Processing math: 7%

CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 13 - MCQExams.com

If  u=ab ;v=a+b  & |a|=|b|=2, then |u×υ| is equal to:
  • 2(4(a.b)2)
  • 2(16+(a.b)2)
  • 2(4(a.b)2)
  • 2(16(a.b)2)
r.ˆi=2r.ˆj=4r.ˆk and |r|=84, then |r.(2ˆi3ˆj+ˆk)| is equal to 
  • 0
  • 2
  • 4
  • 6
If ˉa=ˆi+ˆj2ˆk,ˉb=2ˆi0ˆj+ˆk,ˉc=3ˆiˆk and ˉc=mˉa+nˉb then m + n = ....
  • 0
  • 1
  • 2
  • -1
If the position vectors of A,B,C,D are 3ˆi+2ˆj+ˆk,4ˆi+5ˆj+5ˆk,4ˆi+2ˆj2ˆk,6ˆi+5ˆjˆk respectively then the position vector of the point of intersection of ¯AB and ¯CD is
  • 2ˆi+ˆj3ˆk
  • 2ˆiˆj+3ˆk
  • 2ˆi+ˆj+3ˆk
  • 2ˆiˆj3ˆk
Let \vec{a}=\hat{i}-\hat{j},\vec{b}=\hat{i}-\hat{j}=\vec{c}=\hat{i}-\hat{j}, if \vec{d} is a unit vector such that \vec{a}.\vec{d}=0=|\vec{b}\vec{c}\vec{d}| then \vec{d} equals:
  • \pm\dfrac{\hat{i}+\hat{j}-2\hat{k}}{\sqrt{6}}
  • \pm\dfrac{\hat{i}+\hat{j}-2\hat{k}}{\sqrt{3}}
  • \pm\dfrac{\hat{i}+\hat{j}+2\hat{k}}{\sqrt{3}}
  • \pm\hat{k}
If a=i-j,b=i+j,c=i+3j+5k and n is a unit vector such that b,n=0,a,n=0 then the value of |c,n| is equal to
  • 1
  • 3
  • 5
  • 2
The value of |\vec{a} \times \hat{i} |^2 + |\vec{a} \times \hat{j} |^2 + |\vec{a} \times \hat{k} |^2 is 
  • a^2
  • 2a^2
  • 3a^2
  • none of these
The values of \lambda such that (x, y, z) \neq (0, 0, 0) and (\hat{i} + \hat{j} + 3\hat{k})x + (3\hat{i} - 3\hat{j} + \hat{k})y + (-4\hat{i} + 5\hat{j})z = \lambda(x\hat{i} + y\hat{j} + z\hat{k}) are
  • 0, 1
  • 0, -1
  • 1, -1
  • 0, 1, -1
Let \vec{u}, \vec{v}, \vec{w} be such that \left | \vec{u} \right | = 1, \left | \vec{v} \right | = 2, \left | \vec{w} \right | = 3 . If the projection \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and \vec{v}, \vec{w} are perpendicular to each other , then \left | \vec{u} \vec{v} + \vec{w} \right | equals 
  • \sqrt{14}
  • \sqrt{7}
  • 2
  • 14
Vector \vec { x } satisfying the relation \vec { A } . \overline { x } = c and \vec { A } \times \vec { x } = \vec { B } is
  • \frac { c \vec { A } - ( \overline { A } \times \vec { B } ) } { | \vec { A } | }
  • \frac { c \vec { A } - ( \vec { A } \times \vec { B } ) } { | \vec { A } | ^ { 2 } }
  • \frac { c \vec { A } + ( \vec { A } \times \vec { B } ) } { | \vec { A } | ^ { 2 } }
  • None
For any vector \vec a, the value of { (\vec a\times \hat i) }^{ 2 }+{ (\vec a\times \hat j) }^{ 2 }+{ (\vec a\times \hat k) }^{ 2 } is equal to
  • 4{ |\vec a| }^{ 2 }
  • 2{ |\vec a| }^{ 2 }
  • {|\vec a |}^{ 2 }
  • 3{ |\vec a| }^{ 2 }
let \bar { a }  be a unit vector and \bar { b }  be a non-zero vector not parallel to \bar { a }  if two sides of a triangle are represented by the vectors \sqrt { 3 } \left( \bar { a } \times \bar { b }  \right) \quad and\quad \bar { b } - \left( \bar { a } .\bar { b }  \right) \bar { a }  then the angles of triangle are 
  • 90^{ \circ },{ 60 }^{ \circ },{ 30 }^{ \circ }
  • 45^{ \circ },{ 45 }^{ \circ },{ 90 }^{ \circ }
  • 60^{ \circ },{ 60 }^{ \circ },{ 60 }^{ \circ }
  • 75^{ \circ },{ 45 }^{ \circ },{ 60 }^{ \circ }
In a triangle ABC, if A=(0, 0), B=(3, 3\sqrt{3}), C=(-3\sqrt{3}, 3) then the vector of magnitude 2\sqrt{2} units directed along \overline{AO}, where O is the circumcentre of triangle ABC is?
  • (1-\sqrt{3})\bar{i}+(1+\sqrt{3})\bar{j}
  • \sqrt{3}\bar{i}+2\bar{j}
  • \bar{i}-\sqrt{3}\bar{j}
  • \bar{i}+2\bar{j}
In a parallelogram ABD, |\overset { \_  }{ A\overset { \rightarrow  }{ B }  } |=a,|\overset { \_  }{ A\overset { \rightarrow  }{ D }  } |=b and |\overset { \_ \\ \quad \quad \rightarrow  }{ AC } |=c,, \overset { \_ \rightarrow  }{ AB } .\overset { \_ \rightarrow  }{ DB }  has the value :
  • \frac { 1 }{ 2 } ({ 3a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 })
  • \frac { 1 }{ 2 } ({ a }^{ 2 }-{ b }^{ 2 }+{ c }^{ 2 })
  • \frac { 1 }{ 2 } ({ a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 })
  • \frac { 1 }{ 3 } ({ b }^{ 2 }+{ c }^{ 2 }-{ a }^{ 2 })
If the position vectors of the vertices A,B and C of a \Delta ABC are respectively 4\hat{i}+7\hat{j}+8\hat{k},2\hat{i}+3\hat{j}+4\hat{k} and 2\hat{i}+5\hat{j}+7\hat{k}, then the position vector of the point, where the bisector of \angle A meets BC is:
  • \frac{1}{2}(4\hat{i}+8\hat{j}+11\hat{k})
  • \frac{1}{3}(6\hat{i}+13\hat{j}+18\hat{k})
  • \frac{1}{4}(8\hat{i}+14\hat{j}+19\hat{k})
  • \frac{1}{3}(6\hat{i}+8\hat{j}+15\hat{k})
If\quad |\overrightarrow { a } | =2 and \quad |\overrightarrow { b } |=3 and \quad |\overrightarrow { a } |.\quad |\overrightarrow { b } | =Then (a x (a x (a x (a x b)))) is equal to 
  • 4\hat { b }
  • -4\hat { b }
  • 4\hat { a }
  • -4\hat { a }
If C is the mid-point of AB and P is any point outside AB , then
  • \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0
  • \overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}
  • \overrightarrow{PA} \overrightarrow{PB} = \overrightarrow{PC}
  • \overrightarrow{PA} \overrightarrow{PB} = 2\overrightarrow{PC}
If \overset { \rightarrow  }{ a } and \overset { \rightarrow  }{ b } are vectors such that |\overset { \rightarrow  }{ a } +\overset { \rightarrow  }{ b } |=\sqrt { 29 } and \overset { \rightarrow  }{ a } \times (2\overset { \wedge  }{ i } +3\overset { \wedge  }{ j } +4\overset { \wedge  }{ k } )=(2\overset { \wedge  }{ i } +3\overset { \wedge  }{ j } +4\overset { \wedge  }{ k } )\times \overset { \rightarrow  }{ b } , then a possible value of (\overset { \rightarrow  }{ a } +\overset { \rightarrow  }{ b } )(-7\overset { \wedge  }{ i } +2\overset { \wedge  }{ j } +3\overset { \wedge  }{ k } ) is 
  • 0
  • 3
  • 4
  • 8
If \hat{u} and \hat{v} are unit vectors and \theta is the acute angle between them , then 2\hat{u} 3\hat{v} is a unit vector for
  • No value of \theta
  • Exactly one value of \theta
  • Exactly two values of \theta
  • More than two values of \theta
Let \vec{a}\hat{i}  \hat{j}, \vec{b}\hat{j}  \hat{k}, \vec{c}\hat{k}  \hat{i}. If \vec{d} is a unit vector such that \vec{a}.\vec{d} = 0 = \left | \vec{b}\vec{c}\vec{d} \right | then \vec{d} equals :
  • \dfrac{\hat{i} + \hat{j} 2\hat{k}}{\sqrt{6}}
  • \dfrac{\hat{i} + \hat{j} \hat{k}}{\sqrt{3}}
  • \dfrac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}
  • \hat{k}
The value of \lambda for \left( x,y,z \right) \neq \left( 0,0,0 \right) and \left( i+j+3k \right) x+\left( 3i-3j+k \right) y+\left( -4i+5j \right) z=\lambda \left( xi+yj+zk \right) are
  • 0, -1
  • 0, 1
  • -2, 0
  • 0, 2
If \overset { \rightarrow  }{ a } ,\overset { \rightarrow  }{ b } ,\overset { \rightarrow  }{ c } are unit vectors such that \overset { \rightarrow  }{ a } +\overset { \rightarrow  }{ b } +\overset { \rightarrow  }{ c } =0 then the value of \overset { \rightarrow  }{ a. } \overset { \rightarrow  }{ b } +\overset { \rightarrow  }{ b } .\overset { \rightarrow  }{ c } +\overset { \rightarrow  }{ c } .\overset { \rightarrow  }{ a. } is 
  • 1
  • -1
  • -3/2
  • none of these
If \overline { a } =-2\overline { i } +3\overline { j } +4\overline { k }  and \overline { b } =-2\overline { i } -2\overline { j } +3\overline { k }  then \overline { a } .\overline { b }  is 
  • 2
  • -2
  • 6
  • none of these
Let position vector of the orthocentre of \triangle ABC be \overrightarrow{r}. then, which of the following statement(s) is\are correct (Given position vector of points a\hat{i},b\hat{j},c\hat{k} and abc=0)

  • \displaystyle \overrightarrow { r } .\bar { i } =\frac{a}{\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}+\frac{1}{{c}^{2}}}
  • \displaystyle \overrightarrow { r } .\bar { i } =\frac{1}{a\left(\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}+\frac{1}{{c}^{2}} \right) }
  • \displaystyle \frac {\overrightarrow { r } .\bar { i }}{\overrightarrow { r } .\bar { j }}+\frac {\overrightarrow { r } .\bar { j }}{\overrightarrow { r } .\bar { k }}+\frac {\overrightarrow { r } .\bar { k }}{\overrightarrow { r } .\bar { i }}=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}
  • \displaystyle \frac {\overrightarrow { r } .\bar { i }}{\overrightarrow { r } .\bar { j }}+\frac {\overrightarrow { r } .\bar { j }}{\overrightarrow { r } .\bar { k }}+\frac {\overrightarrow { r } .\bar { k }}{\overrightarrow { r } .\bar { i }}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}
If C is the mid point of AB and P is any point outside AB , then
  • \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0
  • \overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}
  • \overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}
  • \overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}
A particle in a plane from A to E along the shown path. It is given that AB=BC=DE=10 metre. Then the magnitude of net displacement of particle is :
1337385_0185cb4e36554daba9ee1f911656980b.PNG
  • 10 m
  • 15 m
  • 5 m
  • 20 m
Let a=\displaystyle\sum_{i < j}\left(\dfrac{1}{^{n}C_i}+\dfrac{1}{^{n}C_j}\right) and b=\displaystyle\sum_{i < j}\left(\dfrac{i}{^{n}C_i}+\dfrac{j}{^{n}C_j}\right), then?
  • b=(n-1)a
  • b=(n+1)a
  • b=\dfrac{n}{2}a
  • b=na
In parallelogram ABCD, |\overline { AB } |=a,|\overline { AD } |=b and |\overline { AC } |=c then \overline { DB } ,\overline { AB } has the value
  • \frac {3a^2+b^2-c^2}{2}
  • \frac {3b^2+c^2-a^2}{2}
  • \frac {3c^2+b^2-a^2}{2}
  • \frac {a^2+b^2+c^2}{2}
If \sum_{i=1}^{n} \vec{a}_{i}=\vec{0}  where \left|\vec{a}_{i}\right|=1 \forall i,  then the value of  \sum_{1 \leq i<j \leq n} \vec{a}_{i} \cdot \vec{a}_{j}  is
  • -n/2
  • -n
  • n/2
  • n
If the vectors \vec{a}\vec{b}\vec{c} satisfying \vec{a} + \vec{b} + 2\vec{c} = 0 . If \left | \vec{a} \right | = 1 , \left | \vec{b} \right | = 4 , \left | \vec{c} \right | = 2 , then \vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}
  • -\dfrac{7}{2}
  • -\dfrac{17}{2}
  • \dfrac{17}{2}
  • \dfrac{7}{2}
The projection of the join of the point (3, 4, 2), (5, 1, 8) on the line whose d.c.'s are \left( \dfrac { 2 }{ 7 } ,-\dfrac { 3 }{ 7 } ,\dfrac { 6 }{ 7 }  \right) is 
  • 7
  • \left( \dfrac { 46 }{ 13 } \right)
  • \left( \dfrac { 42 }{ 13 } \right)
  • \left( \dfrac { 38 }{ 13 } \right)
If a,b and care three mutually perpendicular vectors, then the projection of the vector \left|\frac{a}{|a|}+m \frac{b}{|b|}+n \frac{(a \times b)}{|a \times b|}\right.  along the angle bisector of the vector a and b is
  • \frac{l^{2}+m^{2}}{\sqrt{l^{2}+m^{2}-n^{2}}}
  • \sqrt{1^{2}+m^{2}+n^{2}}
  • \frac{\sqrt{1^{2}+m^{2}}}{\sqrt{l^{2}-m^{2}+n^{2}}}
  • \frac{1+m}{\sqrt{2}}
Let OAB be a regular triangle with side unity (o being otogin). Also M, N are the points of intersection of AB, M being closer to A and N closer to B. Position vectors of A, B, M and N are \vec { a } ,\vec { b } ,\vec { m } and \vec { n } respectively. Which of the following hold (s) good ?
  • \vec { m } =x\vec { a } +y\vec { b } \Rightarrow \dfrac { 2 }{ 3 } and y=\dfrac { 1 }{ 3 }
  • \vec { m } =x\vec { a } +y\vec { b } \Rightarrow x=\dfrac { 5 }{ 6 } and y=\dfrac { 1 }{ 6 }
  • \vec { m } .\vec { n } equals \dfrac { 13 }{ 18 }
  • \vec { m } .\vec { n } equals \dfrac { 15 }{ 18 }
The position vector of A is 2\vec { i } +3\vec { j } +4\vec { k } \vec { AB } =5\vec { i } +7\vec { j } +6\vec { k } , then the position vector of B is
  • -7\vec { i } -10\vec { j } -10\vec { k }
  • 7\vec { i } -10\vec { j } +10\vec { k }
  • 7\vec { i } +10\vec { j } -10\vec { k }
  • 7\vec { i } +10\vec { j } +10\vec { k }
The position vector of a point lying on the joining the points whose position vectors are \overline i + \overline j -\overline k and \overline i - \overline j +\overline k is
  • \overline j
  • \overline i
  • \overline k
  • \overline 0
Area of diagonals is, ..., where diagonals are
a = 2 \hat {i} - 3 \hat { j } + 5 \hat { k } , and b = - \hat { i} + \hat { j} + \hat { k }
  • \sqrt { 21.5 }
  • \sqrt { 31.5 }
  • \sqrt { 28.5 }
  • \sqrt{ 38.5 }
If \bar { a } ,\bar { b } ,\bar { c }  are position vectors of the points A,B,C respectively such that 9\bar { a } -7\bar { b } -2\bar { c } =\bar { 0 }  then point B divides AC in the ratio.....
  • Internally 7:2
  • Externally 9:2
  • Internally 9:7
  • Externally 2:7
A vector A=\overrightarrow { l } =\overrightarrow { xj } =3\overrightarrow { k } is rotated through an angle and is also doubled in magnitude resulting in\overrightarrow { B } =4\overrightarrow { l } +\left( 4x-2 \right) \overrightarrow { j } +2\overrightarrow { k } . An acceptable value of x is
  • 1
  • 2
  • 3
  • 4/3
A stone projected vertically upwards raises 's' feets in 't' seconds where _{ S }=112t-{ 16t }^{ 2 } then the maximum height it reached is
  • 195 ft
  • 194 ft
  • 196 ft
  • 216 ft
Given \overline { a } = x \hat { i } + y \hat { j } + 2 \hat { k } , \overline { b } = \hat { i } - \hat { j } + \hat { k } , \overline { c } = \hat { i } + 2 \hat { j } ;( \overline { a } \hat {  } \overline { b } ) = \pi / 2 , \overline { a } .\overline { c } = 4 then
  • [ \overline { a } \overline { b } \overline { c } ] ^ { 2 } = \left| \overline { a } \right|
  • [ \overline { a } \overline { b } \overline { c } ]= \left| \overline { a } \right|
  • [ \overline { a } \overline { b } \overline { c } ]= 0
  • none of these
If \vec { a } and \vec { b } are vectors such that | \vec { a } + \vec { b } | = \sqrt { 29 } and \vec { a } \times ( 2 \hat { i } + 3 \hat { j } + 4 \hat { k } ) = ( 2 \hat { i } + 3 \hat { j } + 4 \hat { k } ) \times \vec { b } , then
a possible value of ( \vec { a } + \vec { b } ) \cdot ( - 7 \hat { i } + 2 \hat { j } + 3 \hat { k } ) is
  • 0
  • 3
  • 4
  • 8
For any three  \vec { a } , \vec { b } , \vec { c } ( \vec { a } - \vec { b } ) ( \vec { b } - \vec { c } ) \times ( \vec { c } - \vec { a } ) is equal to
  • \vec { b } \cdot ( \vec { c } \times \vec { a } )
  • 2 \vec { a } \cdot ( \vec { b } \times \vec { c } )
  • 0
  • none of these
The point D,E,F divide BC, CA and Ab of the triangle ABC in the ratio 1 : 4, 3 : 2 and 3 : 7 respectively and the point K divides AB in the ratio 1 : 3 then (\overrightarrow { AD } + \overrightarrow { BE } +\overrightarrow { CF }) : \overrightarrow { CK } is equal to 
  • 5 : 2
  • 2:5
  • 1:1
  • none of these
\left( \vec { r } .\vec { i }  \right) \left( \vec { r } \times \vec { i }  \right) +\left( \vec { r } .\vec { j }  \right) \left( \vec { r } \times \vec { j } + \right) \left( \vec { r } .\vec { k }  \right) \left( \vec { r } \times \vec { k }  \right) is equal to
  • 3\vec { r }
  • \vec { r }
  • \vec { 0 }
  • None of these
If u = \hat{j} + 4 \hat{K}, V = \hat{i} - 3 \hat{K} w = cos \theta \hat{i} + sin \theta \hat{j} are vectors in 3- dimensional space, then the maximum possible value of |u \times v.w| is 
  • \sqrt{13}
  • \sqrt{14}
  • 5
  • 7
If u = \hat{j} + 4\hat{k}, V = \hat{i} =- 3K and W = cos \theta i + sin \theta \hat{i} are vectors in 3-dimension space, then the maximum possible value of |u \times v. w| is 
  • \sqrt 13
  • \sqrt 14
  • 5
  • 7
If \hat{i}\times (\vec{a}\times \hat{i})+\hat{j}\times (\vec{a}\times \hat{j})+\hat{k}\times (\vec{a}\times \hat{k})=.....\left\{(\vec{a}.\hat{i})\hat{i}+(\vec{a}.\hat{j})\hat{j}+(\vec{a}.\hat{k})\hat{k}\right\}
  • -1
  • 0
  • 2
  • None\ of\ these
The magnitude of two vectors which can be represented in the form i+j+(2x)k is \sqrt{18}. Then the unit vector that is perpendicular to these two vectors is
  • \frac{-i+j}{\sqrt{2}}
  • \frac{i-j}{8\sqrt{2}}
  • \frac{-i+j}{8}
  • \frac{-i+j}{2\sqrt{2}}
The length of vector \overrightarrow{A G}  is
  • \sqrt{17}
  • \sqrt{51} / 3
  • 3 / \sqrt{6}
  • \sqrt{59} / 4
For non-zero vectors \vec{a}, \vec{b} and \vec{c},|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}| holds if and only if
  • \vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0
  • \vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0
  • \vec{c} \cdot \vec{a}=0, \vec{a} \cdot \vec{b}=0
  • \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers