Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 3 - MCQExams.com

find the coordinate of the tip of the position vector which is equivalent to AB, where the coordinates of A and B are (-1, 3) and (-2, 1) respectively.
  • (+1,+2)
  • (+1,-2)
  • (-1,+2)
  • (-1,-2)
If the position vectors of the points A(3,4),B(5,6) and C(4,1) are a,b,c respectively, compute a+2b3c.
  • 5ˆi1ˆj
  • ˆi5ˆj
  • ˆi+5ˆj
  • none of these
If 4ˆi+7ˆj+8ˆk,2ˆi+3ˆj+4ˆk and 2ˆi+5ˆj+7ˆk are the position vectors of the vertices A,B and C respectively, of the triangle ABC, the position vector of the point where the bisector of angle A meets BC, is
  • 23(6ˆi8ˆj6ˆk)
  • 23(6ˆi+8ˆj+6ˆk)
  • 13(6ˆi+13ˆj+18ˆk)
  • 13(5ˆj+12ˆk)
If vectors AB=3ˆj+4ˆk and AC=5ˆi2ˆj+4ˆk are the sides of a ΔABC, then the length of the median through A is
  • 14
  • 18
  • 29
  • 5
Let ABC be a triangle, the position vectors of whose vertices are respectively ˆi+2ˆj+4ˆk,2ˆi+2ˆj+ˆk and 2ˆi+4ˆj+3ˆk. Then ΔABC is 
  • isosceles
  • equilateral
  • right angled
  • none of these
If a is parallel to b×c, then (a×b)(a×c) is equal to
  • a2(bc)
  • b2(ac)
  • c2(ab)
  • none of these
If a∣=2 and b∣=3 and ad=0, then (a×(a×(a×(a×b)))) is equal to
  • 48ˆb
  • 48ˆb
  • 48ˆa
  • 48ˆa
Figure shows ABCDEF as a regular hexagon. What is the value of 
AB+AC+AD+AE+AF
1811900_932009e245e34da694a5d16a66b21bd8.png
  • AO
  • 2AO
  • 4AO
  • 6AO
Let ABC be a triangle and let D,E be the midpoints of the sides AB,AC respectively,then ^BE+^DC=
  • ^BC
  • 12^BC
  • 32^BC
  • 34^BC
Let  a=ˆi+ˆj+ˆk,b=ˆiˆj+ˆk  and  c=ˆiˆjˆk  be three vectors. A vector  v  in the plane of   a and b , whose projection on  c  is 13 , is given by ;
  • ˆi3ˆj+3ˆk
  • 3ˆi3ˆjˆk
  • 3ˆiˆj+3ˆk
  • ˆi+3ˆj3ˆk
The position vectors of A,B,C are ¯i+¯j+¯k, 4¯i+¯j+¯k, 4¯i+5¯j+¯k . Then the position vector of the circumcentre of the triangle ABC is
  • 3ˆi+2ˆj+ˆk
  • 12(6ˆi+ˆj+ˆk)
  • 12(5ˆi+6ˆj+2ˆk)
  • 12(9¯i+7¯j+3¯k)
The vector sum of N coplanar forces, having magnitude of F, when each force is making an angle of 2πN with that preceding it, is:
  • F
  • NF2
  • NF
  • 0
If the vectors  ¯a=3¯i+¯j2¯k,¯b=¯i+3¯j+4¯k, ¯c=4¯i2¯j6¯k  form the sides of the triangle then length of the median bisecting the vector c is
  • 12 units
  • 6 units
  • 26 units
  • 23 units
 If O is the circumcentre and O is the orthocentre of a triangle ABC and if AP is the circumdiameter then
AO+OB+OC=
  • OA
  • OA
  • AP
  • AO
Five equal forces each of 20N are acting at a point in the same plane. If the angles between them are same, then the resultant of these forces is:
  • 0
  • 40N
  • 20N
  • 202
If there are 11 vectors each having a magnitude equal to |p| and if each side of polygon subtends an angle 300 at the centre of the polygon. Then the resultant is 
  • p
  • 0
  • p2
  • 2p
If AD, BE, CF are medians of an equilateral triangle ABC, then AD+BE+CF equals to 
  • AB+BC+CA
  • a zero vector
  • both 1 and 2
  • 2AF+3BF
If a,b and c are three non-zero vectors such that a.b=a.c, then
  • b=c
  • ab,c
  • abc
  • either a(bc) or b=c
Let ABCD be a parallelogram and let L and M be the midpoints of the sides BC and CD  respectively. Then  AL+AM=
  • AC
  • 23AC
  • 32AC
  • 2AC
Let ABCD be a trapezium and let P,Q be the midpoints of the nonparallel sides AD, BC respectively. Then PQ
  • AB+DC
  • 14(AB+BC)
  • 12(AB+DC)
  • 12(AB+BC)
ABCD is a quadrilateral, E is the point of intersection of the line joining the middle points of the opposite sides. lf O is any point, then ^OA+^OB+^OC+^OD=
  • 4^OE
  • 3^OE
  • 2^OE
  • ^OE
If ¯DA=¯a;¯AB=¯b and ¯CB=k¯a where k>0 and x,y are the midpoints of DB and AC respectively such that |¯a|=17 and |¯XY|=4, then k=
  • 817
  • 917
  • 1117
  • 417
If the vectors 4ˆi7ˆj2ˆk,ˆi+5ˆj3ˆk,3ˆiλˆj+ˆk form a triangle then λ=
  • 6
  • 6
  • 12
  • 1
The incentre of the triangle formed by the points ˆi+ˆj+ˆk, 4ˆi+ˆj+ˆk, and 4ˆi+5ˆj+ˆk  is
  • ˆi+ˆj+ˆk3
  • ˆi+2ˆj+3ˆk
  • 3ˆi+2ˆj+ˆk
  • ˆi+ˆj+ˆk
lf 4i+7j+8k,2i+3j+4k and 2i+5j+7k are the position vectors of the vertices A,B and C of ABC, the position vector of D the point where the bisector of A meets BC is

  • 23(6ˆi8ˆj6ˆk)
  • 23(6ˆi+8ˆj+6ˆk)
  • 13(6ˆi+13ˆj+18ˆk)
  • 2(ˆi+ˆj+ˆk)
^AB=3ˆi+4ˆk and ^BC=¯i2¯k are the sides of the triangle ABC then the length of the median AM is
  • 252
  • 452
  • 652
  • 852
lf A=(3,2,5),B=(3,4,5) and C=(3,4,7) are the position vectors of vertices of ΔABC then its circumcentre is
  • (3,3,5)
  • (3,3,6)
  • (3,4,6)
  • (3,4,7)
lf a and b are two non-parallel unit vectors and the vector αa+b bisects the internal angle between a and b, then α is
  • 1
  • 12
  • 2
  • 5
Two forces act at the vertex A of quadrilateral ABCD represented by ¯AB, ¯AD and two at C represented by ¯CD and ¯CB. If E, F are mid points of ¯AC and ¯BD respectively, then their resultant is
  • ¯EF
  • 2¯EF
  • 32¯EF
  • 4¯EF
If point O is the centre of a circle circumscribed about a triangle ABC. Then ¯OAsin2A+¯OBsin2B+¯OCsin2C=
  • (¯OA+¯OB+¯OC)sin2A
  • (¯OA+¯OB+¯OC)cos2A
  • ¯0
  • (¯OA+¯OB+¯OC)tan2A
Let G and G1 be the centroids of the triangles ABC and A1B1C1 respectively, then AA1+BB1+CC1 is equal to
  • 2GG1
  • 3G1G
  • 3GG1
  • 32GG1
The ratio in which ¯i+2¯j+3¯k divides the join of2¯i+3¯j+5¯k and 7¯i¯k is
  • 3:2
  • 1:2
  • 2:3
  • 4:3
Orthocentre of an equilateral triangle ABC is the origin O. If A=¯a, B=¯b, C=¯c then ¯AB+2¯BC+3¯CA=
  • 3¯c
  • 3¯a
  • 0
  • 3¯b
If the vertices of a ΔABC are A=(1,1,3)B=(2,1,2) and C=(5,2,6) then the length of the internal bisector of angle A is
  • 3102
  • 3105
  • 3107
  • 3104
The condition for the vectors a,b,c,d to be the sides of a parallelogram taken in order is
  • a+b=c+d
  • a+b=c+d=0
  • a+c=b+d
  • a+c=b+d=0
Let A and B be points with position vectors ¯a and ¯b with respect to origin O. If the point C on OA is such that 2¯AC=¯CO, ¯CD is parallel to ¯OB and |¯CD|=3|¯OB| then AD is
  • ¯ba9
  • 3¯ba3
  • ¯ba3
  • ¯b+a3
The adjacent sides of a parallelogram are 2ˆi+4ˆj5ˆk and ˆi+2ˆj+3ˆk then the unit vector parallel to a diagonal is
  • ¯i2¯j+8¯k69
  • 3¯i+6¯j2¯k7
  • ¯i+2¯j8¯k69
  • All the above
If the diagonals of a parallelogram are ¯i+5¯j2¯k and 2¯i+¯j+3¯k, then the lengths of its sides are
  • 382, 502
  • 352,452
  • 38, 50
  • 35, 45
Let A=2ˆi+4ˆjˆk, B=4ˆi+5ˆj+ˆk. If the centroid G of the triangle ABC is 3ˆi+5ˆjˆk, then the position vector of C is
  • 3ˆi6ˆj+3ˆk
  • 3ˆi6ˆj3ˆk
  • 3ˆi6ˆj+2ˆk
  • 3ˆi+6ˆj3ˆk
If I is the centre of a circle inscribed in a triangle ABC, then |¯BC|¯IA+|¯CA|¯IB+|¯AB|¯IC is
  • ¯0
  • ¯IA+¯IB+¯IC
  • ¯IA+¯IB+¯IC3
  • ¯IA+¯IB+¯IC2
If r×a=b×a; r×b=a×b; a0,b0,aλb; a is not perpendicular to b, then r=
  • ab
  • a+b
  • a×b+a
  • a×b+b
Let A(a) , B(b),C(c) be the vertices of the triangle ABC and let DEF be the mid points of the sides BC,CA,AB respectively. If P divides the median AD in the ratio 2:1 then the position vector of P is
  • 0
  • a+b+c
  • a+b+c3
  • 2a+b+c3
The plane 2x3y+z+6=0 divides the line segment joining (2,4,16) and (3,5,4) in the ratio
  • 4:5
  • 4:7
  • 2:1
  • 1:2
The position vectors of points A,B,C are respectively a,b,c. If P divides AB in the ratio 3:4 and Q divides BC in the ratio 2:1 both externally then PQ is

  • b+c2a
  • 2(b+c2a)
  • 4abc
  • 2abc2
If the position vectors of A,B,C are 3ˆi+ˆjˆk, ˆi2ˆj, 2ˆiˆj+3ˆk then the position vector of the centroid of the triangle ABC is
  • 2ˆi +23ˆj +23ˆk
  • 2ˆi +23ˆj +23ˆk
  • 3ˆi +23ˆj +43ˆk
  • None of these
Let A=2ˆi+7ˆj,B=ˆi+2ˆj+4ˆk, C=9ˆi+30ˆj+4ˆk5
The ratio in which C divides AB internally is?
  • 1:4
  • 2:3
  • 3:2
  • 5:1
If a,b,c,d are the position vectors of the points A,B,C,D respectively such that 3a+5b3c5d=0 then AB intersects CD in the ratio
  • 2:3
  • 3:2
  • 3:5
  • 5:3
If (2,1,2) is the centroid of tetrahedron OABC and G1 is the centroid of ΔABC then |¯OG1|=
  • 4
  • 1
  • 92
  • 32
If ¯a=¯i+¯j+¯k,¯b=2¯i3¯j+¯k, then ¯aׯb|¯aׯb|+¯bׯa|¯bׯa|=
  • ¯0
  • 2¯i+¯j2¯k
  • ¯i+¯j+2¯k
  • ¯i+2¯j¯k
The position vectors of A,B,C,D are ¯a,¯b, ¯c,¯d respectively and |¯a¯d|=|¯b¯d|=|¯c¯d|, then for the triangle ABC, D is
  • Ortho centre
  • Centroid
  • Circumcentre
  • Incentre
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers