Explanation
We have,
Let the vertices of triangle is
\overrightarrow{OA}=\left( 6\overrightarrow{i}+4\overrightarrow{j}+5\overrightarrow{k} \right)
\overrightarrow{OB}=\left( 4\overrightarrow{i}+5\overrightarrow{j}+6\overrightarrow{k} \right)
\overrightarrow{OC}=\left( 5\overrightarrow{i}+6\overrightarrow{j}+4\overrightarrow{k} \right)
Now,
\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}
\overrightarrow{AB}=\left( 4\overrightarrow{i}+5\overrightarrow{j}+6\overrightarrow{k} \right)-\left( 6\overrightarrow{i}+4\overrightarrow{j}+5\overrightarrow{k} \right)
\overrightarrow{AB}=4\overrightarrow{i}+5\overrightarrow{j}+6\overrightarrow{k}-6\overrightarrow{i}-4\overrightarrow{j}-5\overrightarrow{k}
\overrightarrow{AB}=-2\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k}
\overrightarrow{BC}=\overrightarrow{OC}-\overrightarrow{OB}
\overrightarrow{BC}=\left( 5\overrightarrow{i}+6\overrightarrow{j}+4\overrightarrow{k} \right)-\left( 4\overrightarrow{i}+5\overrightarrow{j}+6\overrightarrow{k} \right)
\overrightarrow{BC}=5\overrightarrow{i}+6\overrightarrow{j}+4\overrightarrow{k}-4\overrightarrow{i}-5\overrightarrow{j}-6\overrightarrow{k}
\overrightarrow{BC}=\overrightarrow{i}+\overrightarrow{j}-2\overrightarrow{k}
\overrightarrow{CA}=\overrightarrow{OA}-\overrightarrow{OC}
\overrightarrow{CA}=\left( 6\overrightarrow{i}+4\overrightarrow{j}+5\overrightarrow{k} \right)-\left( 5\overrightarrow{i}+6\overrightarrow{j}+4\overrightarrow{k} \right)
\overrightarrow{CA}=6\overrightarrow{i}+4\overrightarrow{j}+5\overrightarrow{k}-5\overrightarrow{i}-6\overrightarrow{j}-4\overrightarrow{k}
\overrightarrow{CA}=\overrightarrow{i}-2\overrightarrow{j}+\overrightarrow{k}
\left| AB \right|=\sqrt{{{\left( -2 \right)}^{2}}+{{1}^{2}}+{{1}^{2}}}=\sqrt{6}
\left| BC \right|=\sqrt{{{1}^{2}}+{{1}^{2}}+{{\left( -2 \right)}^{2}}}=\sqrt{6}
\left| CA \right|=\sqrt{{{1}^{2}}+{{\left( -2 \right)}^{2}}+{{1}^{2}}}=\sqrt{6}
Then,
AB=BC=CA=\sqrt{6}
{\textbf{Step 1: Using triangle law of vector addition, find the resultant of two vectors}}
\Rightarrow \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC}
{\textbf{Step 2: Solve the vector sum and Compare with the given options}}
\Rightarrow \overrightarrow {AB} + \overrightarrow {BC} - \overrightarrow {AC} = \overrightarrow 0
{\text{Or }}\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = \overrightarrow 0
{\text{So, }}\overrightarrow {AB} + \overrightarrow {BC} - \overrightarrow {CA} \ne \overrightarrow 0
{\textbf{Hence, Option (C) is incorrect}}
Please disable the adBlock and continue. Thank you.