Processing math: 53%

CBSE Questions for Class 12 Commerce Maths Three Dimensional Geometry Quiz 8 - MCQExams.com

ABC is a triangle where A=(2,3,5),B=(1,2,2) and C(λ,5,μ) if the median through A is equally inclined to the positive axis then λ+μ is 
  • 7
  • 6
  • 15
  • 9
Projection of a vector on 3 coordinate axes are 6,3,2 respectively. Then DC's of vector are-
  • 6,3,2
  • 65,35,25
  • 67,32,27
  • 67,37,27
If the foot of the perpendicular from (0,0,0) to a plane is P(1,2,2). Then, the equation of the plane is
  • x+2y+8z9=0
  • x+2y+2z9=0
  • x+y+z5=0
  • x+2y3z+3=0
P(1,1,1) and Q(λ,λ,λ) are two points in the space such that PQ=27, the value of λ can be 
  • 4
  • 2
  • 2
  • 0
A(2,3,7),B(1,3,2) and C(q,5,r) are the vertices of ΔABC. If the median through A is equally inclined to the coordinate axes then the coordinates of the vertex C is
  • (7,5,14)
  • (7,5,12)
  • (7,5,10)
  • (7,5,16)
If the points ˉa+ˉb,ˉaˉb,ˉa+kˉb are collinear, then  
  • k has only one real value
  • k has two real value
  • k has no real values
  • k has infinite number of real values
A line AB in three-dimensional space males angles 45o and 120o with the positive x-axis and the positive y-axis respectively. If AB makes an acute angle θ with the positive z-axis, then θ equal
  • 45o
  • 60o
  • 75o
  • 30o
If the points (α,1),(2,1) and (4,5) are collinear, then find α by vector method.
  • 4
  • 1
  • 8
  • None of these
The Cartesian equation of line 6x2=3y+1=2z2 is given by

  • 3x13=3y+16=z13
  • 3x+13=3y16=z13
  • 3x13=3y16=z13
  • 3x16=3y13=z13
The direction ratios of the joining A(1,2, 1) and (2, 1, 2) are
  • 3, 3, 3
  • 1, 1, 1
  • 3, 1, 3
  • 13, 13, 13
The direction ratios of AB are 2,2,1 . If coordinates of A are (4,1,5) and l(AB)=6 , then coordinates of B ?
  • (0,5,7)
  • (8,3,3)
  • (0,7,5)
  • (8,3,3)
If the lines L1 andL2 are given by ˉr=(ˉi+2ˉjˉk)+t(¯2i3ˉj+ˉk) andˉr=(ˉi+ˉj+ˉk)+s(2ˉi+ˉjˉk), then 
  • L1 andL2 are perpendicular
  • L1 andL2 are parallel
  • (L1,L2)=45o
  • (L1,L2)=60o
The vector equation of line passing through the point (1,1,2) and parallel to the line 2x2=3y+1=6z2
  • (ˆiˆj+2ˆk)+λ(3ˆi+2ˆj+ˆk)
  • (ˆiˆj+2ˆk)+λ(2ˆi+3ˆj+6ˆk)
  • (ˆiˆj+2ˆk)+λ(ˆi+2ˆj+3ˆk)
  • (ˆiˆj+2ˆk)+λ(2ˆi+3ˆj+ˆk)
If ˉa,ˉb and ˉc are non-zero non collinear vectors and θ(0,π) is the angle between ˉb and ˉc if (ˉa×ˉb)×ˉc=12|ˉb|ˉc|ˉa. then sinθ=
  • 23
  • 32
  • 423
  • 223
If A=(1,2,1),B=(2,0,3),C=(3,1,2) then the angle between ¯AB and ¯AC is
  • 0o
  • 90o
  • cos1(202122)
  • cos1(152111)
A line d.c's proportional to (2,1,2) meets each of the lines x=y+a=z and x+a=2y=2z. Then the coordinates of each of the points of intersection are given by
  • (3a,2a,3a);(a,a,2a)
  • (3a,2a,3a);(a,a,a)
  • (3a,3a,3a);(a,a,a)
  • (2a,3a,3a);(2a,a,a)
If x14l=y2m=z+1n is the equation of the line through (1,2,-1) and (-1,0,1), then (l,m,n) is 
  • (-1,0,1)
  • (1,1,-1)
  • (1,2,-1)
  • (0,1,0)
If A=(1,2,3),B=(2,10,1),Q are collinear points and Qx=1 then Qz is
  • 3
  • 7
  • 14
  • 7
The direction cosines to two lines at right angles are (1,2,3) and (-2,12,13), then the direction cosine perpendicular to both given lines are:
  • 252198,192198,7292198
  • 242198,382198,7302198
  • 13,-2,72
  • None of the above
The direction cosines of a vector A are cosα=452,cosβ=12,cosγ=352 then, the vector A is 
  • 4ˆi+ˆj+3ˆk
  • 4ˆi+5ˆj+3ˆk
  • 4ˆi5ˆj+3ˆk
  • 4ˆiˆj3ˆk
If  ˉa,ˉb,ˉc are non-coplaner vector , then the vectors 2ˉa4ˉb+4ˉc,ˉa2ˉb+4ˉc and ˉa+2ˉb+4ˉc are parellel.
  • True
  • False
The angle between the lines x23=y+12,z=2 and x11=2y+33=z+52 is equal to 
  • π/2
  • π/3
  • π/6
  • none of these
The direction ratios of the line joining the points (4,3,5) and (2,1,8) are
  • 67,27,37
  • 6,2,3
  • 5,8,0
  • 3,7,9
If (12,13,n) are the direction cosines of a line then the value of n is
  • 236
  • 236
  • 23
  • 32
The angle between the pair of lines with direction ratios (1, 1, 2) and (31,31,4) is 
  • 30o
  • 45o
  • 60o
  • 90o
A line makes angles α,β,γ,δ with the four diagonals of a cube then cos2α+cos2β+cos2γ+cos2δ is equal to
  • 1
  • 4/3
  • 3/4
  • 4/5
The direction ratios of the line, given by the planes x - y + z - 5 = 0, x - 3y - 6 = 0 are 
  • (3, 1, -2)
  • (2, -4, 1)
  • (1,-1, 1)
  • (0,2,1)
If \overline { O A } = 3 \overline { i } + \overline { j } - \overline { k }, | \overline { A B } | = 2 \sqrt { 6 } and AB has the direction ratios 1, -1 , 2 then | O B | = 
  • \sqrt { 35 }
  • \sqrt { 41 }
  • \sqrt { 26 }
  • \sqrt { 55 }
The direction cosines of a vector A are \cos { \alpha  } =\frac { 4 }{ 5\sqrt { 2 }  } , cos \beta =\frac { 1 }{ \sqrt { 2 }  } , and cos \gamma = \frac{ 3 }{ 5\sqrt { 2 }  } , then vector A is
  • 4i+j+3k
  • 4i+5j+3k
  • 4i-5j-3k
  • none
The vector a = \alpha 1 + 2 j + \beta k lies in the plane of the vectors b = i + jt and c = j + k and bisects the angle between b and c. Then which one of the following gives possible values \alpha and \beta.
  • \alpha = 1 , \beta = 2
  • \alpha = 2 , \beta = 1
  • \alpha = 1 , \beta = 1
  • \alpha = 2 , \beta = 2
Let l_{1},\ m_{1},\ n_{1};\ l_{2},\ m_{2},\ n_{2};\ l_{3},\ m_{3},\ n_{3} be the direction cosines of three mutually perpendicular line then \begin{vmatrix} { l }_{ 1 } & m_{ 1 } & n_{ 1 } \\ { l }_{ 2 } & m_{ 2 } & n_{ 2 } \\ { l }_{ 3 } & m_{ 3 } & n_{ 3 } \end{vmatrix}
  • 0
  • \pm 1
  • \pm 2
  • \pm \dfrac{1}{2}
The point where \vec{ x } which is perpendicular to (2,-3,1) and (1,-2,3) and which satisfies the condition \vec { x } \cdot ( \hat { i } + 2 \hat { j } - 7 \hat{ k } ) = 10
  • \left(3,5,1\right)
  • \left(7,-5,1\right)
  • \left(3,-5,1\right)
  • \left(7,5,1\right)
The equation of the plane through \left(0,-5,1\right) which is perpendicular to the planes 2x+4y+2z+3=0,2x+5y+3z+4=0 is 
  • x+y+z=6
  • x-y+z=6
  • x-y-z=6
  • x+y+z+6=0
If A(p,q,r) and B=(p\prime ,q\prime ,r\prime ) are two points on the line \lambda x=\mu y=yz such that OA=3,OB=4 then pp\prime +qq\prime +rr\prime is equal to 
  • 7
  • 12
  • 5
  • None of these
The angle between the lines whose de's satisfy the equation l+m+m=0 and l^2+m^{2}-n^{2}=0 is 
  • \dfrac{\pi}{6}
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{3}
  • \dfrac{\pi}{4}
The angle between the lines, whose direction ratios are 1,1,2 and \sqrt { 3 } - 1 , - \sqrt { 3 } - 1,4 , is
  • {45} ^ { \circ }
  • {30} ^ { \circ }
  • {60} ^ { \circ }
  • {90} ^ { \circ }
The directions cosines of the line which is perpedicular to the lines whose direction cosines are proportional to (1, -1, 2) and (2,-1,-1) are:
  • \dfrac { 1 }{ \sqrt { 35 } } ,-\dfrac { 5 }{ \sqrt { 35 } } \frac { 3 }{ \sqrt { 35 } }
  • -\dfrac { 1 }{ \sqrt { 35 } } ,\frac { 5 }{ \sqrt { 35 } } \dfrac { 3 }{ \sqrt { 35 } }
  • \dfrac { 1 }{ \sqrt { 35 } } ,\dfrac { 5 }{ \sqrt { 35 } } \frac { 3 }{ \sqrt { 35 } }
  • None of these
If a plane passes through the point (1, 1, 1) and is perpendicular to the line \dfrac{x-1}{3}=\dfrac{y-1}{0}=\dfrac{z-1}{4} then its perpendicular distance from the origin is 
  • \dfrac{3}{4}
  • \dfrac{4}{3}
  • \dfrac{7}{5}
  • 1
The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as l_{1},m_{1},n_{1};l_{2},m_{2},n_{2} and l_{3},m_{3},n_{3} are
  • l_{1}+ l_{2}+ l_{3},m_{1}+m_{2}+m_{3},n_{1}+n_{2}+n_{3}
  • \dfrac{l_{1}+l_{2}+l_{3}}{\sqrt{3}},\dfrac{m_{1}+m_{2}+m_{3}}{\sqrt{3}},\dfrac{n_{1}+n_{2}+n_{3}}{\sqrt{3}}
  • \dfrac{l_{1}+l_{2}+l_{3}}{3},\dfrac{m_{1}+m_{2}+m_{3}}{3},\dfrac{n_{1}+n_{2}+n_{3}}{3}
  • None\ of\ these
l=m=n=1 represent the direction cosines of the 
  • x- axis
  • y- axis
  • z- axis
  • none\ of\ these
If the points (p. 0), (0, q) and (1, 1) are collinear then \dfrac { 1 }{ p } +\dfrac { 1 }{ q } is equal to 
  • -1
  • 1
  • 2
  • 0
The direction ratios of the line
x-y+z-5=\quad 0\quad =\quad x-3y-6\quad are
  • 3,1,-2
  • 2,-4,1
  • \frac { 3 }{ \sqrt { 14 } } ,\frac { 1 }{ \sqrt { 14 } } ,\frac { -2 }{ \sqrt { 14 } }
  • \frac { 2 }{ \sqrt { 41 } } ,\frac { -4 }{ \sqrt { 41 } } ,\frac { 1 }{ \sqrt { 41 } }
The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as l_1, m_1, n_1 : l_2, m_2, n_2 and   l_3, m_3, n_3 are
  • l_1+l_2+l_3, m_1+m_2+m_3, n_1+n_2+n_3
  • \dfrac{l_1+l_2+l_3}{\sqrt{3}} , \dfrac{m_1+m_2+m_3}{\sqrt{3}} , \dfrac{n_1+n_2+n_3}{\sqrt{3}}
  • \dfrac{l_1+l_2+l_3}{3} , \dfrac{m_1+m_2+m_3}{3} , \dfrac{n_1+n_2+n_3}{3}
  • None of these
If  A(3\hat { i } +2\hat { j } +3\hat { k } ),B(-\hat { i } -\hat { j } +8\hat { k } ),C(-4\hat { i } +4\hat { j } +6\hat { k } )  are the vertices of a triangle then the equation of the line passing through the circumcentre and parallel to  \vec { A B }  is
  • \hat { r } =\left( -\dfrac { 4 }{ 3 } \hat { i } +\dfrac { 5 }{ 3 } \hat { j } +\dfrac { 17 }{ 3 } \hat { k } \right) +t(2\hat { i } +3\hat { j } -5\hat { k } )
  • \hat { r } =\left( \dfrac { 4 }{ 3 } \hat { i } +\dfrac { 5 }{ 3 } \hat { j } +\dfrac { 17 }{ 3 } \hat { k } \right) +t(2\hat { i } +3\hat { j } -5\hat { k } )
  • \hat { r } =\left( -\dfrac { 4 }{ 3 } \hat { i } +\dfrac { 5 }{ 3 } \hat { j } -\dfrac { 17 }{ 3 } \hat { k } \right) +t(2\hat { i } +3\hat { j } -5\hat { k } )
  • \hat { r } =\left( \dfrac { 4 }{ 3 } \hat { i } -\dfrac { 5 }{ 3 } \hat { j } +\dfrac { 17 }{ 3 } \hat { k } \right) +t(2\hat { i } +3\hat { j } -5\hat { k } )
The cartesian from of equation a line passing through the point position vector 2\hat{i}-\hat{j}+2\hat{k} and is in the direction of -2\hat{i}+\hat{j}+\hat{k}, is
  • \dfrac{x-2}{-2}=\dfrac{y+1}{1}=\dfrac{z-2}{1}
  • \dfrac{x+4}{-2}=\dfrac{y-1}{1}=\dfrac{z+2}{1}
  • \dfrac{x+2}{4}=\dfrac{y-1}{-1}=\dfrac{z-1}{2}
  • None \ of \ these
If \cos { \alpha ,\quad \cos { \beta ,\quad \cos { \gamma  }  }  }   are the direction cosine of a line, then find the value of { cos }^{ 2 }\alpha +\left( \cos { \beta +\sin { \gamma  }  }  \right)\left( \cos { \beta - \sin { \gamma  } }  \right)
  • 2
  • 0
  • -1
  • 1
\dfrac { x - 2 } { 1 } = \dfrac { y - 3 } { 1 } = \dfrac { z - 4 } { - 1 } & \dfrac { x - 1 } { k } = \dfrac { y - 4 } { 2 } = \dfrac { z - 5 } { 2 } are coplanar then k=?
  • any value
  • exactly one value
  • exactly 2 values
  • exactly 3 values
The plane through (1, 1, 1) (1, -1, 1) and (-7, -3, -5) is
  • Parallel to x-axis.
  • Parallel to y-axis.
  • Perpendicular to y-axis.
  • Perpendicular to x-axis.
Direction ratio of line given by \dfrac { x-1 }{ 3 } =\dfrac { 6-2y }{ 10 } =\dfrac { 1-z }{ -7 } are:
  • <3,10,-7>
  • <3,-5,7>
  • <3,5,7>
  • <3,5,-7>
A normal to the plane   x=2  is...
  • (0,1,1)
  • (2,0,2)
  • (1,0,0)
  • (0,1,0)
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers