Processing math: 5%

CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 10 - MCQExams.com

Let a=3ˆi+2ˆj+2ˆk,b=ˆi+2ˆj2ˆk. Then a unit vector perpendicular to both ab and a+b is :
  • 13(2ˆi+2ˆj+ˆk)
  • 13(2ˆi+2ˆjˆk)
  • 13(2ˆi2ˆj+ˆk)
  • 13(ˆi+ˆj+ˆk)
If a,b,c are three coplanar vectors, then v[2a+3b,2b5c,2c+3a] is 
  • 0
  • 1
  • 3
  • 3
If x and y be unit vectors and |z|=27 such that z+z×x=y, then the angle θ between x  and z can be 
  • 30
  • 60
  • 90
  • None of these
The position vector of point C with respect to B is  \bar { i } +\bar { j } . and that of B with respect to A is \bar { i } +\bar { j } .The position vector of C with respect to A is  ____________.
  • 2\bar { i }
  • -2\bar { i }
  • 2\bar { j }
  • -2\bar { j }
If the vectors 3 \overline { p } + \overline { q } : 5 \overline { p } - 3 \overline { q } and 2 \overline { p } + \overline { q } ; 4 \overline { p } - 2 \overline { q } are pairs of mutually perpendicular vectors then \sin ( \overline { p } \overline { q } ) is:

  • \frac { \sqrt { 55 } } { 4 }
  • \frac { \sqrt { 55 } } { 8 }
  • \frac { 3 } { 16 }
  • \frac {{ \sqrt 247 }} { 16 }
Let \hat {a} and \hat {b} two unit vector such that { \left( \hat { a } .\hat { b }  \right)  }^{ 2 }-\left| \hat { a } \times \hat { b }  \right| is maximum then \left| \hat { a } .\hat { b }  \right| is equal to
  • 1
  • \dfrac{1}{3}
  • 0
  • -\dfrac{1}{3}
The cartesian equation of the plane perpendicular to vector 3\bar {i}-2\bar {j}-2\bar {k} and passing through the point 2\bar {i}+3\bar {j}-\bar {k} is
  • 3x+2y+2z=2
  • 3x-2y+2z=2
  • 3x+2y-2z=2
  • 3x-2y-2z=2
The position vectors of two vertices and the centroid of a triangle are \overset { \rightarrow  }{ i } +\overset { \rightarrow  }{ j } ,\overset { \rightarrow  }{ 2i } -\overset { \rightarrow  }{ j } +\overset { \rightarrow  }{ k }  and \overset { \rightarrow  }{ k }  respectively. The position vector of the third vertex of the triangle is :
  • \overset { \rightarrow }{ -3i } +\overset { \rightarrow }{ 2k }
  • \overset { \rightarrow }{ 3i } -\overset { \rightarrow }{ 2k }
  • \overset { \rightarrow }{ i } +\frac { 2 }{ 3 } \overset { \rightarrow }{ k }
  • none of these
Unit vector perpendicular to the plane of the triangle  ABC  with position vectors of the vertices  A , B , C ,  is  ( where  \Delta  is the area of the triangle  A B C ) .
  • \dfrac { ( \vec { a } \times \vec { b } + \vec { b } \times \vec { c } + \vec { c } \times \vec { a } ) } { \Delta }
  • \dfrac { ( \vec { a } \times \vec { b } + \overline { b } \times \vec { c } + \vec { c } \times \vec { a } ) } { 2 \Delta }
  • \dfrac { ( \vec { a } \times \vec { b } + \vec { b } \times \vec { c } + \vec { c } \times \vec { a } ) } { 3\Delta }
  • \dfrac { ( \vec { a } \times \vec { b } + \vec { b } \times \vec { c } + \vec { c } \times \vec { a } ) } { 4\Delta }
\bar { a } ,\bar { b } and \bar { c } are unit vector such that \bar { a } +\bar { b } -\bar { c } =0. then the angle between \bar { a } and \bar { b } is :-
  • \dfrac { \pi }{ 6 }
  • \dfrac { \pi }{ 3 }
  • \dfrac { \pi }{ 2 }
  • \dfrac { 2\pi }{ 3 }
Let a=(1,-2,3) and b=(2,7,4) then
  • a.b=0
  • a.b=-9
  • a.b=4
  • a.b=-4
If u,\ v,\ w are non-coplanar vector and p,\ q are real numbers, then the equality [3u\ pv\ pw]-[pv\ w\ qw]-[2w\ qv\ qu]=0 holds for 
  • Exactly two values of (p,\ q)
  • More than but not all values of (p,\ q)
  • All values of (p,\ q)
  • Exactly one values of (p,\ q)
If the vectors \bar { AB } =3\hat { i } +4\hat { k } and \bar { AC } =5\hat { i } -2\hat j+4\hat k are the sides of a triangle ABC, then the length of the median through A is:
  • \sqrt { 18 }
  • \sqrt { 72 }
  • \sqrt { 33 }
  • \sqrt { 45 }
In the vectors \bar { AB } =3\hat { i } +4\hat { k }  and \bar { AC } =5\hat { i } -2\hat { j } +4\hat { k } are the series of a triangle ABC, then the length of the median through A is
  • \sqrt { 18 }
  • \sqrt { 72 }
  • \sqrt { 33 }
  • \sqrt { 45 }
Let \overrightarrow { a } ,\overrightarrow { b } and  \overrightarrow { c } be three non-zero vectors such that no two of them are collinear and (\overrightarrow { a } \times \overrightarrow { b } )\times \overrightarrow { c } =\frac { 1 }{ 3 } \left| \overrightarrow { b }  \right| \left| \overrightarrow { c }  \right| \overrightarrow { a } . If \theta is the angle between vectors \overrightarrow { b } and \overrightarrow { c }, then a value of \sin { \theta  } is
  • \frac 23
  • \frac { -2\sqrt { 3 } }{ 3 }
  • \frac { 2\sqrt { 2 } }{ 3 }
  • \frac { -\sqrt { 2} }{ 3 }
A unit vector d is equally inclined at an angle \alpha with the vectors a=\cos \theta. i+ \sin \theta. j , b=-\sin \theta.i+\cos =\theta. j and c=k. Then \alpha is equal to 
  • \cos^{-1} \left(\dfrac{1}{\sqrt{2}}\right)
  • \cos^{-1} \left(\dfrac{1}{\sqrt{3}}\right)
  • \cos^{-1} \dfrac{1}{3}
  • \dfrac{\pi}{2}
The foot of the perpendicular drawn from a point with position vector \hat { i } +4\hat { k } on the line joining the points \hat { j } +3\hat { k } , 2\hat { i } -3\hat { j } +\hat { k } is
  • 4\hat { i } +5\hat { j } +5\hat { k }
  • \frac { 1 }{ 3 } (\hat { i }+\hat { j } +\hat { 8k } )
  • 4\hat { i } +4\hat { j } -5\hat { k }
  • 4\hat { i } -5\hat { j } +5\hat { k }
Let ABCD is a triangular pyramid with base vectors \vec {AB}= 2\bar {i}+3\bar {j}-\bar {k} and \vec {AC}=\bar {i}-2\bar {k}, If volume of the triangular pyramid is \sqrt{150} unit then its height is
  • 10
  • 20
  • 18
  • 23
If \left | \vec{c} \right | = 60 and \vec{c} (\hat{i} + 2\hat{j} + 5\hat{k}) = 0 , then a value of \vec{c}.(7\hat{i} + 2\hat{i} + 3\hat{k}) is :
  • 4\sqrt{2}
  • 12
  • 24
  • 12\sqrt{2}
For any vectors \vec{a}, the value of (\vec{a}\times \hat{i})^2+(\vec{a}\times \hat{j})^2+(a\times \hat{k})^2 is equal to?
  • 3\vec{a^2}
  • \vec{a^2}
  • 2\vec{a^2}
  • None of these
The distance of the point   \text{P}  with position vector  3\hat{i}+6 \hat{j}+8\hat{k}  from   y  - axis 
  • \sqrt{62}
  • 10
  • 3\sqrt{5}
  • \sqrt{73}
The adjacent sides of a parallelogram are  \vec{A}=2 \hat{i}-3 \hat{j}+\hat{k}  and   \vec{B}=-2 \hat{i}+4 \hat{j}-\hat{k}  What is the area of the parallelogram?
  • 4 units
  • 7 units
  • \sqrt{5} units
  • \sqrt{8} units
If  \vec { a } , \vec { b } , \vec { c }  are unit vectors such that  \vec { a } + \vec { b } + \vec { c } = 0 ,  the value of  \vec { a } \cdot \vec { b } + \vec { b } \cdot \vec { c } + \vec { c } \cdot \vec { a }  is
  • 1
  • 3
  • \dfrac{-3}{2}
  • None of these
If \left( \bar { a } -\bar { b }  \right) =\bar { \left( a \right)  } =\bar { \left( b \right)  } where \bar { a } and \bar { b } are non zero vectors then the angle between \bar { a } -\bar { b }
  • { 120 }^{ 0 }
  • { 45 }^{ 0 }
  • { 60 }^{ 0 }
  • { 90 }^{ 0 }
If the vectors 2\hat i + 3 \hat j , 5 \hat i + 6 \hat j , 8 \hat i + \lambdaj have their initial point at (1 , 1) then the value of \lambda$ so that the vectors terminated on one line is
  • 5
  • 9
  • 4
  • 0
If \bar { OP } =2\hat { i } +3\hat { j } -\hat { k } and \bar { OQ } =3\hat { i } -4\hat { j } -2\hat { k } then the modulus \bar { PQ } is
  • \sqrt { 13 }
  • \sqrt { 51 }
  • \sqrt { 39 }
  • \sqrt { 67 }
From the figure the correct relation is :
1473404_320fae6fd4334bae904853f3976635c7.png
  • \bar { A } +\bar { B } +\bar { E } =\bar { 0 }
  • \bar { C } +\bar { D } =\bar { -A }
  • \bar { B } +\bar { E } +\bar { C } =\bar { -D }
  • All of these
Line passing through (3,4,5)  and (4,5,6)  has direction ratios   \ldots
  • 1,1,1
  • \sqrt{3}, \sqrt{3}, \sqrt{3}
  • \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}
  • 7,9,11
let \bar { a } ,\bar { b } ,\bar { c } are three mutually perpendicular unit vectors and a unit vector  \bar { r } satisfying the equation \left( \bar { b } -\bar { c }  \right) \times \left( \bar { r } \times \bar { a }  \right) +\left( \bar { c } -\bar { a }  \right) \times \left( \bar { r } \times \bar { b }  \right) +\left( \bar { a } -\bar { b }  \right) \times \left( \bar { r } \times \bar { c }  \right) =0 then \bar { r } is __________________.
  • \dfrac { 1 }{ \sqrt { 3 } } \left( \bar { a } +\bar { b } +\bar { c } \right)
  • \dfrac { 1 }{ \sqrt { 14 } } \left( 2\bar { a } +3\bar { b } +\bar { c } \right)
  • -\dfrac { 1 }{ \sqrt { 14 } } \left( 2\bar { a } +3\bar { b } +\bar { c } \right)
  • -\dfrac { 1 }{ \sqrt { 3 } } \left( \bar { a } +\bar { b } +\bar { c } \right)
If \bar { A }  = 2 \hat {i} + \hat {j} + \hat {k}\  and\ \bar { B } = \hat {i} + \hat {j} + \hat {k}   two vectors,then the unit vector is 
  • Perpendicular to \bar { A }\ is\ \dfrac { -\hat { j } +\hat { k } }{ \sqrt { 2 } }
  • Parallel to \bar { A }\ is\ \dfrac { 2 +\hat { j } +\hat { k } }{ \sqrt { 6 } }
  • Parallel to \bar { B }\ is\ \dfrac { -\hat { j } +\hat { k } }{ \sqrt { 2 } }
  • Parallel to \dfrac { \hat { i } +\hat { j } +\hat { k } }{ 3 }
If \vec { x } is a vector in the direction of (2,-2,1) of magnitude 6 and \vec { y } is a vector in the direction of (1,1,-1) of magnitude \sqrt{3}, then \left| \vec { x } +2\vec { y }  \right| =...
  • 40
  • \sqrt { 35 }
  • \sqrt { 17 }
  • 2\sqrt { 10 }
The position vector of a point P is \overrightarrow r=x \overrightarrow i + y \overrightarrow j+x \overrightarrow k, Where x,y,z,\epsilon N and \overrightarrow a= \overrightarrow i+ \overrightarrow j+\overrightarrow k. If \overrightarrow r. \overrightarrow a=10, then the number of possible positions of P is ___________.
  • 30
  • 72
  • 66
  • 36
Let \overline { a } =4\hat { i } +3\hat { j } -\hat { k } and\overline { b } =2\hat { i } -6\hat { j } -3\hat { k } . Then a unit vector \bot to both \overline { a } and \overline { b } is.
  • \dfrac { 1 }{ 7 } \left( -3\hat { i } -2\hat { j } +3\hat { k } \right)
  • \dfrac { 1 }{ 7 } \left( 3\hat { i } +2\hat { j } -6\hat { k } \right)
  • \dfrac { 1 }{ 7 } \left( -3\hat { i } +2\hat { j } -6\hat { k } \right)
  • \dfrac { 1 }{ 7 } \left( -3\hat { i } +2\hat { j } -6\hat { k } \right)
If \vec{a}=\hat{i}+2\hat{j}+2\hat{k} and \vec{b}=2\hat{i}+\hat{j}+2\hat{k}. Find the projection vector of \vec{b} on \vec{a}.
  • \displaystyle\frac{8}{9}\left(\hat{i}+2\hat{j}+2\hat{k}\right)
  • \displaystyle\frac{8}{9}\left(2\hat{i}+\hat{j}+2\hat{k}\right)
  • \displaystyle\frac{9}{8}\left(\hat{i}+2\hat{j}+2\hat{k}\right)
  • \displaystyle\frac{9}{8}\left(2\hat{i}+\hat{j}+2\hat{k}\right)
Unit vector perpendicular to vector  A=-3\hat { i } -2\hat { j } -3\hat { k }   and  B=2\hat { { i } } +4\hat { { j } } +6\hat { { k } }   both is
  • \dfrac { 3\hat { { j } } -2\hat { { k } } }{ \sqrt { 13 } }
  • \dfrac { 3\hat { { k } } -2\hat { { j } } }{ \sqrt { 13 } }
  • \dfrac { - \hat { { j } } +2\hat { { k } } }{ \sqrt { 13 } }
  • \dfrac { \hat { { i } } + 3\hat { { j } } -\hat { { k } } }{ \sqrt { 13 } }
If the position vector \vec{a} of point (12, n) is such that \left | \vec{a} \right | = 13, then find the value (s) of n.
  • \pm 6
  • \pm 4
  • \pm 5
  • \pm 7
Express \vec{AB} in terms of unit vectors \hat{i} and \hat{j}, when the points are:
A(4,-1), B(1,3)
Find \left | \vec{AB} \right | in each case.
  • \vec{AB} = -3\hat{i}-4\hat{j}, \left | \vec{AB} \right | = 5
  • \vec{AB} = +3\hat{i}+4\hat{j}, \left | \vec{AB} \right | = 5
  • \vec{AB} = -3\hat{i}+4\hat{j}, \left | \vec{AB} \right | = 5
  • none of these
What is the scalar projection of 
\vec{a}=\hat{i}+2\hat{j}+\hat{k} on \vec{b}=4\hat{i}+4\hat{j}+7\hat{k} ?
  • \dfrac{\sqrt{6}}{9}
  • \dfrac{19}{9}
  • \dfrac{9}{19}
  • \dfrac{\sqrt{6}}{19}
If a, b, c are vectors such that a+b+c = 0 and |a| = 7, |b| = 5, |c| = 3, then the angle between c and b is
  • \dfrac{\pi}{3}
  • \dfrac{\pi}{6}
  • \dfrac{\pi}{4}
  • \pi
If a unit vector \vec{a} makes an angle \dfrac{\pi }{3} with \hat{i},\dfrac{\pi }{4} with \hat{j} and an accute angle \theta with \hat{k}, then find \theta and hence, the components of \vec{a} .

  • \dfrac{\pi }{3};\,\vec{a}=\dfrac{1}{2}\hat{i}-\dfrac{1}{\sqrt{2}}\hat{j}+\dfrac{1}{2}\hat{k}
  • \dfrac{\pi }{3};\,\vec{a}=\dfrac{-1}{2}\hat{i}+\dfrac{1}{\sqrt{2}}\hat{j}+\dfrac{1}{2}\hat{k}
  • \dfrac{\pi }{3};\,\vec{a}=\dfrac{1}{2}\hat{i}+\dfrac{1}{\sqrt{2}}\hat{j}+\dfrac{1}{2}\hat{k}
  • \dfrac{\pi }{3};\,\vec{a}=\dfrac{1}{2}\hat{i}+\dfrac{1}{\sqrt{2}}\hat{j}-\dfrac{1}{2}\hat{k}
The adjacent sides of a parallelogram are represented by the vectors \vec{a} = \hat{i}+\hat{j}+\hat{k} and \vec{b} = 2\hat{i}+\hat{j}+2\hat{k}. Find unit vectors parallel to the diagonals of the parallelogram.


  • \dfrac{1}{\sqrt{2}}(-\hat{i}+2\hat{j}+\hat{k}),\dfrac{1}{\sqrt{6}}(\hat{i}+\hat{k})
  • \dfrac{1}{\sqrt{2}}(-\hat{i}+2\hat{j}+\hat{k}),\dfrac{1}{\sqrt{6}}(\hat{i}-\hat{k})
  • \dfrac{1}{\sqrt{22}}(3\hat{i}+2\hat{j}+3\hat{k}),\dfrac{1}{\sqrt{2}}(\hat{i}+\hat{k})
  • \dfrac{1}{\sqrt{2}}(+\hat{i}+2\hat{j}+\hat{k}),\dfrac{1}{\sqrt{6}}(\hat{i}-\hat{k})
The unit vector normal to the plane containing \vec{a}=(\hat{i}-\hat{j}-\hat{k}) and \vec{b}=(\hat{i}+\hat{j}+\hat{k}) is?
  • (\hat{j}-\hat{k})
  • (-\hat{j}+\hat{k})
  • \dfrac{1}{\sqrt{2}}(-\hat{j}+\hat{k})
  • \dfrac{1}{\sqrt{2}}(-\hat{i}+\hat{k})
Let \vec{a}=2\hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2\hat{j}-\hat{k} and \vec{c}=\hat{i}+\hat{j}-2\hat{k} be three vectors. A vector in the plane of \vec{b} and \vec{c} whose projection on \vec{a} is of magnitude \sqrt{(2/3)} is
  • 2\hat{i}+3\hat{j}-3\hat{k}
  • 2\hat{i}+3\hat{j}+3\hat{k}
  • -2\hat{i}-\hat{j}+5\hat{k}
  • 2\hat{i}+\hat{j}+5\hat{k}
If \bar{a} and \bar{b} = 3 \hat{i} + 6 \hat{j} + 6 \hat{k} are collinear and \bar{a} . \bar{b} = 27, then \bar{a} is equal to 
  • 3 (\hat{i} + \hat{j} + \hat{k})
  • \hat{i} + 2\hat{j} + 2 \hat{k}
  • 2 \hat{i} + 2\hat{j} + 2 \hat{k}
  • \hat{i} + 3\hat{j} + 3 \hat{k}
  • \hat{i} - 3 \hat{j} + 2 \hat{k}
Let O be the circumcentre, G be the centroid and O be the orthocentre of a \triangle ABC. Three vectors are taken through O and are represented by \vec{a}=\vec{OA}, \vec{b}=\vec{OB} and \vec{c}=\vec{OC} then \vec{a}+\vec{b}+\vec{c} is
  • \vec{OG}
  • 2\vec{OG}
  • \vec{OO}
  • None of them
If (\vec a\times \vec b)^2 +(\vec a. \vec b)^2 =144 and |\vec a|=4, then |\vec b|=
  • 16
  • 8
  • 3
  • 12
A parallelogram is constructed on the vectors
\vec{a}=3\vec{\alpha}-\vec{\beta}, \vec{b}=\vec{\alpha}+3\vec{\beta} if |\vec{\alpha}|=|\vec{\beta}|=2 and angle between \vec{\alpha} and \vec{\beta} is \pi/3 then the length of a diagonal of the parallelogram is
  • 4\sqrt{5}
  • 4\sqrt{3}
  • 4\sqrt{7}
  • None\ of\ these
A, B, C and D have position vectors \vec{a}, \vec{b}, \vec{c} and \vec{d} respectively, such that \vec{a} - \vec{b} = 2 (\vec{d} - \vec{c}). Then
  • AB and CD bisect each other
  • BD and AC bisect each other
  • AB and CD trisect each other
  • BD and AC trisect each other
p\hat{i}+3\hat{j}+4\hat{k} and \sqrt{q}\hat{i}+4\hat{k} are two vectors, where p,q>0 are two scalars, then the length of the vectors is equal to
  • All value of (p,q)
  • Only finite number of values of (p,q)
  • Infinite number of values of (p,q)
  • No value fo (p,q)
(\vec r. \hat i)(\vec r \times \hat i)+ (\vec r. \hat j)(\vec r \times \hat j) +(\vec r. \hat k)(\vec r \times \hat k) is equal to
  • 3\ \vec r
  • \vec r
  • \vec 0
  • None\ of\ these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers