Processing math: 7%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 13 - MCQExams.com
CBSE
Class 12 Commerce Maths
Vector Algebra
Quiz 13
If
→
u
=
→
a
−
→
b
;
→
v
=
→
a
+
→
b
&
|
→
a
|
=
|
→
b
|
=
2
,
then
|
→
u
×
→
υ
|
is equal to:
Report Question
0%
√
2
(
4
−
(
→
a
.
→
b
)
2
)
0%
2
√
(
16
+
(
→
a
.
→
b
)
2
)
0%
2
√
(
4
−
(
→
a
.
→
b
)
2
)
0%
2
√
(
16
−
(
→
a
.
→
b
)
2
)
→
r
.
ˆ
i
=
2
→
r
.
ˆ
j
=
4
→
r
.
ˆ
k
and
|
→
r
|
=
√
84
, then
|
→
r
.
(
2
ˆ
i
−
3
ˆ
j
+
ˆ
k
)
|
is equal to
Report Question
0%
0
0%
2
0%
4
0%
6
If
ˉ
a
=
ˆ
i
+
ˆ
j
−
2
ˆ
k
,
ˉ
b
=
2
ˆ
i
−
0
ˆ
j
+
ˆ
k
,
ˉ
c
=
3
ˆ
i
−
ˆ
k
and
ˉ
c
=
m
ˉ
a
+
n
ˉ
b
then m + n = ....
Report Question
0%
0
0%
1
0%
2
0%
-1
If the position vectors of
A
,
B
,
C
,
D
are
3
ˆ
i
+
2
ˆ
j
+
ˆ
k
,
4
ˆ
i
+
5
ˆ
j
+
5
ˆ
k
,
4
ˆ
i
+
2
ˆ
j
−
2
ˆ
k
,
6
ˆ
i
+
5
ˆ
j
−
ˆ
k
respectively then the position vector of the point of intersection of
¯
A
B
and
¯
C
D
is
Report Question
0%
2
ˆ
i
+
ˆ
j
−
3
ˆ
k
0%
2
ˆ
i
−
ˆ
j
+
3
ˆ
k
0%
2
ˆ
i
+
ˆ
j
+
3
ˆ
k
0%
2
ˆ
i
−
ˆ
j
−
3
ˆ
k
Explanation
→
A
B
=
→
b
−
→
a
=
(
4
i
+
5
ˆ
ȷ
+
5
ˆ
k
)
−
(
3
ˆ
i
+
2
ˆ
ȷ
+
ˆ
k
)
=
ˆ
ı
+
3
ˆ
ȷ
+
4
ˆ
k
,
a
n
d
→
C
D
=
→
d
−
→
c
=
(
6
ˆ
ı
+
5
ˆ
ȷ
−
ˆ
k
)
−
(
4
ˆ
ı
+
2
ˆ
ȷ
−
2
ˆ
k
)
=
→
2
ˆ
ı
+
3
ˆ
ȷ
+
ˆ
k
Let
→
A
B
and
→
C
D
intersect at
→
P
.
Line
A
B
=
(
3
i
+
2
j
+
ˆ
k
)
+
λ
(
i
+
3
ˆ
j
+
4
ˆ
k
)
and
Line
C
D
=
(
4
i
+
2
ˆ
ı
−
2
ˆ
k
)
+
μ
(
2
ˆ
i
+
3
ˆ
j
+
ˆ
k
)
W.r.t. line
A
0
,
P
=
(
3
+
λ
,
2
+
3
λ
,
1
+
4
λ
)
and
w
⋅
r
⋅
t
⋅
line
C
D
,
P
=
(
4
+
2
μ
,
2
+
3
μ
,
−
2
+
μ
)
Comparing both points,
⇒
3
+
λ
′
=
4
+
2
μ
,
2
+
3
λ
=
2
+
3
μ
1
+
4
λ
=
−
2
+
μ
Solving these equs.,
∴
\therefore
option
D
is correct.
Let
\vec{a}=\hat{i}-\hat{j},\vec{b}=\hat{i}-\hat{j}=\vec{c}=\hat{i}-\hat{j}
, if
\vec{d}
is a unit vector such that
\vec{a}.\vec{d}=0=|\vec{b}\vec{c}\vec{d}|
then
\vec{d}
equals:
Report Question
0%
\pm\dfrac{\hat{i}+\hat{j}-2\hat{k}}{\sqrt{6}}
0%
\pm\dfrac{\hat{i}+\hat{j}-2\hat{k}}{\sqrt{3}}
0%
\pm\dfrac{\hat{i}+\hat{j}+2\hat{k}}{\sqrt{3}}
0%
\pm\hat{k}
If
a=i-j,b=i+j,c=i+3j+5k
and
n
is a unit vector such that
b,n=0,a,n=0
then the value of
|c,n|
is equal to
Report Question
0%
1
0%
3
0%
5
0%
2
Explanation
\begin{array}{l} { b_{ n } }=0 \\ \left( { \hat { i } +\hat { j } } \right) \left( { a\hat { i } +\hat { i } e } \right) =0 \\ a+b=c \\ \left( { -\hat { j } } \right) \left( { a\hat { i } +b\hat { j } } \right) =0 \\ a-b=0\, \, \, \, \, \, \, a=0=b \\ \left( { \bar { c } \cdot \bar { n } } \right) \\ \left( { \hat { i } +3\hat { j } +5\hat { b } } \right) \cdot \left( { c\hat { k } } \right) \\ =5c\, =\sqrt { { a^{ 2 } }+{ b^{ 2 } }+{ c^{ 2 } } } =1 \\ =5 \end{array}
The value of
|\vec{a} \times \hat{i} |^2 + |\vec{a} \times \hat{j} |^2 + |\vec{a} \times \hat{k} |^2
is
Report Question
0%
a^2
0%
2a^2
0%
3a^2
0%
none of these
The values of
\lambda
such that
(x, y, z) \neq (0, 0, 0)
and
(\hat{i} + \hat{j} + 3\hat{k})x + (3\hat{i} - 3\hat{j} + \hat{k})y + (-4\hat{i} + 5\hat{j})z = \lambda(x\hat{i} + y\hat{j} + z\hat{k})
are
Report Question
0%
0, 1
0%
0, -1
0%
1, -1
0%
0, 1, -1
Explanation
\Rightarrow(x+3 y-4 z-\lambda x)\hat{i}+(x-3 y+5 z-\lambda y) \hat{j}+(3 x+y-\lambda z) \hat{k}=0
\Rightarrow x+3 y-4 z-\lambda x=0
x-3 y+5 z-\lambda y=0
3 x+y-\lambda z=0
\left[\begin{array}{ccc}1-\lambda & 3 & -4 \\ 1 & -3-\lambda & 5 \\ 3 & 1 & -\lambda\end{array}\right]\left[\begin{array}{c}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]
\Rightarrow\left|\begin{array}{ccc}1-\lambda & 3 & -4 \\ 1 & -3-\lambda & 5 \\ 3 & 1 & -\lambda\end{array}\right|=0 \quad\left\{\begin{array}{c}\because \text { for non-trivial } \\ \text { soution of equation } \\ A x=y \\ |A|=0\end{array}\right\}
\Rightarrow(1-\lambda)((-3-\lambda)(-\lambda)-5)-1(-3 \lambda+4)+3(15+4(-3-\lambda))=0
=(1-\lambda)\left(3 \lambda+\lambda^{2}-5\right)-4+3 \lambda+3(3-4 \lambda)=0
=(1-\lambda)\left(\lambda^{2}+3 \lambda-5\right)-4+3 \lambda+9-12 \lambda=0
=\lambda^{2}+3 \lambda-5-\lambda^{3}-3 \lambda^{2}+5 \lambda-4+3 \lambda+9-12 \lambda=0
=-\lambda^{3}-2 \lambda^{2}-\lambda=0
\Rightarrow \lambda^{3}+2 \lambda^{2}+\lambda^{2}=0
\lambda\left(\lambda^{2}+2 \lambda+1\right)=0
\lambda=0, \quad \lambda^{2}+2 \lambda+1=0
(\lambda+1)^{2}=0
\lambda=-1
\Rightarrow \lambda=0,-1
\therefore
option
B
is correct.
Let
\vec{u}
,
\vec{v}
,
\vec{w}
be such that
\left | \vec{u} \right |
= 1,
\left | \vec{v} \right |
= 2,
\left | \vec{w} \right |
= 3 . If the projection
\vec{v}
along
\vec{u}
is equal to that of
\vec{w}
along
\vec{u}
and
\vec{v}
,
\vec{w}
are perpendicular to each other , then
\left | \vec{u} \vec{v} + \vec{w} \right |
equals
Report Question
0%
\sqrt{14}
0%
\sqrt{7}
0%
2
0%
14
Explanation
Given,
|\vec{u}|=1
and
|\vec{v}|=2,|\vec{w}|=3
and,
\quad \vec{v} \cdot \vec{u}=\vec{w} \cdot \vec{u}
\vec{v} \cdot \vec{u}=\vec{\omega} \cdot \vec{u}
or,
\quad \vec{v} \cdot \vec{\omega}=0
Now,
\quad|\vec{u}-\vec{v}+\vec{w}|
Squaring,
|\vec{u}|^{2}+\left.\vec{v}\right|^{2}+|\vec{w}|^{2}-2 \vec{u} \cdot \vec{v}-2 \vec{v} \cdot \vec{\omega}
+2 \vec{u} \cdot \vec{w}
\Rightarrow 1+4+9-2\vec{u} \cdot\vec{v}+2 \overrightarrow{u} \cdot \vec{v}
-0
\Rightarrow \quad 14
|\vec{u}-\vec{v}+\vec{w}|=\sqrt{14}
option
A=\sqrt{14}
Vector
\vec { x }
satisfying the relation
\vec { A } . \overline { x } = c
and
\vec { A } \times \vec { x } = \vec { B }
is
Report Question
0%
\frac { c \vec { A } - ( \overline { A } \times \vec { B } ) } { | \vec { A } | }
0%
\frac { c \vec { A } - ( \vec { A } \times \vec { B } ) } { | \vec { A } | ^ { 2 } }
0%
\frac { c \vec { A } + ( \vec { A } \times \vec { B } ) } { | \vec { A } | ^ { 2 } }
0%
None
For any vector
\vec a
, the value of
{ (\vec a\times \hat i) }^{ 2 }+{ (\vec a\times \hat j) }^{ 2 }+{ (\vec a\times \hat k) }^{ 2 }
is equal to
Report Question
0%
4{ |\vec a| }^{ 2 }
0%
2{ |\vec a| }^{ 2 }
0%
{|\vec a |}^{ 2 }
0%
3{ |\vec a| }^{ 2 }
let
\bar { a }
be a unit vector and
\bar { b }
be a non-zero vector not parallel to
\bar { a }
if two sides of a triangle are represented by the vectors
\sqrt { 3 } \left( \bar { a } \times \bar { b } \right) \quad and\quad \bar { b } - \left( \bar { a } .\bar { b } \right) \bar { a }
then the angles of triangle are
Report Question
0%
90^{ \circ },{ 60 }^{ \circ },{ 30 }^{ \circ }
0%
45^{ \circ },{ 45 }^{ \circ },{ 90 }^{ \circ }
0%
60^{ \circ },{ 60 }^{ \circ },{ 60 }^{ \circ }
0%
75^{ \circ },{ 45 }^{ \circ },{ 60 }^{ \circ }
In a triangle ABC, if
A=(0, 0), B=(3, 3\sqrt{3}), C=(-3\sqrt{3}, 3)
then the vector of magnitude
2\sqrt{2}
units directed along
\overline{AO}
, where O is the circumcentre of triangle ABC is?
Report Question
0%
(1-\sqrt{3})\bar{i}+(1+\sqrt{3})\bar{j}
0%
\sqrt{3}\bar{i}+2\bar{j}
0%
\bar{i}-\sqrt{3}\bar{j}
0%
\bar{i}+2\bar{j}
In a parallelogram ABD,
|\overset { \_ }{ A\overset { \rightarrow }{ B } } |=a,|\overset { \_ }{ A\overset { \rightarrow }{ D } } |=b
and
|\overset { \_ \\ \quad \quad \rightarrow }{ AC } |=c,
,
\overset { \_ \rightarrow }{ AB } .\overset { \_ \rightarrow }{ DB }
has the value :
Report Question
0%
\frac { 1 }{ 2 } ({ 3a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 })
0%
\frac { 1 }{ 2 } ({ a }^{ 2 }-{ b }^{ 2 }+{ c }^{ 2 })
0%
\frac { 1 }{ 2 } ({ a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 })
0%
\frac { 1 }{ 3 } ({ b }^{ 2 }+{ c }^{ 2 }-{ a }^{ 2 })
If the position vectors of the vertices
A,B
and
C
of a
\Delta ABC
are respectively
4\hat{i}+7\hat{j}+8\hat{k},2\hat{i}+3\hat{j}+4\hat{k}
and
2\hat{i}+5\hat{j}+7\hat{k}
, then the position vector of the point, where the bisector of
\angle A
meets
BC
is:
Report Question
0%
\frac{1}{2}(4\hat{i}+8\hat{j}+11\hat{k})
0%
\frac{1}{3}(6\hat{i}+13\hat{j}+18\hat{k})
0%
\frac{1}{4}(8\hat{i}+14\hat{j}+19\hat{k})
0%
\frac{1}{3}(6\hat{i}+8\hat{j}+15\hat{k})
If\quad |\overrightarrow { a } |
=2 and
\quad |\overrightarrow { b } |
=3 and
\quad |\overrightarrow { a } |
.
\quad |\overrightarrow { b } |
=Then (a x (a x (a x (a x b)))) is equal to
Report Question
0%
4\hat { b }
0%
-4\hat { b }
0%
4\hat { a }
0%
-4\hat { a }
If C is the mid-point of AB and P is any point outside AB , then
Report Question
0%
\overrightarrow{PA}
+
\overrightarrow{PB}
+
\overrightarrow{PC}
= 0
0%
\overrightarrow{PA}
+
\overrightarrow{PB}
+ 2
\overrightarrow{PC}
=
\overrightarrow{0}
0%
\overrightarrow{PA}
\overrightarrow{PB}
=
\overrightarrow{PC}
0%
\overrightarrow{PA}
\overrightarrow{PB}
= 2
\overrightarrow{PC}
If
\overset { \rightarrow }{ a }
and
\overset { \rightarrow }{ b }
are vectors such that
|\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } |=\sqrt { 29 }
and
\overset { \rightarrow }{ a } \times (2\overset { \wedge }{ i } +3\overset { \wedge }{ j } +4\overset { \wedge }{ k } )=(2\overset { \wedge }{ i } +3\overset { \wedge }{ j } +4\overset { \wedge }{ k } )\times \overset { \rightarrow }{ b }
, then a possible value of
(\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } )(-7\overset { \wedge }{ i } +2\overset { \wedge }{ j } +3\overset { \wedge }{ k } )
is
Report Question
0%
0
0%
3
0%
4
0%
8
If
\hat{u}
and
\hat{v}
are unit vectors and
\theta
is the acute angle between them , then 2
\hat{u}
3
\hat{v}
is a unit vector for
Report Question
0%
No value of
\theta
0%
Exactly one value of
\theta
0%
Exactly two values of
\theta
0%
More than two values of
\theta
Explanation
Given,
\bar{u}
and
\vec{v}
are unit vector
|\vec{u}|=1
|\vec{v}|=1
Now,
\Rightarrow|2 \vec{u}||\overrightarrow{3 v}| \sin \theta=1
|\overrightarrow{2 u} \times \rightarrow{\vec{3 v}}|
[\because|\vec{a} \times \vec{b}|=|\vec a|\vec b|| \sin \theta]
\Rightarrow 2 \cdot 3|\bar{u}| \nabla \mid \sin \theta=1 \\
\sin \theta=\frac{1}{6}
\text { There is only one value of } \theta \\
\text { for which }|\vec 24 \times \vec 3V| \text { is a } \\
\text { unit vector. }
\text { option } B
Let
\vec{a}
=
\hat{i}
\hat{j}
,
\vec{b}
=
\hat{j}
\hat{k}
,
\vec{c}
=
\hat{k}
\hat{i}
. If
\vec{d}
is a unit vector such that
\vec{a}.\vec{d}
= 0 =
\left | \vec{b}\vec{c}\vec{d} \right |
then
\vec{d}
equals :
Report Question
0%
\dfrac{\hat{i} + \hat{j} 2\hat{k}}{\sqrt{6}}
0%
\dfrac{\hat{i} + \hat{j} \hat{k}}{\sqrt{3}}
0%
\dfrac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}
0%
\hat{k}
The value of
\lambda
for
\left( x,y,z \right) \neq \left( 0,0,0 \right)
and
\left( i+j+3k \right) x+\left( 3i-3j+k \right) y+\left( -4i+5j \right) z=\lambda \left( xi+yj+zk \right)
are
Report Question
0%
0, -1
0%
0, 1
0%
-2, 0
0%
0, 2
If
\overset { \rightarrow }{ a } ,\overset { \rightarrow }{ b } ,\overset { \rightarrow }{ c }
are unit vectors such that
\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } =0
then the value of
\overset { \rightarrow }{ a. } \overset { \rightarrow }{ b } +\overset { \rightarrow }{ b } .\overset { \rightarrow }{ c } +\overset { \rightarrow }{ c } .\overset { \rightarrow }{ a. }
is
Report Question
0%
1
0%
-1
0%
-3/2
0%
none of these
If
\overline { a } =-2\overline { i } +3\overline { j } +4\overline { k }
and
\overline { b } =-2\overline { i } -2\overline { j } +3\overline { k }
then
\overline { a } .\overline { b }
is
Report Question
0%
2
0%
-2
0%
6
0%
none of these
Let position vector of the orthocentre of
\triangle ABC
be
\overrightarrow{r}
. then, which of the following statement(s) is\are correct (Given position vector of points
a\hat{i},b\hat{j},c\hat{k}
and
abc=0
)
Report Question
0%
\displaystyle \overrightarrow { r } .\bar { i } =\frac{a}{\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}+\frac{1}{{c}^{2}}}
0%
\displaystyle \overrightarrow { r } .\bar { i } =\frac{1}{a\left(\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}+\frac{1}{{c}^{2}} \right) }
0%
\displaystyle \frac {\overrightarrow { r } .\bar { i }}{\overrightarrow { r } .\bar { j }}+\frac {\overrightarrow { r } .\bar { j }}{\overrightarrow { r } .\bar { k }}+\frac {\overrightarrow { r } .\bar { k }}{\overrightarrow { r } .\bar { i }}=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}
0%
\displaystyle \frac {\overrightarrow { r } .\bar { i }}{\overrightarrow { r } .\bar { j }}+\frac {\overrightarrow { r } .\bar { j }}{\overrightarrow { r } .\bar { k }}+\frac {\overrightarrow { r } .\bar { k }}{\overrightarrow { r } .\bar { i }}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}
If C is the mid point of AB and P is any point outside AB , then
Report Question
0%
\overrightarrow{PA}
+
\overrightarrow{PB}
+
\overrightarrow{PC}
= 0
0%
\overrightarrow{PA}
+
\overrightarrow{PB}
+
2\overrightarrow{PC}
=
\overrightarrow{0}
0%
\overrightarrow{PA}
+
\overrightarrow{PB}
=
\overrightarrow{PC}
0%
\overrightarrow{PA}
+
\overrightarrow{PB}
=
2\overrightarrow{PC}
A particle in a plane from A to E along the shown path. It is given that AB=BC=DE=10 metre. Then the magnitude of net displacement of particle is :
Report Question
0%
10 m
0%
15 m
0%
5 m
0%
20 m
Let
a=\displaystyle\sum_{i < j}\left(\dfrac{1}{^{n}C_i}+\dfrac{1}{^{n}C_j}\right)
and
b=\displaystyle\sum_{i < j}\left(\dfrac{i}{^{n}C_i}+\dfrac{j}{^{n}C_j}\right)
, then?
Report Question
0%
b=(n-1)a
0%
b=(n+1)a
0%
b=\dfrac{n}{2}a
0%
b=na
In parallelogram ABCD,
|\overline { AB } |=a,|\overline { AD } |=b
and
|\overline { AC } |=c
then
\overline { DB } ,\overline { AB }
has the value
Report Question
0%
\frac {3a^2+b^2-c^2}{2}
0%
\frac {3b^2+c^2-a^2}{2}
0%
\frac {3c^2+b^2-a^2}{2}
0%
\frac {a^2+b^2+c^2}{2}
If
\sum_{i=1}^{n} \vec{a}_{i}=\vec{0}
where
\left|\vec{a}_{i}\right|=1 \forall i,
then the value of
\sum_{1 \leq i<j \leq n} \vec{a}_{i} \cdot \vec{a}_{j}
is
Report Question
0%
-n/2
0%
-n
0%
n/2
0%
n
If the vectors
\vec{a}
,
\vec{b}
,
\vec{c}
satisfying
\vec{a}
+
\vec{b}
+ 2
\vec{c}
= 0 . If
\left | \vec{a} \right |
= 1 ,
\left | \vec{b} \right |
= 4 ,
\left | \vec{c} \right |
= 2 , then
\vec{a}.\vec{b}
+
\vec{b}.\vec{c}
+
\vec{c}.\vec{a}
=
Report Question
0%
-\dfrac{7}{2}
0%
-\dfrac{17}{2}
0%
\dfrac{17}{2}
0%
\dfrac{7}{2}
The projection of the join of the point (3, 4, 2), (5, 1, 8) on the line whose d.c.'s are
\left( \dfrac { 2 }{ 7 } ,-\dfrac { 3 }{ 7 } ,\dfrac { 6 }{ 7 } \right)
is
Report Question
0%
7
0%
\left( \dfrac { 46 }{ 13 } \right)
0%
\left( \dfrac { 42 }{ 13 } \right)
0%
\left( \dfrac { 38 }{ 13 } \right)
If
a
,
b
and care three mutually perpendicular vectors, then the projection of the vector
\left|\frac{a}{|a|}+m \frac{b}{|b|}+n \frac{(a \times b)}{|a \times b|}\right.
along the angle bisector of the vector
a
and
b
is
Report Question
0%
\frac{l^{2}+m^{2}}{\sqrt{l^{2}+m^{2}-n^{2}}}
0%
\sqrt{1^{2}+m^{2}+n^{2}}
0%
\frac{\sqrt{1^{2}+m^{2}}}{\sqrt{l^{2}-m^{2}+n^{2}}}
0%
\frac{1+m}{\sqrt{2}}
Let OAB be a regular triangle with side unity (o being otogin). Also M, N are the points of intersection of AB, M being closer to A and N closer to B. Position vectors of A, B, M and N are
\vec { a } ,\vec { b } ,\vec { m }
and
\vec { n }
respectively. Which of the following hold (s) good ?
Report Question
0%
\vec { m } =x\vec { a } +y\vec { b } \Rightarrow \dfrac { 2 }{ 3 }
and
y=\dfrac { 1 }{ 3 }
0%
\vec { m } =x\vec { a } +y\vec { b } \Rightarrow x=\dfrac { 5 }{ 6 }
and
y=\dfrac { 1 }{ 6 }
0%
\vec { m } .\vec { n }
equals
\dfrac { 13 }{ 18 }
0%
\vec { m } .\vec { n }
equals
\dfrac { 15 }{ 18 }
The position vector of A is
2\vec { i } +3\vec { j } +4\vec { k }
\vec { AB } =5\vec { i } +7\vec { j } +6\vec { k }
, then the position vector of B is
Report Question
0%
-7\vec { i } -10\vec { j } -10\vec { k }
0%
7\vec { i } -10\vec { j } +10\vec { k }
0%
7\vec { i } +10\vec { j } -10\vec { k }
0%
7\vec { i } +10\vec { j } +10\vec { k }
The position vector of a point lying on the joining the points whose position vectors are
\overline i + \overline j -\overline k
and
\overline i - \overline j +\overline k
is
Report Question
0%
\overline j
0%
\overline i
0%
\overline k
0%
\overline 0
Area of diagonals is, ..., where diagonals
are
a = 2 \hat {i} - 3 \hat { j } + 5 \hat { k }
, and
b = - \hat { i} + \hat { j} + \hat { k }
Report Question
0%
\sqrt { 21.5 }
0%
\sqrt { 31.5 }
0%
\sqrt { 28.5 }
0%
\sqrt{ 38.5 }
If
\bar { a } ,\bar { b } ,\bar { c }
are position vectors of the points A,B,C respectively such that
9\bar { a } -7\bar { b } -2\bar { c } =\bar { 0 }
then point B divides AC in the ratio.....
Report Question
0%
Internally 7:2
0%
Externally 9:2
0%
Internally 9:7
0%
Externally 2:7
A vector
A=\overrightarrow { l } =\overrightarrow { xj } =3\overrightarrow { k }
is rotated through an angle and is also doubled in magnitude resulting in
\overrightarrow { B } =4\overrightarrow { l } +\left( 4x-2 \right) \overrightarrow { j } +2\overrightarrow { k }
. An acceptable value of x is
Report Question
0%
1
0%
2
0%
3
0%
4/3
A stone projected vertically upwards raises 's' feets in 't' seconds where
_{ S }=112t-{ 16t }^{ 2 }
then the maximum height it reached is
Report Question
0%
195 ft
0%
194 ft
0%
196 ft
0%
216 ft
Explanation
s=112 t-16 t^{2}
for maximum height
\dfrac{d s}{d t}=0
\dfrac{d\left(112 t-16 t^{2}\right)}{d t}=0
\dfrac{d(112 t)}{d t}-\dfrac{d\left(16 t^{2}\right)}{d t}=0
112-16(2) t^{2-1}=0
112-32 t=0
32 t=112
t=\dfrac{112}{32}=\dfrac{28}{8}=\frac{7}{2}
\therefore
maximum height
=112\left(\dfrac{7}{2}\right)-16\left(\dfrac{7}{2}\right)^{2}
=56 \times 7-4 \times 49
=392-196
=196 \mathrm{ft}
Given
\overline { a } = x \hat { i } + y \hat { j } + 2 \hat { k } , \overline { b } = \hat { i } - \hat { j } + \hat { k } , \overline { c } = \hat { i } + 2 \hat { j } ;( \overline { a } \hat { } \overline { b } ) = \pi / 2 , \overline { a } .\overline { c } = 4
then
Report Question
0%
[ \overline { a } \overline { b } \overline { c } ] ^ { 2 } = \left| \overline { a } \right|
0%
[ \overline { a } \overline { b } \overline { c } ]= \left| \overline { a } \right|
0%
[ \overline { a } \overline { b } \overline { c } ]= 0
0%
none of these
If
\vec { a }
and
\vec { b }
are vectors such that
| \vec { a } + \vec { b } | = \sqrt { 29 }
and
\vec { a } \times ( 2 \hat { i } + 3 \hat { j } + 4 \hat { k } ) = ( 2 \hat { i } + 3 \hat { j } + 4 \hat { k } ) \times \vec { b } ,
then
a possible value of
( \vec { a } + \vec { b } ) \cdot ( - 7 \hat { i } + 2 \hat { j } + 3 \hat { k } )
is
Report Question
0%
0
0%
3
0%
4
0%
8
For any three
\vec { a } , \vec { b } , \vec { c } ( \vec { a } - \vec { b } ) ( \vec { b } - \vec { c } ) \times ( \vec { c } - \vec { a } )
is equal to
Report Question
0%
\vec { b } \cdot ( \vec { c } \times \vec { a } )
0%
2 \vec { a } \cdot ( \vec { b } \times \vec { c } )
0%
0
0%
none of these
The point D,E,F divide BC, CA and Ab of the triangle ABC in the ratio 1 : 4, 3 : 2 and 3 : 7 respectively and the point K divides AB in the ratio 1 : 3 then
(\overrightarrow { AD } + \overrightarrow { BE } +\overrightarrow { CF }) : \overrightarrow { CK }
is equal to
Report Question
0%
5 : 2
0%
2:5
0%
1:1
0%
none of these
\left( \vec { r } .\vec { i } \right) \left( \vec { r } \times \vec { i } \right) +\left( \vec { r } .\vec { j } \right) \left( \vec { r } \times \vec { j } + \right) \left( \vec { r } .\vec { k } \right) \left( \vec { r } \times \vec { k } \right)
is equal to
Report Question
0%
3\vec { r }
0%
\vec { r }
0%
\vec { 0 }
0%
None of these
If u =
\hat{j} + 4 \hat{K}, V = \hat{i} - 3 \hat{K} w = cos \theta \hat{i} + sin \theta \hat{j}
are vectors in 3- dimensional space, then the maximum possible value of
|u \times v.w|
is
Report Question
0%
\sqrt{13}
0%
\sqrt{14}
0%
5
0%
7
If u =
\hat{j} + 4\hat{k}, V = \hat{i} =- 3K and W = cos \theta i + sin \theta \hat{i}
are vectors in 3-dimension space, then the maximum possible value of
|u \times v. w|
is
Report Question
0%
\sqrt 13
0%
\sqrt 14
0%
5
0%
7
If
\hat{i}\times (\vec{a}\times \hat{i})+\hat{j}\times (\vec{a}\times \hat{j})+\hat{k}\times (\vec{a}\times \hat{k})=.....\left\{(\vec{a}.\hat{i})\hat{i}+(\vec{a}.\hat{j})\hat{j}+(\vec{a}.\hat{k})\hat{k}\right\}
Report Question
0%
-1
0%
0
0%
2
0%
None\ of\ these
The magnitude of two vectors which can be represented in the form i+j+(2x)k is
\sqrt{18}
. Then the unit vector that is perpendicular to these two vectors is
Report Question
0%
\frac{-i+j}{\sqrt{2}}
0%
\frac{i-j}{8\sqrt{2}}
0%
\frac{-i+j}{8}
0%
\frac{-i+j}{2\sqrt{2}}
The length of vector
\overrightarrow{A G}
is
Report Question
0%
\sqrt{17}
0%
\sqrt{51} / 3
0%
3 / \sqrt{6}
0%
\sqrt{59} / 4
Explanation
Point
G
is
\left(\dfrac{4}{3}, \dfrac{1}{3}, \dfrac{8}{3}\right) \cdot
Therefore
\begin{array}{l}|\overrightarrow{A G}|^{2}=\left(\dfrac{5}{3}\right)^{2}+\dfrac{1}{9}+\left(\dfrac{5}{3}\right)^{2}=\dfrac{51}{9} \\\Rightarrow|\overrightarrow{A G}|=\dfrac{\sqrt{51}}{3} \\\overrightarrow{A B}=-4 \hat{i}+4 \hat{j}+0 \hat{k} \\\overrightarrow{A C}=2 \hat{i}+2 \hat{j}+2 \hat{k}\end{array}
\therefore \overrightarrow{A B} \times \overrightarrow{A C}=-8\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ 1 & 1 & 1\end{array}\right|
=8(\hat{i}+\hat{j}-2 \hat{k})
Area of
\Delta A B C=\dfrac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=4 \sqrt{6}
\overrightarrow{A D}=-3 \hat{i}-5 \hat{j}+3 \hat{k}
The length of the perpendicular from the vertex
D
on the opposite face
=\mid
projection of
\overrightarrow{A D}
on
\overrightarrow{A B} \times \overrightarrow{A C} \mid
\begin{array}{l}=\left|\dfrac{(-3 \hat{i}-5 \hat{j}+3 \hat{k})(\hat{i}+\hat{j}-2 \hat{k})}{\sqrt{6}}\right| \\ \\=\left|\dfrac{-3-5-6}{\sqrt{6}}\right|=\dfrac{14}{\sqrt{6}}\end{array}
For non-zero vectors
\vec{a}, \vec{b}
and
\vec{c},|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|
holds if and only if
Report Question
0%
\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0
0%
\vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0
0%
\vec{c} \cdot \vec{a}=0, \vec{a} \cdot \vec{b}=0
0%
\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0
Explanation
\textbf{Step 1: Simplifying given expression}
\text{Given that }
|(\vec a \times \vec b).\vec c|=|\vec a||\vec b||\vec c|
\implies ||\vec a||\vec b|sin\theta \hat n.\vec c|=|\vec a||\vec b||\vec c|
\text{Here }\hat n \text{ is the resultant of vector } a\text{ and }b
\text{and } \hat n.\vec c=|\hat n||\vec c|cos\alpha
\implies ||\vec a||\vec b|sin\theta |\hat n||\vec c|cos\alpha |=|\vec a||\vec b||\vec c|
\text{Since }\hat n \text{ is a unit vector }|\hat n|=1
\textbf{Step 2: Calculating}
\implies ||\vec a||\vec b||\vec c|sin\theta.cos\alpha|=|\vec a ||\vec b||\vec c|
\implies |sin\theta ||cos\alpha|=1
\textbf{Step 3: Calculating result}
\text{If we assume that }\theta = \dfrac {\pi}2 , \alpha =0
\implies \vec a \text{ and } \vec b \text{ are perpendicular}
\implies \vec a.\vec b=0
\text{As }\alpha=0, \vec c \text{ is along the resultant of vector }a\text{ and }b
\implies \vec c \text{ is perpendicular to }\vec a \text { and }\vec b
\implies \vec c.\vec a=0 \text{ and } \vec c.\vec b=0
\textbf{Hence, }\mathbf{\vec a.\vec b= \vec a.\vec c= \vec b.\vec c=0}
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page