Processing math: 1%

CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 12 - MCQExams.com

'P' is a point inside the triangle ABC, such that BC(PA)+CA(PB)+AB(PC)=0, then for the triangle ABC the point P is its :
  • Incentre
  • Circumcentre
  • Centroid
  • Orthocentre
Let the pairs \vec{a}, \vec{b} and \vec{c}, \vec{d} each determine a plane, then the planes are parallel if
  • (\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \vec{0}
  • (\vec{a} \times \vec{c}) \cdot (\vec{b} \times \vec{d}) = \vec{0}
  • (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}
  • (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \vec{0}
Let \vec{a},\vec{b},\vec{c} be vectors of length 3,4,5 respectively. Let \vec{a} be perpendicular to \vec{b}+\vec{c},\vec{b}\,to\,\vec{c}+\vec{a} and \vec{c}\,to\,\vec{a}+\vec{b}. Then \begin{vmatrix}\vec{a}+\vec{b}+\vec{c}\end{vmatrix} is
  • \;2\sqrt{5}
  • \;2\sqrt{2}
  • \;10\sqrt{5}
  • \;5\sqrt{2}
ABCDEF is a regular hexagon . The centre of hexagon is a point O. Then the value of 
\overrightarrow{AB}+ \overrightarrow{AC}+\overrightarrow{AD}+\overrightarrow{AE}+\overrightarrow{AF} is 
  • 2\overrightarrow{AO}
  • 4\overrightarrow{AO}
  • 6\overrightarrow{AO}
  • Zero
The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors a, b, c such that a.b = b.c = c.a = 1/What is the volume of the parallelopipe.
  • \dfrac{1}{\sqrt{2}}
  • \dfrac{1}{\sqrt{3}}
  • \dfrac{3}{\sqrt{2}}
  • None of these

If the sum of two unit vectors is also a unit vector, then the angle between the two vectors is

  • \dfrac{\pi}{3}
  • \dfrac{2\pi}{3}
  • \dfrac{\pi}{4}
  • None of these
Let b = 4i + 3j and c be two vectors perpendicular to each other in the xy-plane. If r_i, \ i =1, 2 ... n, are the vectors in the same plane having projections 1 and 2 along b and c respectively then \displaystyle \sum_{i=1}^{n} \left| r_{i}\right|^{2} is equal to
  • 20
  • 10
  • 4
  • 7
The magnitude of the projection of the vector \overline{a} =4\overline{i}-3\overline{j}+2\overline{k} on the line which makes equal angles with the coordinate axes is 
  • \sqrt{2}
  • \sqrt{3}
  • \dfrac{1}{\sqrt{3}}
  • \dfrac{1}{\sqrt{2}}
Let x_{0} and x_{1} be the critical points of \displaystyle f(x) =\int_{1}^{x}(t(t + 1) (t + 2) (t + 3)- 24).dt and \vec r & \vec r' be the parallel vectors with \left| \vec r \right| =\left| x_{0}\right| and \left| \vec r\ ' \right| =\left|x_{1}\right| , then \vec r\cdot \vec r\ ' is equal to
  • 24
  • 16
  • 8
  • 4
If one point on the vector 2i -4j-k is (2,1,3),the other point is?
  • (-4,3,2)
  • (4,-3,-2)
  • (3,2,1)
  • (4,-3,2)
If the vectors \overline { c } ,\overline { a } =x\hat { i } +y\hat { j } +z\hat { k } , and \overline { b } =\hat { j }  are such that \overline { a } ,\overline { c } \ and \ \overline { b }  from a right handed system, then \overline { c }  is 
  • z\hat { i-x } \hat { k }
  • \overline { 0 }
  • y\hat { j }
  • -z\hat { i+x } \hat { k }
A point C = \dfrac {5\overline {a} + 4\overline {b} - 5\overline {c}}{3} divides the line joining the points A and B = 2\overline {a} + 3\overline {b} - 4\overline {c} in the ratio 2 : 1, then the position vector of A is
  • \overline {a} + 3\overline {b} - 4\overline {c}
  • 2\overline {a} - 3\overline {b} + 4\overline {c}
  • 2\overline {a} + 3\overline {b} + 4\overline {c}
  • \overline {a} - 2\overline {b} + 3\overline {c}
If \overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}, \overrightarrow{b} = \hat{i} + 2\hat{j} - \hat{k}, \overrightarrow{c} = \hat{i} + \hat{j} - 2\hat{k}, then a vector in the plane of \hat{b} and \hat{c} whose projection on \hat{a} is a magnitude of \sqrt{\frac{2}{3}} is 
  • 2\hat{i} + 3\hat{j} - 3\hat{k}
  • 2\hat{i} + 3\hat{j} + 3\hat{k}
  • -2\hat{i} - \hat{j} + 5\hat{k}
  • 2\hat{i} + \hat{j} + 5\hat{k}
If P(x, y, z) is a point on the line segment joining Q(2, 2, 4) and R(3, 5, 6) such that the projections of \overrightarrow{OP} on the axes are \dfrac{13}{5}, \dfrac{19}{5}, \dfrac{26}{5} respectively, then P divides QR in the ratio
  • 1 : 2
  • 3 : 2
  • 2 : 3
  • 1 : 3
What are coinitial vectors.?
  • Two or more vectors having the same magnitude are called coinitial vectors.
  • Two or more vectors are said to be coinitial if they are parallel to the same line, irrespective of their magnitudes and directions.
  • Two or more vectors having the same initial point are called coinitial vectors.
  • None of the above
If three non-zero vectors are a=a_1i+a_2j+a_3k , \, b=b_1i+b_2j+b_3k and c=c_1i+c_2j+c_3k . If c is the unit vector perpendicular to the vectors a and b the angle between a and b is \dfrac{\pi}{6} , then \begin{vmatrix}a_1 & a_2 & a_3\\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix} is equal to
  • 0
  • \dfrac{3(\sum a^2_1)(\sum b^2_1) \sum c^2_1}{4}
  • 1
  • \dfrac{(\sum a^2_1)(\sum b^2_1)}{4}
A unit vector a makes an angel \Pi /4 with the z-axis. If a+i+j is a unit vector, then a can be equal to  
  • \dfrac { i }{ 2 } -\dfrac { j }{ 2 } +\dfrac { k }{ \sqrt { 2 } }
  • \dfrac { i }{ 2 } -\dfrac { j }{ 2 } -\dfrac { k }{ \sqrt { 2 } }
  • -\dfrac { i }{ 2 } -\dfrac { j }{ 2 } +\dfrac { k }{ \sqrt { 2 } }
  • None
Let \vec{u},\ \vec{v},\ \vec{w} be such that \left| \vec { u }  \right| =1\left| \vec { v }  \right| =2, \left| \vec { w }  \right| =3. If the projection of \vec{v} along \vec{u} is equal to projection of \vec{w} along \vec{u} and \vec{v} and \vec{w} are perpendicular to each other then \left| \bar { u } -\bar { v } +\bar { w }  \right| equals-
  • 2
  • \sqrt{7}
  • \sqrt{14}
  • 14
Let \vec { p } and \vec { q } be the position vectors of the points P and Q respectively with respect to origin O. The points R and S divide PQ internally and externally respectively in the ratio 2:3. If \overrightarrow { OR } and \overrightarrow { OS } are perpendicular, then which one of the following is correct?
  • 9{ p }^{ 2 }=4{ q }^{ 2 }
  • 4{ p }^{ 2 }=4{ 9q }^{ 2 }
  • 9p=4q
  • 4p=9q
Let O be an interior point of \triangle ABC such that \overline {OA} + 2\overline {AB} + 3\overline {OC} = \overline {O}, then the ratio of \triangle ABC to area of \triangle AOC is
  • 2
  • \dfrac {3}{2}
  • 3
  • \dfrac {5}{2}
The set of values of 'c' for which the angle between the vectors (cx\hat{i}-6\hat{j}+3\hat{k})  and  (x\hat{i}-2\hat{j}+2cx\hat{k}) is acute for every x\in R  is
  • (0,\ 4/3]
  • [0,\ 4/3)
  • (11/9,\ 4/3)
  • [0,\ 4/3]
If \vec { a } ,\vec { b }\ and\ \vec { c } unit vector satisfying \left| \vec { a } -\vec { b }  \right| +\left| \vec { b } -\vec { c }  \right| +\left| \vec { c } -\vec { a }  \right| =9, then \left| 2\vec { a } +7\vec { b } +7\vec { c }  \right| is equal to
  • 2
  • 3
  • 4
  • 5
Let \vec {a}, \vec {b} and \vec {c} be vectors forming right hand triad. Let
\vec {p} = \dfrac {\vec {b} \times \vec {c}}{[\vec {a} \vec {b} \vec {c}]}, \vec {q} = \dfrac {\vec {c} \times \vec {c}}{[\vec {a} \vec {b} \vec {c}]} and \vec {r} = \dfrac {\vec {a}\times \vec {b}}{[\vec {a}\vec {b}\vec {c}]} if x\epsilon R^{+} then
  • x[\vec {a}\vec {b}\vec {c}] + \dfrac {[\vec {p}\vec {q}\vec {r}]}{x} has least value 2
  • x^{4} [\vec {a}\vec {b}\vec {c}]^{2} + \dfrac {[\vec {p}\vec {q}\vec {r}]}{x^{2}} has least value (3/2^{2/3})
  • [\vec {p}\vec {q}\vec {r}] > 0
  • x[\vec {p}\vec {q}\vec {r}] has maximum value 7
A vector \vec{a} has components 2 p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to the new system, \vec{a} components p+1 and 1, then?
  • p=0
  • p=1 or p=-\dfrac{1}{3}
  • p=-1 or p=\dfrac{1}{3}
  • p=1 or p=-1
The vector (\hat {i}\times \vec {a}.\vec {b})\hat {i} + (\hat {j} \times \vec {a}.\vec {b})\hat {j} + (\hat {k} \times \vec {a} . \vec {b})\hat {k} is equal to
  • \vec {b}\times \vec {a}
  • \vec {a}
  • \vec {a}\times \vec {b}
  • \vec {b}
If ABCDE is a pentagon, then \vec {AB}+\vec {AE}+\vec {BC}+\vec {DC}+\vec {ED}+\vec {AC} equals
  • 3 \vec {AD}
  • 3 \vec {AC}
  • 3 \vec {BE}
  • 3 \vec {CE}
The x-y plane divides the line joining the points (-1, 3, 4) and (2, -5, 6):
  • internally in the ratio 2:3
  • externally in the ratio 2:3
  • internally in the ratio 3:2
  • externally in the ratio 3:2
If \vec {a},\vec {b} and \vec {c} are those mutually perpendicular vectors, then the projection of the vector \left( l \dfrac{\bar {a}}{|\bar {a}|}+m\dfrac{\bar {b}}{|\bar {b}|}+n\dfrac{(\bar {a}\times \bar {b})}{|\bar {a} \times \bar {b}|}\right) along bisector of vectors \vec {a} and \vec {a} may be given as  ?
  • \dfrac{l^{2}+m^{2}}{\sqrt{l^{2}+m^{2}+n^{2}}}
  • \sqrt{l^{2}+m^{2}+n^{2}}
  • \dfrac{\sqrt{l^{2}+m^{2}}}{\sqrt{l^{2}+m^{2}+n^{2}}}
  • \dfrac{l+m}{\sqrt{2}}
Let \overline {a}, \overline {b} be two noncollinear vectors. If \overline {OA}=(x+4y)\overline {a}+(2x+y+1)\overline {b}, \overline {OB}=(y-2x+2)\overline {a}+(2x-3y-1)\overline {b} and 3\overline {OA}=2\overline{OB}, then (x,y)=
  • (1,2)
  • (1,-2)
  • (2,-1)
  • (-2,-1)
The projection of \vec{a}=\hat{i}+2\hat{j}+3\hat{k} on the vector \vec{b}=\hat{i}+2\hat{j}-\hat{k} is?
  • \sqrt{\dfrac{2}{3}}
  • \dfrac{2}{\sqrt{21}}
  • \sqrt{\dfrac{3}{2}}
  • \dfrac{5}{\sqrt{21}}
Let \hat{a}, \hat{b} and \hat{c} be three unit vectors such that \hat{a}=\hat{b}+(\hat{b}\times \hat{c}), then the possible value(s) of {|\hat{a}+\hat{b}+\hat{c}|}^{2} can be:
  • 1
  • 4
  • 16
  • 9
If D\vec A = \vec a,  A\vec B = \vec b  and C\vec B = k\vec a where k < 0 and X, Y are the mid-points of DB & DC respectively, such that \left| {\vec a} \right| = 17\& \left| {X\vec Y} \right| = 4, then k equal to -
  • {8 \over {17}}
  • {{13} \over {17}}
  • {{25} \over {17}}
  • {4 \over {17}}
O is the origin in the Cartesian plane. From the origin O take point A in the North-east direction such that |\overline {OA}|=5,B is a point in the North-west direction such that |\overline  {OB}|=5
Then |\overline {OA}-\overline {OB}| is.
  • 25
  • 5\sqrt2
  • 10\sqrt5
  • \sqrt5
The angles of a triangles whose two sides are represented by vectors \sqrt(\vec { a } \times \vec { b }) and \vec{b}-(\vec { a }  \vec { b })\vec{a} are in the ratio
  • 1:2:3
  • 1:1:2
  • 1:3:5
  • 1:2:7
The vectors \vec{u}=\begin{bmatrix} 6 \\ -3 \\ 2 \end{bmatrix}; \vec{v}=\begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix}; \vec{w}=\begin{bmatrix} 3 \\ 2 \\ -6 \end{bmatrix}
  • form a left handed system
  • form a right handed system
  • are linearly independent
  • are such that each is perpendicular to the plane containing the other two.
\bar{a}, \bar{b}, \bar{c} are mutually perpendicular unit vectors and \bar{d} is a unit vector equally inclined to each other of \bar{a}, \bar{b} and \bar{c} at an angle of 60^o. Then |\bar{a}+\bar{b}+\bar{c}+\bar{d}|^2=?
  • 4
  • 5
  • 6
  • 7
Given unit vectors  \hat {m}, \hat {n} and \hat {p} such that \left( \widehat { \hat { m } \hat { n }  }  \right) =\hat { p } \widehat {  } \left( \hat { m } \times \hat { n }  \right) =\alpha then the value of [\hat { n } \hat { p } \hat { m } ] in terms of \alpha is :
  • \sin \alpha
  • \cos \alpha
  • \sin \alpha \cos \alpha
  • \sin^{2} \alpha
\left| {\overline x } \right| = \left| {\overline y } \right| = 1,\,\overline x  \bot \overline y ,\,\left| {\overline x  + \overline y } \right| =
  • \sqrt 3
  • \sqrt 2
  • 1
  • 0
Which of the following is not essential for the three vectors to zero resultant?
  • The resultant of any two vectors should be equal and opposite to the third vector
  • They should lie in the same plane
  • They should act the sides of a parallelogram
  • It should be possible to represent them by the three sides of triangle taken in same order
The position vector of a point C with respect to B is \hat { i } + \hat { j } and that of B with respect to A is \hat { i } - \hat { j }. The position vector of C with respect to A is
  • \hat { 2i }
  • -\hat { 2i }
  • \hat { 2j }
  • -\hat { 2j }
If \vec{a}, \vec{b}, \vec{c} are unit vectors, then the value of |\vec{a}-2\vec{b}|^2+|\vec{b}-2\vec{c}|^2+|\vec{c}-2\vec{a}|^2 does not exceed to?
  • 9
  • 12
  • 18
  • 21
D,E and F are the mid-points of the sides BC,CA and AB respectively of \Delta ABC and G is the centroid of the triangle, then \vec{GD}+\vec{GE}+\vec{GF}=
  • \vec{0}
  • 2\vec{AB}
  • 2\vec{GA}
  • 2\vec{GC}
The vector \bar { i } +x\bar { j } +3\bar { k } is rotated through an angle \theta and doubled in magnitude, then it becomes 4\bar { i } +\left( 4x-2 \right) \bar { j } +2\bar { k } . The value of x  is _________.
  • \left\{ -\frac { 2 }{ 3 } ,2 \right\}
  • \left\{ \frac { 1 }{ 3 } ,2 \right\}
  • \left\{ \frac { 2 }{ 3 } ,2 \right\}
  • \left\{ 2,7 \right\}
Forces 3 \vec { OA } , 5 \vec { OB }  act along OA and OB. If their resultant passes through C on AB, then :

  • C is mid-point of AB
  • C divides AB in the ratio 2:1
  • 3AC=5CB
  • 2AC=3CB
If \vec a = 4 i + 5 j - k , \vec { b } = i - 4 j + 5 k , \vec c = 3 i + j - k such that \vec { p } \perp \vec { a } , \vec { p } \perp \overline { b } and \vec { p . c } = 21 , then p =



  • 6( i + j + k )$$
  • 7( i + j + k )$$
  • 6( i - j - k )$$
  • 7( i - j - k )$$
The position vector of two points A and B are 6a+2b and a-3b. If a point C divides AB in the ratio 3 : 2, then the position vector of C is
  • 3a-b
  • 3a+b
  • a+b
  • a-b
\vec { a } =2\hat { I } +\hat { k } ,\vec { b } ={ b }_{ 1 }\hat { I } +{ b }_{ 2 }\hat { J+ } { b }_{ 3 }\hat { k, } \vec { a } \times \vec { b } =5\hat { I } +2\hat { J } -12\hat { k, } \hat { a } \hat { b } =11\quad then\quad { b }_{ 1 }+{ b }_{ 2 }+{ b }_{ 3 }=
  • 3
  • 5
  • 7
  • 9
The X & Y Component of vector A have numerical values 6 each & that of ( A +B) have numerical values 10 and 9 .What is the numerical value of B ? 
  • 2
  • 3
  • 4
  • 5
If a,b and c are position vector of A,B and C respectively of \triangle ABC and if |a-b|=4,|b-c|=2, |c-a|=3, then the distance between the centroid and incentre of \triangle ABC is 
  • 1
  • \dfrac{1}{2}
  • \dfrac{1}{3}
  • \dfrac{2}{3}
Vector equation of the plane \vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}+2\hat{j}+3\hat{k}) in the scalar dot product from is
  • \vec{r}.(5\hat{i}-2\hat{j}+3\hat{k})=7
  • \vec{r}.(5\hat{i}-2\hat{j}-3\hat{k})=7
  • \vec{r}.(5\hat{i}+2\hat{j}-3\hat{k})=7
  • \vec{r}.(5\hat{i}+2\hat{j}+3\hat{k})=7
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers