Explanation
\begin{vmatrix}\vec{a}+\vec{b}+\vec{c}\end{vmatrix}=\sqrt{(\vec{a}+\vec{b}+\vec{c})^2} =\sqrt{a^2+b^2+c^2+2\begin{pmatrix}\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}\end{pmatrix}} {Modulus formula for vectors}
\because\,\vec{a}.\begin{pmatrix}\vec{b}+\vec{c}\end{pmatrix}=0,\;\vec{b}.\begin{pmatrix}\vec{c}+\vec{a}\end{pmatrix}=0\,\&\,\vec{c}.\begin{pmatrix}\vec{a}+\vec{b}\end{pmatrix}=0 [As the given conditions of being perpendicular}
\Rightarrow \vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}=0 {expanding the previous expression and substituting in the first expression}
\Rightarrow \begin{vmatrix}\vec{a}+\vec{b}+\vec{c}\end{vmatrix}=\sqrt{a^2+b^2+c^2}=\sqrt{3^2+4^2+5^2}=5\sqrt{2}
If the sum of two unit vectors is also a unit vector, then the angle between the two vectors is
In the pentagon ABCDE, join AC and AD.
By triangle law,
In \Delta ABC,
\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC}
In \Delta ACD,
\overrightarrow {AD} + \overrightarrow {DC} = \overrightarrow {AC}
In \Delta AED,
\overrightarrow {AE} + \overrightarrow {ED} = \overrightarrow {AD}
Now,
\overrightarrow {AB} + \overrightarrow {AE} + \overrightarrow {BC} + \overrightarrow {DC} + \overrightarrow {ED} + \overrightarrow {AC} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \left( {\overrightarrow {AE} + \overrightarrow {ED} } \right) + \overrightarrow {DC} + \overrightarrow {AC}
= \overrightarrow {AC} + \left( {\overrightarrow {AD} + \overrightarrow {DC} } \right) + \overrightarrow {AC}
= \overrightarrow {AC} + \overrightarrow {AC} + \overrightarrow {AC}
= 3\overrightarrow {AC}
Let xy plane divides the line joining the points A\left( { - 1,3,4} \right) and B\left( {2, - 5,6} \right) in the ratio k:1.
x = \cfrac{{2k - 1}}{{k + 1}}
y = \cfrac{{ - 5k + 3}}{{k + 1}}
z = \cfrac{{6k - 4}}{{k + 1}}
Since the plane is xy plane, so z = 0,
\cfrac{{6k - 4}}{{k + 1}} = 0
6k - 4 = 0
6k = 4
k = \cfrac{4}{6}
k = \cfrac{2}{3}
Therefore, the ratio is 2:3 internally.
Please disable the adBlock and continue. Thank you.