane through (1, 1, 1) (1, -1, 1) and (-7, -3, -5) is
Report Question
0%
Parallel to x-axis.
0%
Parallel to y-axis.
0%
Perpendicular to y-axis.
0%
Perpendicular to x-axis.
Direction ratio of line given by
x
−
1
3
=
6
−
2
y
10
=
1
−
z
−
7
are:
Report Question
0%
<
3
,
10
,
−
7
>
0%
<
3
,
−
5
,
7
>
0%
<
3
,
5
,
7
>
0%
<
3
,
5
,
−
7
>
Explanation
x
−
1
3
=
6
−
2
y
10
=
1
−
z
−
7
x
−
1
3
=
2
y
−
6
−
10
=
z
−
1
−
(
−
7
)
x
−
1
3
=
y
−
3
(
−
10
2
)
=
z
−
1
7
x
−
1
3
=
y
−
3
−
5
=
z
−
1
7
Therefore,
Direction ratios are
3
,
−
5
,
7
A normal to the plane
x
=
2
is...
Report Question
0%
(
0
,
1
,
1
)
0%
(
2
,
0
,
2
)
0%
(
1
,
0
,
0
)
0%
(
0
,
1
,
0
)
Explanation
The plane
x
=
2
is perpendicular to
x
a
x
i
s
So the angle is
π
2
,
cos
π
2
=
0
The plane
x
=
2
is parallel to both
y
a
x
i
s
and
z
a
x
i
s
So the angle is
0
,
cos
0
=
1
So the Drs are
(
0
,
1
,
1
)
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page