Processing math: 0%

CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 3 - MCQExams.com

find the coordinate of the tip of the position vector which is equivalent to AB, where the coordinates of A and B are (-1, 3) and (-2, 1) respectively.
  • (+1,+2)
  • (+1,-2)
  • (-1,+2)
  • (-1,-2)
If the position vectors of the points A(3,4),B(5, -6) and C(4,-1) are \vec{a}, \vec{b}, \vec{c} respectively, compute \vec{a}+2\vec{b}-3\vec{c}.
  • -5\hat{i}-1\hat{j}
  • \hat{i}-5\hat{j}
  • \hat{i}+5\hat{j}
  • none of these
If 4 \hat{i} + 7 \hat{j} + 8 \hat{k},  2 \hat{i} + 3 \hat{j} + 4 \hat{k} and 2 \hat{i} + 5 \hat{j} + 7 \hat{k} are the position vectors of the vertices A, B and C respectively, of the triangle ABC, the position vector of the point where the bisector of angle A meets BC, is
  • \frac{2}{3} (-6 \hat{i} - 8 \hat{j} - 6 \hat{k})
  • \frac{2}{3} (6 \hat{i} + 8 \hat{j} + 6 \hat{k})
  • \frac{1}{3} (6 \hat{i} + 13 \hat{j} + 18 \hat{k})
  • \frac{1}{3} ( 5 \hat{j} + 12 \hat{k})
If vectors \overrightarrow{AB} = -3 \hat{j} + 4 \hat{k} and \overrightarrow{AC} = 5 \hat{i} - 2 \hat{j} + 4 \hat{k} are the sides of a \Delta ABC, then the length of the median through A is
  • \sqrt{14}
  • \sqrt{18}
  • \sqrt{29}
  • 5
Let ABC be a triangle, the position vectors of whose vertices are respectively \hat{i} + 2 \hat{j} + 4 \hat{k}, -2 \hat{i} + 2 \hat{j} + \hat{k} and 2 \hat{i} + 4 \hat{j} + 3 \hat{k}. Then \Delta ABC is 
  • isosceles
  • equilateral
  • right angled
  • none of these
If \vec a is parallel to \vec b \times \vec c, then (\vec a \times \vec b) \cdot (\vec a \times \vec c) is equal to
  • \mid \vec a \mid^2 (\vec b \cdot \vec c)
  • \mid \vec b \mid^2 (\vec a \cdot \vec c)
  • \mid \vec c \mid^2 (\vec a \cdot \vec b)
  • none of these
If \mid \vec a \mid = 2 and \mid \vec b \mid = 3 and \vec a \cdot \vec d = 0, then (\vec a \times (\vec a \times (\vec a \times (\vec a \times \vec b )))) is equal to
  • 48 \hat b
  • - 48 \hat b
  • 48 \hat a
  • 48 \hat a
Figure shows ABCDEF as a regular hexagon. What is the value of 
\vec{AB}+\vec{AC}+\vec{AD}+\vec{AE}+\vec{AF}
1811900_932009e245e34da694a5d16a66b21bd8.png
  • \vec{AO}
  • 2\vec{AO}
  • 4\vec{AO}
  • 6\vec{AO}
Let \mathrm{A}\mathrm{B}\mathrm{C} be a triangle and let \mathrm{D},\mathrm{E} be the midpoints of the sides \mathrm{A}\mathrm{B},\mathrm{A}\mathrm{C} respectively,then \hat { BE } +\hat { DC } =
  • \hat { BC }
  • { \dfrac { 1 }{ 2 } }\hat { BC }
  • { \dfrac { 3 }{ 2 } \hat { BC } }
  • \dfrac { 3 }{ 4 } \hat { BC }
Let  \vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}  and  \vec{c}=\hat{i}-\hat{j}-\hat{k}  be three vectors. A vector  \vec{v}  in the plane of   \vec{a} and \vec{b} , whose projection on  \vec{c}  is \displaystyle \dfrac{1}{\sqrt{3}} , is given by ;
  • \hat{i}-3\hat{j}+3\hat{k}
  • -3\hat{i}-3\hat{j}-\hat{k}
  • 3\hat{i}-\hat{j}+3\hat{k}
  • \hat{i}+3\hat{j}-3\hat{k}
The position vectors of A,B,C are \overline{i}+\overline{j}+\overline{k},\ 4\overline{i}+\overline{j}+\overline{k},\ 4\overline{i}+5\overline{j}+\overline{k} . Then the position vector of the circumcentre of the triangle ABC is
  • 3\hat{i}+2\hat{j}+\hat{k}
  • \displaystyle \frac{1}{2}(6\hat{i}+\hat{j}+\hat{k})
  • \displaystyle \frac{1}{2}(5\hat{i}+6\hat{j}+2\hat{k})
  • {\dfrac{1}{2}(9\overline{i}}+7\overline{j}+3\overline{k})
The vector sum of N coplanar forces, having magnitude of F, when each force is making an angle of \displaystyle \frac{2\pi}{N} with that preceding it, is:
  • F
  • \displaystyle \frac{NF}{2}
  • NF
  • 0
If the vectors  \overline{a}=3\overline{i}+\overline{j}-2\overline{k},\overline{b}=-\overline{i}+3\overline{j}+4\overline{k},\ \overline{c}=4\overline{i}-2\overline{j}-6\overline{k}  form the sides of the triangle then length of the median bisecting the vector {c} is
  • \sqrt{12} units
  • \sqrt{6} units
  • 2\sqrt{6} units
  • 2\sqrt{3} units
 If \mathrm{O} is the circumcentre and \mathrm{O}^{'} is the orthocentre of a triangle \mathrm{A}\mathrm{B}\mathrm{C} and if \mathrm{A}\mathrm{P} is the circumdiameter then
\vec{\mathrm{A}\mathrm{O}}+\vec{\mathrm{O}^{'}\mathrm{B}}+\vec{\mathrm{O}^{'}\mathrm{C}}=
  • \vec{\mathrm{O}\mathrm{A}}
  • \vec{\mathrm{O}^{'}\mathrm{A}}
  • \vec{\mathrm{A}\mathrm{P}}
  • \vec{\mathrm{A}\mathrm{O}}
Five equal forces each of 20N are acting at a point in the same plane. If the angles between them are same, then the resultant of these forces is:
  • 0
  • 40N
  • 20N
  • 20\sqrt{2}
If there are 11 vectors each having a magnitude equal to | \vec{p} | and if each side of polygon subtends an angle 30^{0} at the centre of the polygon. Then the resultant is 
  • \vec{p}
  • 0
  • \frac{\vec{p}}{2}
  • 2\vec{p}
\mathrm{If} \vec{AD},\ \vec{BE},\ \vec{CF} are medians of an equilateral triangle \mathrm{A}\mathrm{B}\mathrm{C}, then \vec{AD}+\vec{BE}+\vec{CF} equals to 
  • \vec{AB}+\vec{BC}+\vec{CA}
  • a zero vector
  • both 1 and 2
  • 2\vec{AF}+3\vec{BF}
If \overrightarrow { a } ,\overrightarrow { b } and \overrightarrow { c } are three non-zero vectors such that \overrightarrow { a } .\overrightarrow { b } =\overrightarrow { a } .\overrightarrow { c } , then
  • \overrightarrow { b } =\overrightarrow { c }
  • \overrightarrow { a } \bot \overrightarrow { b } ,\overrightarrow { c }
  • \overrightarrow { a } \bot \overrightarrow { b } -\overrightarrow { c }
  • either \overrightarrow { a } \bot (\overrightarrow { b } -\overrightarrow { c }) or \overrightarrow { b } =\overrightarrow { c }
Let \mathrm{A}\mathrm{B}\mathrm{C}\mathrm{D} be a parallelogram and let \mathrm{L} and \mathrm{M} be the midpoints of the sides { BC } and { CD }  respectively. Then  \vec { AL } +\vec { AM } =
  • \vec { AC }
  • { \dfrac { 2 }{ 3 } }\vec { AC }
  • \dfrac { 3 }{ 2 } \vec { AC }
  • 2\vec { AC }
Let \mathrm{A}\mathrm{B}\mathrm{C}\mathrm{D} be a trapezium and let \mathrm{P},\mathrm{Q} be the midpoints of the nonparallel sides \mathrm{A}\mathrm{D},\ \mathrm{B}\mathrm{C} respectively. Then \vec { PQ }
  • \vec { AB } +\vec { DC }
  • { \dfrac { 1 }{ 4 } }(\vec { AB } +\vec { BC } )
  • \dfrac { 1 }{ 2 } (\vec { AB } +\vec { DC } )
  • \dfrac { 1 }{ 2 } (\vec { AB } +\vec { BC } )
{A}{B}{C}{D} is a quadrilateral, E is the point of intersection of the line joining the middle points of the opposite sides. lf O is any point, then \hat { OA } +\hat { OB } +\hat { OC } +\hat { OD } =
  • 4\hat { OE }
  • 3\hat { OE }
  • 2\hat { OE }
  • \hat { OE }
If \overline{DA}=\overline{a};\overline{AB}=\overline{b} and \overline{CB}=k\overline{a} where k>0 and x, y are the midpoints of DB and AC respectively such that |\overline{a}|=17 and |\overline{XY}|=4, then \mathrm{k}=
  • \displaystyle \dfrac{8}{17}
  • \displaystyle \dfrac{9}{17}
  • \displaystyle \dfrac{11}{17}
  • \displaystyle \dfrac{4}{17}
If the vectors 4\hat{i}-7\hat{j}-2\hat{k},\: \hat{i}+5\hat{j}-3\hat{k},\: 3\hat{i}-\lambda\hat{j}+\hat{k} form a triangle then \lambda=
  • 6
  • -6
  • 12
  • -1
The incentre of the triangle formed by the points { \hat { i }  }+{ \hat { j }  }+{ \hat { k }  }, 4{ \hat { i }  }+{ \hat { j }  }+{ \hat { k }  }, and 4{ \hat { i }  }+5{ \hat { j }  }+\hat { k }  is
  • \dfrac { { \hat { i } }+{ \hat { j } }+{ \hat { k } } }{ 3 }
  • { \hat { i } }+2{ \hat { j } }+3\hat { k }
  • 3{ \hat { i } }+2{ \hat { j } }+\hat { k }
  • { \hat { i } }+{ \hat { j } }+{ \hat { k } }
lf 4{\vec{i}}+7\vec{j}+8\vec{k} , 2\vec{i}+3\vec{j}+4\vec{k} and 2\vec{i}+5\vec{j}+7\vec{k} are the position vectors of the vertices \mathrm{A},\mathrm{B} and \mathrm{C} of \triangle \mathrm{A}\mathrm{B}\mathrm{C}, the position vector of D the point where the bisector of \angle A meets \mathrm{B}\mathrm{C} is

  • {\dfrac{2}{3}}(-6\hat {i}-8\hat {j}-6\hat {k})
  • {\dfrac{2}{3}}(6\hat {i}+8\hat{j}+6\hat{k})
  • {\dfrac{1}{3}}(6\hat{i}+13\hat{j}+18\hat{k})
  • 2(\hat{i}+\hat{j}+\hat{k})
\hat { AB } =-3{ \hat { i }  }+4{ \hat { k }  } and \hat { BC } =-\overline { i } -2\overline { k } are the sides of the triangle ABC then the length of the median AM is
  • \sqrt{\dfrac{25}{2}}
  • \sqrt{\dfrac{45}{2}}
  • \displaystyle \dfrac{\sqrt{65}}{2}
  • \displaystyle \dfrac{\sqrt{85}}{2}
lf A=(-3,2,5), B=(-3,4,5) and C=(-3,4,7) are the position vectors of vertices of \Delta ABC then its circumcentre is
  • (-3,3,5)
  • (-3,3,6)
  • (-3,4,6)
  • (-3,4,7)
lf \vec{a} and \vec{b} are two non-parallel unit vectors and the vector \alpha\vec{a}+\vec{b} bisects the internal angle between \vec{a} and \vec{b}, then \alpha is
  • 1
  • \dfrac{1}{2}
  • 2
  • 5
Two forces act at the vertex \mathrm{A} of quadrilateral \mathrm{A}\mathrm{B}\mathrm{C}\mathrm{D} represented by \overline{AB},\ \overline{AD} and two at \mathrm{C} represented by \overline{CD} and \overline{CB}. If \mathrm{E},\ \mathrm{F} are mid points of \overline{AC} and \overline{BD} respectively, then their resultant is
  • \overline{EF}
  • 2\overline{EF}
  • {\dfrac{3}{2}\overline{EF}}
  • 4\overline{EF}
If point O is the centre of a circle circumscribed about a triangle ABC. Then \overline{OA}\sin 2A+\overline{OB}\sin2B+\overline{OC}\sin 2C=
  • (\overline{OA}+\overline{OB}+\overline{OC})\sin 2A
  • (\overline{OA}+\overline{OB}+\overline{OC})\cos 2A
  • \overline{0}
  • (\overline{OA}+\overline{OB}+\overline{OC})\tan 2A
Let G and G^{1} be the centroids of the triangles ABC and A^{1}B^{1}C^{1} respectively, then AA^{1}+BB^{1}+CC^{1} is equal to
  • 2GG^{1}
  • 3G^{1}G
  • 3GG^{1}
  • \displaystyle \dfrac{3}{2}GG^{1}
The ratio in which \overline{i}+2\overline{j}+3\overline{k} divides the join \mathrm{o}\mathrm{f}-2\overline{i}+3\overline{j}+5\overline{k} and 7\overline{i}-\overline{k} is
  • -3:2
  • 1:2
  • 2:3
  • -4:3
Orthocentre of an equilateral triangle ABC is the origin \mathrm{O}. If A=\overline{a},\ B=\overline{b},\ C=\overline{c} then \overline{AB}+2\overline{BC}+3\overline{CA}=
  • 3\overline{c}
  • 3\overline{a}
  • 0
  • 3\overline{b}
If the vertices of a \Delta ABC are A= (1,-1,-3)B= (2, 1, -2) and C=(-5,2,-6) then the length of the internal bisector of angle A is
  • \displaystyle \dfrac{3\sqrt{10}}{2}
  • \displaystyle \dfrac{3\sqrt{10}}{5}
  • \displaystyle \dfrac{3\sqrt{10}}{7}
  • \displaystyle \dfrac{3\sqrt{10}}{4}
The condition for the vectors \vec{a},\vec{b},\vec{c},\vec{d} to be the sides of a parallelogram taken in order is
  • \vec{a}+\vec{b}=\vec{c}+\vec{d}
  • \vec{a}+\vec{b}=\vec{c}+\vec{d}=0
  • \vec{a}+\vec{c}=\vec{b}+\vec{d}
  • \vec{a}+\vec{c}=\vec{b}+\vec{d}=0
Let A and B be points with position vectors \overline{a} and \overline{b} with respect to origin O. If the point C on OA is such that 2\overline{AC}=\overline{CO}, \overline{CD} is parallel to \overline{OB} and |\overline{CD}|=3|\overline{OB}| then AD is
  • \displaystyle \overline{b}-\dfrac{a}{9}
  • 3\displaystyle \overline{b}-\dfrac{a}{3}
  • \displaystyle \overline{b}-\dfrac{a}{3}
  • \displaystyle \overline{b}+\dfrac{a}{3}
The adjacent sides of a parallelogram are 2{ \hat { i }  }+4{ \hat { j }  }-5{ \hat { k }  } and { \hat { i }  }+2{ \hat { j }  }{ + }3{ \hat { k }  } then the unit vector parallel to a diagonal is
  • \displaystyle \dfrac{-\overline{i}-2\overline{j}+8\overline{k}}{\sqrt{69}}
  • \displaystyle \dfrac{3\overline{i}+6\overline{j}-2\overline{k}}{7}
  • \displaystyle \dfrac{\overline{i}+2\overline{j}-8\overline{k}}{\sqrt{69}}
  • All the above
If the diagonals of a parallelogram are \overline{i}+5\overline{j}-2\overline{k} and -2\overline{i}+\overline{j}+3\overline{k}, then the lengths of its sides are
  • \displaystyle \dfrac{\sqrt{38}}{2},\ \displaystyle \dfrac{\sqrt{50}}{2}
  • \displaystyle \dfrac{\sqrt{35}}{2},\dfrac{\sqrt{45}}{2}
  • \sqrt{38},\ \sqrt{50}
  • \sqrt{35},\ \sqrt{45}
Let A=2\hat{i}+4\hat{j}-\hat{k}, B=4\hat{i}+5\hat{j}{+}\hat{k}. If the centroid G of the triangle ABC is 3\hat{i}+5\hat{j}-\hat{k}, then the position vector of C is
  • 3\hat{i}-6\hat{j}{+}3\hat{k}
  • 3\hat{i}-6\hat{j}-3\hat{k}
  • 3\hat{i}-6\hat{j}{+}2\hat{k}
  • 3\hat{i}+6\hat{j}-3\hat{k}
If I is the centre of a circle inscribed in a triangle ABC, then |\overline{BC}|\overline{IA}+|\overline{CA}|\overline{IB}+|\overline{AB}|\overline{IC} is
  • \overline{0}
  • \overline{IA}+\overline{IB}+\overline{IC}
  • \displaystyle \frac{\overline{IA}+\overline{IB}+\overline{IC}}{3}
  • \displaystyle \frac{\overline{IA}+\overline{IB}+\overline{IC}}{2}
If \vec{{r}} {\times} \vec{{a}}=\vec{{b}}{\times}\vec{{a}};\ \vec{{r}}{\times}\vec{{b}}=\vec{{a}}{\times}\vec{{b}};\ \vec{a}\neq 0,\vec{b}\neq 0,\vec{a}\neq\lambda\vec{b};\ \vec{a} is not perpendicular to \vec{b}, then \vec{r}=
  • \vec{{a}}-\vec{{b}}
  • \vec{{a}}+\vec{{b}}
  • \vec{{a}}{\times}\vec{{b}}+\vec{{a}}
  • \vec{{a}}{\times}\vec{{b}}+\vec{{b}}
Let A({\vec{a}}) , B({\vec{b}}), C({\vec{c}}) be the vertices of the triangle ABC and let DEF be the mid points of the sides BC, CA, AB respectively. If P divides the median AD in the ratio 2:1 then the position vector of P is
  • 0
  • {\vec{a}}+{\vec{b}}+{\vec{c}}
  • \displaystyle \dfrac{\vec{{a}}+\vec{{b}}+\vec{{c}}}{3}
  • \displaystyle \dfrac{2{\vec{a}}+{\vec{b}}+{\vec{c}}}{3}
The plane 2x-3y+z+6=0 divides the line segment joining (2, 4, 16) and (3, 5, -4) in the ratio
  • 4 :5
  • 4:7
  • 2:1
  • 1:2
The position vectors of points \vec{A},\vec{B},\vec{C} are respectively \vec{a},\vec{b},\vec{c}. If P divides \vec{AB} in the ratio 3:4 and Q divides \vec{BC} in the ratio 2:1 both externally then \vec{PQ} is

  • \vec{b}+\vec{c}-\vec{2a}
  • 2(\vec{b}+\vec{c}-\vec{2a})
  • 4\vec{a}-\vec{b}-\vec{c}
  • \dfrac{-2\vec{a}-\vec{b}-\vec{c}}{2}
If the position vectors of A,B,C are 3\hat{i}+\hat{j}-\hat{k}, \hat{i}-2\hat{j}, 2\hat{i}-\hat{j}{+}3\hat{k} then the position vector of the centroid of the triangle ABC is
  • 2\hat{i}\ + \dfrac{-2}{3}\hat{j}\ +\dfrac{2}{3}\hat{k}
  • 2\hat{i}\ + \dfrac{2}{3}\hat{j}\ +\dfrac{2}{3}\hat{k}
  • 3\hat{i}\ + \dfrac{2}{3}\hat{j}\ +\dfrac{4}{3}\hat{k}
  • None of these
Let \vec{A}=2\hat{i}+7\hat{j},\vec{B}=\hat{i}+2\hat{j}+4\hat{k},\ \displaystyle \vec{C}=\dfrac{9\hat{i}+30\hat{j}+4\hat{k}}{5}
The ratio in which \vec{C} divides \vec{AB} internally is?
  • 1:4
  • 2:3
  • 3:2
  • 5:1
If \vec a, \vec b, \vec c, \vec d are the position vectors of the points A, B, C, D respectively such that 3\vec{a}+5\vec{b}-3\vec{c}-5\vec{d}=0 then AB intersects CD in the ratio
  • 2:3
  • 3:2
  • 3:5
  • 5:3
If (2, -1, 2) is the centroid of tetrahedron OABC and G_{1} is the centroid of \Delta ABC then |\overline{OG}_{1}|=
  • 4
  • 1
  • \dfrac{9}{2}
  • \dfrac{3}{2}
If \overline{a}=\overline{i}+\overline{j}+\overline{k},\overline{b}=2\overline{i}-3\overline{j}+\overline{k}, then \displaystyle \dfrac{\overline{a}\times\overline{b}}{|\overline{a}\times\overline{b}|}+\dfrac{\overline{b}\times\overline{a}}{|\overline{b}\times\overline{a}|}=
  • \overline{0}
  • 2\overline{i}+\overline{j}-2\overline{k}
  • \overline{i}+\overline{j}+2\overline{k}
  • \overline{i}+2\overline{j}-\overline{k}
The position vectors of A, B , C, D are \overline{a},\overline{b},\ \overline{c},\overline{d} respectively and |\overline{a}-\overline{d}|=|\overline{b}-\overline{d}|=|\overline{c}-\overline{d}|, then for the triangle ABC, D is
  • Ortho centre
  • Centroid
  • Circumcentre
  • Incentre
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers