CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 12 - MCQExams.com

'$$P$$' is a point inside the triangle $$ABC$$, such that $$\displaystyle BC\left ( \vec{PA} \right )+CA\left ( \vec{PB} \right )+AB\left ( \vec{PC} \right )=0,$$ then for the triangle $$ABC$$ the point $$P$$ is its :
  • Incentre
  • Circumcentre
  • Centroid
  • Orthocentre
Let the pairs $$\vec{a}, \vec{b}$$ and $$\vec{c}, \vec{d}$$ each determine a plane, then the planes are parallel if
  • $$(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \vec{0}$$
  • $$(\vec{a} \times \vec{c}) \cdot (\vec{b} \times \vec{d}) = \vec{0}$$
  • $$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$$
  • $$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \vec{0}$$
Let $$\vec{a},\vec{b},\vec{c}$$ be vectors of length $$3,4,5$$ respectively. Let $$\vec{a}$$ be perpendicular to $$\vec{b}+\vec{c},\vec{b}\,to\,\vec{c}+\vec{a}$$ and $$\vec{c}\,to\,\vec{a}+\vec{b}$$. Then $$\begin{vmatrix}\vec{a}+\vec{b}+\vec{c}\end{vmatrix}$$ is
  • $$\;2\sqrt{5}$$
  • $$\;2\sqrt{2}$$
  • $$\;10\sqrt{5}$$
  • $$\;5\sqrt{2}$$
$$ABCDEF$$ is a regular hexagon . The centre of hexagon is a point O. Then the value of 
$$\overrightarrow{AB}+ \overrightarrow{AC}+\overrightarrow{AD}+\overrightarrow{AE}+\overrightarrow{AF}$$ is 
  • $$2\overrightarrow{AO}$$
  • $$4\overrightarrow{AO}$$
  • $$6\overrightarrow{AO}$$
  • Zero
The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors a, b, c such that a.b = b.c = c.a = 1/What is the volume of the parallelopipe.
  • $$\dfrac{1}{\sqrt{2}}$$
  • $$\dfrac{1}{\sqrt{3}}$$
  • $$\dfrac{3}{\sqrt{2}}$$
  • None of these

If the sum of two unit vectors is also a unit vector, then the angle between the two vectors is

  • $$\dfrac{\pi}{3}$$
  • $$\dfrac{2\pi}{3}$$
  • $$\dfrac{\pi}{4}$$
  • None of these
Let $$b = 4i + 3j $$ and $$c$$ be two vectors perpendicular to each other in the xy-plane. If $$ r_i, \ i =1, 2 ... n$$, are the vectors in the same plane having projections $$1 $$ and $$2$$ along $$b$$ and $$c$$ respectively then $$ \displaystyle \sum_{i=1}^{n} \left| r_{i}\right|^{2}$$ is equal to
  • $$20$$
  • $$10$$
  • $$4$$
  • $$7$$
The magnitude of the projection of the vector $$\overline{a} =4\overline{i}-3\overline{j}+2\overline{k}$$ on the line which makes equal angles with the coordinate axes is 
  • $$\sqrt{2}$$
  • $$\sqrt{3}$$
  • $$\dfrac{1}{\sqrt{3}}$$
  • $$\dfrac{1}{\sqrt{2}}$$
Let $$ x_{0}$$ and $$x_{1}$$ be the critical points of $$\displaystyle f(x) =\int_{1}^{x}(t(t + 1) (t + 2) (t + 3)- 24).dt $$ and $$ \vec r$$ & $$\vec r'$$ be the parallel vectors with $$\left| \vec r \right| =\left| x_{0}\right| $$ and $$\left| \vec r\ ' \right| =\left|x_{1}\right| ,$$ then $$ \vec r\cdot \vec r\ '$$ is equal to
  • $$24$$
  • $$16$$
  • $$8$$
  • $$4$$
If one point on the vector $$2i -4j-k$$ is $$(2,1,3)$$,the other point is?
  • $$(-4,3,2)$$
  • $$(4,-3,-2)$$
  • $$(3,2,1)$$
  • $$(4,-3,2)$$
If the vectors $$\overline { c } ,\overline { a } =x\hat { i } +y\hat { j } +z\hat { k } $$, and $$\overline { b } =\hat { j }$$  are such that $$\overline { a } ,\overline { c } \ and \ \overline { b }$$  from a right handed system, then $$\overline { c }$$  is 
  • $$z\hat { i-x } \hat { k }$$
  • $$\overline { 0 }$$
  • $$y\hat { j }$$
  • $$-z\hat { i+x } \hat { k }$$
A point $$C = \dfrac {5\overline {a} + 4\overline {b} - 5\overline {c}}{3}$$ divides the line joining the points $$A$$ and $$B = 2\overline {a} + 3\overline {b} - 4\overline {c}$$ in the ratio $$2 : 1$$, then the position vector of $$A$$ is
  • $$\overline {a} + 3\overline {b} - 4\overline {c}$$
  • $$2\overline {a} - 3\overline {b} + 4\overline {c}$$
  • $$2\overline {a} + 3\overline {b} + 4\overline {c}$$
  • $$\overline {a} - 2\overline {b} + 3\overline {c}$$
If $$\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$$, $$\overrightarrow{b} = \hat{i} + 2\hat{j} - \hat{k}$$, $$\overrightarrow{c} = \hat{i} + \hat{j} - 2\hat{k}$$, then a vector in the plane of $$\hat{b}$$ and $$\hat{c}$$ whose projection on $$\hat{a}$$ is a magnitude of $$\sqrt{\frac{2}{3}}$$ is 
  • $$2\hat{i} + 3\hat{j} - 3\hat{k}$$
  • $$2\hat{i} + 3\hat{j} + 3\hat{k}$$
  • $$-2\hat{i} - \hat{j} + 5\hat{k}$$
  • $$2\hat{i} + \hat{j} + 5\hat{k}$$
If P(x, y, z) is a point on the line segment joining Q(2, 2, 4) and R(3, 5, 6) such that the projections of $$\overrightarrow{OP}$$ on the axes are $$\dfrac{13}{5}, \dfrac{19}{5}, \dfrac{26}{5}$$ respectively, then P divides QR in the ratio
  • 1 : 2
  • 3 : 2
  • 2 : 3
  • 1 : 3
What are coinitial vectors.?
  • Two or more vectors having the same magnitude are called coinitial vectors.
  • Two or more vectors are said to be coinitial if they are parallel to the same line, irrespective of their magnitudes and directions.
  • Two or more vectors having the same initial point are called coinitial vectors.
  • None of the above
If three non-zero vectors are $$a=a_1i+a_2j+a_3k , \, b=b_1i+b_2j+b_3k$$ and $$ c=c_1i+c_2j+c_3k$$ . If c is the unit vector perpendicular to the vectors a and b the angle between a and b is $$\dfrac{\pi}{6}$$ , then $$\begin{vmatrix}a_1 & a_2 & a_3\\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}$$ is equal to
  • 0
  • $$ \dfrac{3(\sum a^2_1)(\sum b^2_1) \sum c^2_1}{4}$$
  • 1
  • $$\dfrac{(\sum a^2_1)(\sum b^2_1)}{4}$$
A unit vector a makes an angel $$\Pi /4$$ with the z-axis. If a+i+j is a unit vector, then a can be equal to  
  • $$\dfrac { i }{ 2 } -\dfrac { j }{ 2 } +\dfrac { k }{ \sqrt { 2 } } $$
  • $$\dfrac { i }{ 2 } -\dfrac { j }{ 2 } -\dfrac { k }{ \sqrt { 2 } } $$
  • $$-\dfrac { i }{ 2 } -\dfrac { j }{ 2 } +\dfrac { k }{ \sqrt { 2 } } $$
  • None
Let $$\vec{u},\ \vec{v},\ \vec{w}$$ be such that $$\left| \vec { u }  \right| =1$$,  $$\left| \vec { v }  \right| =2$$, $$\left| \vec { w }  \right| =3$$. If the projection of $$\vec{v}$$ along $$\vec{u}$$ is equal to projection of $$\vec{w}$$ along $$\vec{u}$$ and $$\vec{v}$$ and $$\vec{w}$$ are perpendicular to each other then $$\left| \bar { u } -\bar { v } +\bar { w }  \right|$$ equals-
  • $$2$$
  • $$\sqrt{7}$$
  • $$\sqrt{14}$$
  • $$14$$
Let $$\vec { p } $$ and $$\vec { q } $$ be the position vectors of the points $$P$$ and $$Q$$ respectively with respect to origin $$O$$. The points $$R$$ and $$S$$ divide $$PQ$$ internally and externally respectively in the ratio $$2:3$$. If $$\overrightarrow { OR } $$ and $$\overrightarrow { OS } $$ are perpendicular, then which one of the following is correct?
  • $$9{ p }^{ 2 }=4{ q }^{ 2 }$$
  • $$4{ p }^{ 2 }=4{ 9q }^{ 2 }$$
  • $$9p=4q$$
  • $$4p=9q$$
Let $$O$$ be an interior point of $$\triangle ABC$$ such that $$\overline {OA} + 2\overline {AB} + 3\overline {OC} = \overline {O}$$, then the ratio of $$\triangle ABC$$ to area of $$\triangle AOC$$ is
  • $$2$$
  • $$\dfrac {3}{2}$$
  • $$3$$
  • $$\dfrac {5}{2}$$
The set of values of $$'c'$$ for which the angle between the vectors $$(cx\hat{i}-6\hat{j}+3\hat{k})$$  and  $$(x\hat{i}-2\hat{j}+2cx\hat{k})$$ is acute for every $$x\in R$$  is
  • $$(0,\ 4/3]$$
  • $$[0,\ 4/3)$$
  • $$(11/9,\ 4/3)$$
  • $$[0,\ 4/3]$$
If $$\vec { a } ,\vec { b }\ and\ \vec { c }$$ unit vector satisfying $$\left| \vec { a } -\vec { b }  \right| +\left| \vec { b } -\vec { c }  \right| +\left| \vec { c } -\vec { a }  \right| =9$$, then $$\left| 2\vec { a } +7\vec { b } +7\vec { c }  \right|$$ is equal to
  • 2
  • 3
  • 4
  • 5
Let $$\vec {a}, \vec {b}$$ and $$\vec {c}$$ be vectors forming right hand triad. Let
$$\vec {p} = \dfrac {\vec {b} \times \vec {c}}{[\vec {a} \vec {b} \vec {c}]}, \vec {q} = \dfrac {\vec {c} \times \vec {c}}{[\vec {a} \vec {b} \vec {c}]}$$ and $$\vec {r} = \dfrac {\vec {a}\times \vec {b}}{[\vec {a}\vec {b}\vec {c}]}$$ if $$x\epsilon R^{+}$$ then
  • $$x[\vec {a}\vec {b}\vec {c}] + \dfrac {[\vec {p}\vec {q}\vec {r}]}{x}$$ has least value $$2$$
  • $$x^{4} [\vec {a}\vec {b}\vec {c}]^{2} + \dfrac {[\vec {p}\vec {q}\vec {r}]}{x^{2}}$$ has least value $$(3/2^{2/3})$$
  • $$[\vec {p}\vec {q}\vec {r}] > 0$$
  • $$x[\vec {p}\vec {q}\vec {r}]$$ has maximum value $$7$$
A vector $$\vec{a}$$ has components $$2$$ p and $$1$$ with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to the new system, $$\vec{a}$$ components $$p+1$$ and $$1$$, then?
  • $$p=0$$
  • $$p=1$$ or $$p=-\dfrac{1}{3}$$
  • $$p=-1$$ or $$p=\dfrac{1}{3}$$
  • $$p=1$$ or $$p=-1$$
The vector $$(\hat {i}\times \vec {a}.\vec {b})\hat {i} + (\hat {j} \times \vec {a}.\vec {b})\hat {j} + (\hat {k} \times \vec {a} . \vec {b})\hat {k}$$ is equal to
  • $$\vec {b}\times \vec {a}$$
  • $$\vec {a}$$
  • $$\vec {a}\times \vec {b}$$
  • $$\vec {b}$$
If $$ABCDE$$ is a pentagon, then $$\vec {AB}+\vec {AE}+\vec {BC}+\vec {DC}+\vec {ED}+\vec {AC}$$ equals
  • $$3 \vec {AD}$$
  • $$3 \vec {AC}$$
  • $$3 \vec {BE}$$
  • $$3 \vec {CE}$$
The x-y plane divides the line joining the points $$(-1, 3, 4)$$ and $$(2, -5, 6)$$:
  • internally in the ratio $$2:3$$
  • externally in the ratio $$2:3$$
  • internally in the ratio $$3:2$$
  • externally in the ratio $$3:2$$
If $$\vec {a},\vec {b}$$ and $$\vec {c}$$ are those mutually perpendicular vectors, then the projection of the vector $$\left( l \dfrac{\bar {a}}{|\bar {a}|}+m\dfrac{\bar {b}}{|\bar {b}|}+n\dfrac{(\bar {a}\times \bar {b})}{|\bar {a} \times \bar {b}|}\right)$$ along bisector of vectors $$\vec {a}$$ and $$\vec {a}$$ may be given as  ?
  • $$\dfrac{l^{2}+m^{2}}{\sqrt{l^{2}+m^{2}+n^{2}}}$$
  • $$\sqrt{l^{2}+m^{2}+n^{2}}$$
  • $$\dfrac{\sqrt{l^{2}+m^{2}}}{\sqrt{l^{2}+m^{2}+n^{2}}}$$
  • $$\dfrac{l+m}{\sqrt{2}}$$
Let $$\overline {a}, \overline {b}$$ be two noncollinear vectors. If $$\overline {OA}=(x+4y)\overline {a}+(2x+y+1)\overline {b}, \overline {OB}=(y-2x+2)\overline {a}+(2x-3y-1)\overline {b}$$ and $$3\overline {OA}=2\overline{OB}$$, then $$(x,y)=$$
  • $$(1,2)$$
  • $$(1,-2)$$
  • $$(2,-1)$$
  • $$(-2,-1)$$
The projection of $$\vec{a}=\hat{i}+2\hat{j}+3\hat{k}$$ on the vector $$\vec{b}=\hat{i}+2\hat{j}-\hat{k}$$ is?
  • $$\sqrt{\dfrac{2}{3}}$$
  • $$\dfrac{2}{\sqrt{21}}$$
  • $$\sqrt{\dfrac{3}{2}}$$
  • $$\dfrac{5}{\sqrt{21}}$$
Let $$\hat{a}, \hat{b}$$ and $$\hat{c}$$ be three unit vectors such that $$\hat{a}=\hat{b}+(\hat{b}\times \hat{c})$$, then the possible value(s) of $${|\hat{a}+\hat{b}+\hat{c}|}^{2}$$ can be:
  • $$1$$
  • $$4$$
  • $$16$$
  • $$9$$
If $$D\vec A = \vec a,$$  $$A\vec B = \vec b$$  and $$C\vec B = k\vec a$$ where $$k < 0$$ and X, Y are the mid-points of DB & DC respectively, such that $$\left| {\vec a} \right| = 17\& \left| {X\vec Y} \right| = 4$$, then k equal to -
  • $${8 \over {17}}$$
  • $${{13} \over {17}}$$
  • $${{25} \over {17}}$$
  • $${4 \over {17}}$$
$$O$$ is the origin in the Cartesian plane. From the origin $$O$$ take point $$A$$ in the North-east direction such that $$|\overline {OA}|=5,B$$ is a point in the North-west direction such that $$|\overline  {OB}|=5$$. 
Then $$|\overline {OA}-\overline {OB}|$$ is.
  • $$25$$
  • $$5\sqrt2$$
  • $$10\sqrt5$$
  • $$\sqrt5$$
The angles of a triangles whose two sides are represented by vectors $$\sqrt(\vec { a } \times \vec { b })$$ and $$\vec{b}-(\vec { a }  \vec { b })\vec{a}$$ are in the ratio
  • $$1:2:3$$
  • $$1:1:2$$
  • $$1:3:5$$
  • $$1:2:7$$
The vectors $$\vec{u}=\begin{bmatrix} 6 \\ -3 \\ 2 \end{bmatrix}; \vec{v}=\begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix}; \vec{w}=\begin{bmatrix} 3 \\ 2 \\ -6 \end{bmatrix}$$
  • form a left handed system
  • form a right handed system
  • are linearly independent
  • are such that each is perpendicular to the plane containing the other two.
$$\bar{a}, \bar{b}, \bar{c}$$ are mutually perpendicular unit vectors and $$\bar{d}$$ is a unit vector equally inclined to each other of $$\bar{a}, \bar{b}$$ and $$\bar{c}$$ at an angle of $$60^o$$. Then $$|\bar{a}+\bar{b}+\bar{c}+\bar{d}|^2=?$$
  • $$4$$
  • $$5$$
  • $$6$$
  • $$7$$
Given unit vectors  $$\hat {m}, \hat {n}$$ and $$\hat {p}$$ such that $$\left( \widehat { \hat { m } \hat { n }  }  \right) =\hat { p } \widehat {  } \left( \hat { m } \times \hat { n }  \right) =\alpha$$ then the value of $$[\hat { n } \hat { p } \hat { m } ]$$ in terms of $$\alpha$$ is :
  • $$\sin \alpha$$
  • $$\cos \alpha$$
  • $$\sin \alpha \cos \alpha $$
  • $$\sin^{2} \alpha$$
$$\left| {\overline x } \right| = \left| {\overline y } \right| = 1,\,\overline x  \bot \overline y ,\,\left| {\overline x  + \overline y } \right| = $$
  • $$\sqrt 3 $$
  • $$\sqrt 2 $$
  • $$1$$
  • $$0$$
Which of the following is not essential for the three vectors to zero resultant?
  • The resultant of any two vectors should be equal and opposite to the third vector
  • They should lie in the same plane
  • They should act the sides of a parallelogram
  • It should be possible to represent them by the three sides of triangle taken in same order
The position vector of a point $$C$$ with respect to $$B$$ is $$\hat { i } + \hat { j }$$ and that of B with respect to A is $$\hat { i } - \hat { j }$$. The position vector of $$C$$ with respect to $$A$$ is
  • $$\hat { 2i }$$
  • $$-\hat { 2i }$$
  • $$\hat { 2j }$$
  • $$-\hat { 2j }$$
If $$\vec{a}, \vec{b}, \vec{c}$$ are unit vectors, then the value of $$|\vec{a}-2\vec{b}|^2+|\vec{b}-2\vec{c}|^2+|\vec{c}-2\vec{a}|^2$$ does not exceed to?
  • $$9$$
  • $$12$$
  • $$18$$
  • $$21$$
D,E and F are the mid-points of the sides BC,CA and AB respectively of $$\Delta ABC$$ and G is the centroid of the triangle, then $$\vec{GD}+\vec{GE}+\vec{GF}=$$
  • $$\vec{0}$$
  • $$2\vec{AB}$$
  • $$2\vec{GA}$$
  • $$2\vec{GC}$$
The vector $$\bar { i } +x\bar { j } +3\bar { k } $$ is rotated through an angle $$\theta $$ and doubled in magnitude, then it becomes $$4\bar { i } +\left( 4x-2 \right) \bar { j } +2\bar { k } $$. The value of x  is _________.
  • $$\left\{ -\frac { 2 }{ 3 } ,2 \right\} $$
  • $$\left\{ \frac { 1 }{ 3 } ,2 \right\} $$
  • $$\left\{ \frac { 2 }{ 3 } ,2 \right\} $$
  • $$\left\{ 2,7 \right\} $$
Forces $$3 \vec { OA } $$, $$5 \vec { OB } $$ act along OA and OB. If their resultant passes through C on AB, then :

  • C is mid-point of AB
  • C divides AB in the ratio $$2:1$$
  • $$3AC=5CB$$
  • $$2AC=3CB$$
If $$\vec a = 4 i + 5 j - k , \vec { b } = i - 4 j + 5 k , \vec c = 3 i + j - k$$ such that $$\vec { p } \perp \vec { a } , \vec { p } \perp \overline { b }$$ and $$\vec { p . c } = 21 ,$$ then $$p =$$



  • $6$( i + j + k )$$
  • $7$( i + j + k )$$
  • $6$( i - j - k )$$
  • $7$( i - j - k )$$
The position vector of two points A and B are 6a+2b and a-3b. If a point C divides AB in the ratio 3 : 2, then the position vector of C is
  • 3a-b
  • 3a+b
  • a+b
  • a-b
$$\vec { a } =2\hat { I } +\hat { k } ,\vec { b } ={ b }_{ 1 }\hat { I } +{ b }_{ 2 }\hat { J+ } { b }_{ 3 }\hat { k, } \vec { a } \times \vec { b } =5\hat { I } +2\hat { J } -12\hat { k, } \hat { a } \hat { b } =11\quad then\quad { b }_{ 1 }+{ b }_{ 2 }+{ b }_{ 3 }=$$
  • 3
  • 5
  • 7
  • 9
The X & Y Component of vector A have numerical values 6 each & that of ( A +B) have numerical values 10 and 9 .What is the numerical value of B ? 
  • 2
  • 3
  • 4
  • 5
If $$a,b$$ and $$c$$ are position vector of $$A,B$$ and $$C$$ respectively of $$\triangle ABC$$ and if $$|a-b|=4,|b-c|=2, |c-a|=3$$, then the distance between the centroid and incentre of $$\triangle ABC$$ is 
  • $$1$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{2}{3}$$
Vector equation of the plane $$\vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}+2\hat{j}+3\hat{k})$$ in the scalar dot product from is
  • $$\vec{r}.(5\hat{i}-2\hat{j}+3\hat{k})=7$$
  • $$\vec{r}.(5\hat{i}-2\hat{j}-3\hat{k})=7$$
  • $$\vec{r}.(5\hat{i}+2\hat{j}-3\hat{k})=7$$
  • $$\vec{r}.(5\hat{i}+2\hat{j}+3\hat{k})=7$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers