Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Maths Three Dimensional Geometry Quiz 8 - MCQExams.com

ABC is a triangle where A=(2,3,5),B=(1,2,2) and C(λ,5,μ) if the median through A is equally inclined to the positive axis then λ+μ is 
  • 7
  • 6
  • 15
  • 9
Projection of a vector on 3 coordinate axes are 6,3,2 respectively. Then DC's of vector are-
  • 6,3,2
  • 65,35,25
  • 67,32,27
  • 67,37,27
If the foot of the perpendicular from (0,0,0) to a plane is P(1,2,2). Then, the equation of the plane is
  • x+2y+8z9=0
  • x+2y+2z9=0
  • x+y+z5=0
  • x+2y3z+3=0
P(1,1,1) and Q(λ,λ,λ) are two points in the space such that PQ=27, the value of λ can be 
  • 4
  • 2
  • 2
  • 0
A(2,3,7),B(1,3,2) and C(q,5,r) are the vertices of ΔABC. If the median through A is equally inclined to the coordinate axes then the coordinates of the vertex C is
  • (7,5,14)
  • (7,5,12)
  • (7,5,10)
  • (7,5,16)
If the points ˉa+ˉb,ˉaˉb,ˉa+kˉb are collinear, then  
  • k has only one real value
  • k has two real value
  • k has no real values
  • k has infinite number of real values
A line AB in three-dimensional space males angles 45o and 120o with the positive x-axis and the positive y-axis respectively. If AB makes an acute angle θ with the positive z-axis, then θ equal
  • 45o
  • 60o
  • 75o
  • 30o
If the points (α,1),(2,1) and (4,5) are collinear, then find α by vector method.
  • 4
  • 1
  • 8
  • None of these
The Cartesian equation of line 6x2=3y+1=2z2 is given by

  • 3x13=3y+16=z13
  • 3x+13=3y16=z13
  • 3x13=3y16=z13
  • 3x16=3y13=z13
The direction ratios of the joining A(1,2, 1) and (2, 1, 2) are
  • 3, 3, 3
  • 1, 1, 1
  • 3, 1, 3
  • 13, 13, 13
The direction ratios of AB are 2,2,1 . If coordinates of A are (4,1,5) and l(AB)=6 , then coordinates of B ?
  • (0,5,7)
  • (8,3,3)
  • (0,7,5)
  • (8,3,3)
If the lines L1 andL2 are given by ˉr=(ˉi+2ˉjˉk)+t(¯2i3ˉj+ˉk) andˉr=(ˉi+ˉj+ˉk)+s(2ˉi+ˉjˉk), then 
  • L1 andL2 are perpendicular
  • L1 andL2 are parallel
  • (L1,L2)=45o
  • (L1,L2)=60o
The vector equation of line passing through the point (1,1,2) and parallel to the line 2x2=3y+1=6z2
  • (ˆiˆj+2ˆk)+λ(3ˆi+2ˆj+ˆk)
  • (ˆiˆj+2ˆk)+λ(2ˆi+3ˆj+6ˆk)
  • (ˆiˆj+2ˆk)+λ(ˆi+2ˆj+3ˆk)
  • (ˆiˆj+2ˆk)+λ(2ˆi+3ˆj+ˆk)
If ˉa,ˉb and ˉc are non-zero non collinear vectors and θ(0,π) is the angle between ˉb and ˉc if (ˉa×ˉb)×ˉc=12|ˉb|ˉc|ˉa. then sinθ=
  • 23
  • 32
  • 423
  • 223
If A=(1,2,1),B=(2,0,3),C=(3,1,2) then the angle between ¯AB and ¯AC is
  • 0o
  • 90o
  • cos1(202122)
  • cos1(152111)
A line d.c's proportional to (2,1,2) meets each of the lines x=y+a=z and x+a=2y=2z. Then the coordinates of each of the points of intersection are given by
  • (3a,2a,3a);(a,a,2a)
  • (3a,2a,3a);(a,a,a)
  • (3a,3a,3a);(a,a,a)
  • (2a,3a,3a);(2a,a,a)
If x14l=y2m=z+1n is the equation of the line through (1,2,-1) and (-1,0,1), then (l,m,n) is 
  • (-1,0,1)
  • (1,1,-1)
  • (1,2,-1)
  • (0,1,0)
If A=(1,2,3),B=(2,10,1),Q are collinear points and Qx=1 then Qz is
  • 3
  • 7
  • 14
  • 7
The direction cosines to two lines at right angles are (1,2,3) and (-2,12,13), then the direction cosine perpendicular to both given lines are:
  • 252198,192198,7292198
  • 242198,382198,7302198
  • 13,-2,72
  • None of the above
The direction cosines of a vector A are cosα=452,cosβ=12,cosγ=352 then, the vector A is 
  • 4ˆi+ˆj+3ˆk
  • 4ˆi+5ˆj+3ˆk
  • 4ˆi5ˆj+3ˆk
  • 4ˆiˆj3ˆk
If  ˉa,ˉb,ˉc are non-coplaner vector , then the vectors 2ˉa4ˉb+4ˉc,ˉa2ˉb+4ˉc and ˉa+2ˉb+4ˉc are parellel.
  • True
  • False
The angle between the lines x23=y+12,z=2 and x11=2y+33=z+52 is equal to 
  • π/2
  • π/3
  • π/6
  • none of these
The direction ratios of the line joining the points (4,3,5) and (2,1,8) are
  • 67,27,37
  • 6,2,3
  • 5,8,0
  • 3,7,9
If (12,13,n) are the direction cosines of a line then the value of n is
  • 236
  • 236
  • 23
  • 32
The angle between the pair of lines with direction ratios (1, 1, 2) and (31,31,4) is 
  • 30o
  • 45o
  • 60o
  • 90o
A line makes angles α,β,γ,δ with the four diagonals of a cube then cos2α+cos2β+cos2γ+cos2δ is equal to
  • 1
  • 4/3
  • 3/4
  • 4/5
The direction ratios of the line, given by the planes x - y + z - 5 = 0, x - 3y - 6 = 0 are 
  • (3, 1, -2)
  • (2, -4, 1)
  • (1,-1, 1)
  • (0,2,1)
If ¯OA=3¯i+¯j¯k, |¯AB|=26 and AB has the direction ratios 1, -1 , 2 then |OB|= 
  • 35
  • 41
  • 26
  • 55
The direction cosines of a vector A are cosα=452, cosβ=12, and cosγ=352, then vector A is
  • 4i+j+3k
  • 4i+5j+3k
  • 4i-5j-3k
  • none
The vector a=α1+2j+βk lies in the plane of the vectors b=i+jt and c=j+k and bisects the angle between b and c. Then which one of the following gives possible values α and β.
  • α=1,β=2
  • α=2,β=1
  • α=1,β=1
  • α=2,β=2
Let l1, m1, n1; l2, m2, n2; l3, m3, n3 be the direction cosines of three mutually perpendicular line then |l1m1n1l2m2n2l3m3n3|
  • 0
  • ±1
  • ±2
  • ±12
The point where x which is perpendicular to (2,3,1) and (1,2,3) and which satisfies the condition x(ˆi+2ˆj7ˆk)=10
  • (3,5,1)
  • (7,5,1)
  • (3,5,1)
  • (7,5,1)
The equation of the plane through (0,5,1) which is perpendicular to the planes 2x+4y+2z+3=0,2x+5y+3z+4=0 is 
  • x+y+z=6
  • xy+z=6
  • xyz=6
  • x+y+z+6=0
If A(p,q,r) and B=(p,q,r) are two points on the line λx=μy=yz such that OA=3,OB=4 then pp+qq+rr is equal to 
  • 7
  • 12
  • 5
  • None of these
The angle between the lines whose de's satisfy the equation l+m+m=0 and l2+m2n2=0 is 
  • π6
  • π2
  • π3
  • π4
The angle between the lines, whose direction ratios are 1,1,2 and 31,31,4, is
  • 45
  • 30
  • 60
  • 90
The directions cosines of the line which is perpedicular to the lines whose direction cosines are proportional to (1, -1, 2) and (2,-1,-1) are:
  • 135,535335
  • 135,535335
  • 135,535335
  • None of these
If a plane passes through the point (1,1,1) and is perpendicular to the line x13=y10=z14 then its perpendicular distance from the origin is 
  • 34
  • 43
  • 75
  • 1
The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as l1,m1,n1;l2,m2,n2 and l3,m3,n3 are
  • l1+l2+l3,m1+m2+m3,n1+n2+n3
  • l1+l2+l33,m1+m2+m33,n1+n2+n33
  • l1+l2+l33,m1+m2+m33,n1+n2+n33
  • None of these
l=m=n=1 represent the direction cosines of the 
  • x axis
  • y axis
  • z axis
  • none of these
If the points (p. 0), (0, q) and (1, 1) are collinear then 1p+1q is equal to 
  • -1
  • 1
  • 2
  • 0
The direction ratios of the line
xy+z5=0=x3y6are
  • 3,1,2
  • 2,4,1
  • 314,114,214
  • 241,441,141
The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as l1, m1, n1 : l2, m2, n2 and   l3, m3, n3 are
  • l1+l2+l3, m1+m2+m3, n1+n2+n3
  • l1+l2+l33, m1+m2+m33, n1+n2+n33
  • l1+l2+l33, m1+m2+m33, n1+n2+n33
  • None of these
If  A(3ˆi+2ˆj+3ˆk),B(ˆiˆj+8ˆk),C(4ˆi+4ˆj+6ˆk)  are the vertices of a triangle then the equation of the line passing through the circumcentre and parallel to  AB  is
  • ˆr=(43ˆi+53ˆj+173ˆk)+t(2ˆi+3ˆj5ˆk)
  • ˆr=(43ˆi+53ˆj+173ˆk)+t(2ˆi+3ˆj5ˆk)
  • ˆr=(43ˆi+53ˆj173ˆk)+t(2ˆi+3ˆj5ˆk)
  • ˆr=(43ˆi53ˆj+173ˆk)+t(2ˆi+3ˆj5ˆk)
The cartesian from of equation a line passing through the point position vector 2ˆiˆj+2ˆk and is in the direction of 2ˆi+ˆj+ˆk, is
  • x22=y+11=z21
  • x+42=y11=z+21
  • x+24=y11=z12
  • None of these
If cosα,cosβ,cosγ   are the direction cosine of a line, then find the value of cos2α+(cosβ+sinγ)(cosβsinγ)
  • 2
  • 0
  • 1
  • 1
x21=y31=z41 & x1k=y42=z52 are coplanar then k=?
  • any value
  • exactly one value
  • exactly 2 values
  • exactly 3 values
The plane through (1, 1, 1) (1, -1, 1) and (-7, -3, -5) is
  • Parallel to x-axis.
  • Parallel to y-axis.
  • Perpendicular to y-axis.
  • Perpendicular to x-axis.
Direction ratio of line given by x13=62y10=1z7 are:
  • <3,10,7>
  • <3,5,7>
  • <3,5,7>
  • <3,5,7>
A normal to the plane x=2 is...
  • (0,1,1)
  • (2,0,2)
  • (1,0,0)
  • (0,1,0)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers