Processing math: 3%

CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 8 - MCQExams.com

Find k if magnitude of vectors joining (0,k,0) and (1,1,1) is 11
  • 3
  • 2
  • 2
  • 0
Let ABC be an acute scalene triangle, and O and H be its circumcentre and orthocentre respectively. Further let N be the midpoint of OH. The value of the vector sum NA+NB+NC is
  • 0 (zero vector)
  • HO
  • 12HO
  • 12OH
The projection of the vector \hat {i} - 2\hat {j} + \hat {k} on the vector 4\hat {i} - 4\hat {j} + 7\hat {k} is
  • \dfrac {5}{19}\sqrt {5}
  • \dfrac {19}{9}
  • \dfrac {9}{19}
  • \dfrac {1}{19}\sqrt {6}
The position vectors of A, B are a, 6 respectively. The position vector of C is \dfrac {5\bar{a}}{3} -\bar{b}. Then 3 
  • C is inside the \Delta OAB
  • C is outside the \Delta OAB but inside the angle OAB
  • C is outside the\Delta OAB but inside the angle OBA
  • None of these
\overline { a } ,\overline { b } ,\overline { c } are three vectors such that \left| \overline { a }  \right| =1,\left| \overline { b }  \right| =2,\left| \overline { c }  \right| =3 and \overline { b } ,\overline { c } are perpendicular. IF projection of \overline { b } on \overline { a } is the same as the projection of \overline { c } on \overline { a } , then \left| \overline { a } -\overline { b } +\overline { c }  \right|
  • \sqrt { 2 }
  • \sqrt { 7 }
  • \sqrt { 14 }
  • \sqrt { 21 }
If \bar{a},\bar{b}, \bar{c} are unit vectors such that \bar{a}+ \bar{b}+ \bar{c}=\bar{0}, then \bar{a}.\bar{b}+ \bar{b}.\bar{c}+ \bar{c}.\bar{a}=
  • \dfrac{3}{2}
  • -\dfrac{3}{2}
  • \dfrac{1}{2}
  • -\dfrac{1}{2}
Let \vec {a} = x\hat {i} + 12\hat {j} - \hat {k}, \vec {b} = 2\hat {i} + 2x\hat {j} + \hat {k} and \vec {c} = \hat {i} + \hat {k}. If ordered set [\vec {b} \vec {c} \vec {a}] is left handed, then.
  • x\epsilon (2, \infty)
  • x\epsilon (-\infty, -3)
  • x\epsilon (-3, 2)
  • x\epsilon \left \{3, 2\right \}
If \vec {a} and \vec {b} are unit vectors, then angle between \vec {a} and \vec {b} for \sqrt {3} \vec {a} - \vec {b} to be unit vector is
  • 60^{\circ}
  • 90^{\circ}
  • 45^{\circ}
  • 30^{\circ}
Which is a unit vector?
  • (Cos \alpha, 2 Sin \alpha)
  • (Sin \alpha, Cos \alpha)
  • (1, -1)
  • (2Cos \alpha, Sin \alpha)
If  \vec a+2\vec b+3 \vec c =0, then \vec{b}\times \vec{c}+\vec{c}\times \vec{a}+\vec{a} \times \vec{b} equals to:
  • 6\left( b\times c \right)
  • \left( a\times b \right)
  • 6\left( c\times a \right)
  • 0
Let \overline a ,\overline b ,\overline c be vectors of length 3, 4, 5 respectively. Let \overline a be perpendicular to \overline b  + \overline c ,\overline b \,to\,\overline c  + \overline a \,{\text{and}}\,\overline c \,{\text{to}}\,\overline a  + \overline b .\,{\text{Then}}|\overline a  + \overline b  + \overline c | is equals to:
  • 2\sqrt 5
  • 2\sqrt 2
  • 10\sqrt 5
  • 5\sqrt 2
If the projection of \vec{a} on \vec{b} and the projection of \vec{b} on \vec{a} are equal then the angle between \vec{a}+\vec{b} and \vec{a}-\vec{b} is
  • \large{\frac{\pi}{3}}
  • \large{\frac{\pi}{2}}
  • \large{\frac{\pi}{4}}
  • \large{\frac{2\pi}{3}}
The value of |\overrightarrow A  + \overrightarrow B  - \overrightarrow C  + \overrightarrow D | can be zero if :-
  • |\overrightarrow A | = 5,\,|\overrightarrow B | = 3,|\overrightarrow C | = 4;|\overrightarrow D | = 12
  • |\overrightarrow A | = 2\sqrt 2 ,\,|\overrightarrow B | = 2,|\overrightarrow C | = 2;|\overrightarrow D | = 5
  • |\overrightarrow A | = 2\sqrt 2 ,\,|\overrightarrow B | = 2,|\overrightarrow C | = 2;|\overrightarrow D | = 10
  • |\overrightarrow A | = 5,\,|\overrightarrow B | = 4,|\overrightarrow C | = 3;|\overrightarrow D | = 8
Let \vec{a} = 2 \hat{i} - \hat{j} + \hat{k}, \,\,\vec{b} = \hat{i} + 2\hat{j} - \hat{k} and \vec{c} = \vec{i} + \vec{j} - 2\vec{k}  be three vectors. A vector of the type \vec{b} + \lambda \vec{c} for some scalar \lambda, whose projection on \vec{a} is of magnitude \sqrt {\frac{2}{3}}. Thenthe value of \lambda is
  • 1
  • 0
  • -1
  • 2
Given that P = 12, Q = 5 and R = 13 also \vec P + \vec Q = \vec R, then the angle between \vec P and \vec Q will be :
  • {\pi}
  • {\pi}\over{2}

  • zero
  • {\pi}\over{4}
The vertices of a triangle are A(1,1,2),B(4,3,1) and C(2,3,5). A vector representing the internal bisector of the angle A id 
  • \hat{i}+\hat{j}+2\hat{k}
  • 2\hat{i}-2\hat{j}+\hat{k}
  • 2\hat{i}+2\hat{j}-\hat{k}
  • 2\hat{i}+2\hat{j}+\hat{k}
A unit vector along the direction \hat i + \hat j + \hat k has a magnitude:
  • \sqrt 3
  • \sqrt 2
  • 1
  • 0
If \overline {OA}=i+j+k, \overline {AB}=3i-2j+k,\overline {BC}=i+2j-2k and \overline {CD}=2i+j+3k then find the vector \overline{OD}.
  • 7i-2j-6k
  • 7i+2j+3k
  • 7i+2j+5k
  • None of these
Let \vec{a}, \vec{b}, \vec{c} and \vec{d} are four distinct vectors satisfying the conditions \vec{a} \times \vec{b} = \vec{c} \times \vec{d} & \vec{a} \times \vec{c} =\vec{b} \times \vec{d} then  \vec{a}.\vec{b} + \vec{c}.\vec{d} \neq \vec{a}.\vec{c} + \vec{b}.\vec{d} .
  • True
  • False
Four forces act on a point object. The object will be in equilibrium, if:
  • all of them are in the same plane
  • they are opposite to each other in pairs
  • the sum of x, y and z - components of forces zero separately
  • they form a closed figure of 4 sides when added as Polygon law
The value of \bar {a} \times (\bar {b}+\bar {c})+\bar {b}\times (\bar {c}+\bar {a})+\bar {c}\times (\bar {a}+\bar {b})=
  • 0
  • -1
  • 2\ \bar {a}\times (\bar {b}+\bar {c})
  • [\bar {a}\bar {b}\bar {c}]

  Which of the following is the unit vector perpendicular to \vec{A}  and  \vec{B} ?

  • {{\vec{A}\times \vec{B}} \over {AB\sin \theta }}
  • \left|{{\vec{A}\times \vec{B}} \over {AB\sin \theta }}\right|
  • {{\vec{A}\times \vec{B}} \over {AB\cos \theta }}
  • \left|{{\vec{A}\times \vec{B}} \over {AB\cos \theta }}\right|
The vector that must be added to the vector \hat{i}-3\hat{j}+2\hat{k} and 3\hat{i}+6\hat{j}-7\hat{k} so that the resultant vector is a unit vector along the y-axis is:
  • 4\hat{i}+2\hat{j}+5\hat{k}
  • -4\hat{i}-2\hat{j}+5\hat{k}
  • 3\hat{i}+4\hat{j}+5\hat{k}
  • Null vector
The vector equation of the plane containing the line \vec {r}=(-2\hat {i}-3\hat {j}+4\hat {k})+\lambda(3\hat {i}-2\hat {j}-\hat {k}) and the point \hat {i}+2\hat {j}+3\hat {k} is:
  • \vec {r}\cdot(\hat {i}+3\hat {k})=10
  • \vec {r}\cdot(\hat {i}-3\hat {k})=10
  • \vec {r}\cdot(3\hat {i}+\hat {k})=10
  • none\ of\ these
Let \vec{a},\vec{b} and \vec{c} be three non-zero vectors such that no two of these are collinear. If the vector \vec{a}+2\vec{b} is collinear with \vec{c} and \vec{b}+3\vec{c} is collinear with \vec{a}(\lambda being some non-zero scalar), then \vec{a}+2\vec{ b}+6\vec{c} equals
  • \lambda\vec{a}
  • \lambda\vec{b}
  • \lambda\vec{c}
  • \vec{0}
Component of \vec{a}=\hat{i}-\hat{j}-\hat{k} perpendicular to the vector \vec{b}=2\hat{i}+\hat{j}-\hat{k} is?
  • \dfrac{1}{3}(\hat{i}+2\hat{j}+2\hat{k})
  • \dfrac{1}{3}(\hat{i}-4\hat{j}-2\hat{k})
  • \dfrac{1}{3}(\hat{i}+4\hat{j}+2\hat{k})
  • \dfrac{1}{3}(\hat{i}+2\hat{j}+\hat{k})
If \vec{a}, \vec{b}, \vec{c} are three non-coplanar vectors such that \vec{d}\cdot \vec{a}=\vec{d}\cdot \vec{b}=\vec{d}\cdot \vec{c}=0, then \vec{d} is :-
  • a scalar
  • a null vector
  • has non-zero magnitude
  • an imaginary number
\overline a  = \overline i  - \overline k ,\overline b  = x\overline i  + \overline j  + (1 - x)\overline k and \overline c  = y\overline i  + \lambda \overline j  + (1 + x - y)\overline k then \left[ {\overline a \overline b \overline c } \right] depends on:-
  • neither x nor y
  • both x and y
  • only x
  • only y
A(1, -1, -3), B(2, 1, -2) & C(-5, 2, -6) are the position vectors of the vertices of a triangle ABC. The length of the bisector of its internal angle at A is?
  • \sqrt{10}/4
  • 3\sqrt{10}/4
  • \sqrt{10}
  • None
If \hat {i},\hat {j},\hat {k} are positive vectors of A,B,C and \vec {AB}=\vec {CX}, then positive vector of X is
  • -\hat {i}+\hat {j}+\hat {K}
  • \hat {i}-\hat {j}+\hat {K}
  • \hat {i}+\hat {j}-\hat {K}
  • \hat {i}+\hat {j}+\hat {K}
The P.V.'s of the vertices of a \triangle ABC are \bar {i}+\bar {j}+\bar {k}, 4\bar {i}+\bar {j}+\bar {k}, 4\bar {i}+5\bar {j}+\bar {k}. The P.V. of the circumcentre of \triangle ABC is
  • \dfrac{5}{2}\bar {i}+3\bar {j}+\bar {k}
  • 5\bar {i}+\dfrac{3}{2}\bar {j}+\bar {k}
  • 5\bar {i}+3\bar {j}+\dfrac{1}{2}\bar {k}
  • \bar {i}+\bar {j}+\bar {k}
The position vector of point P, is?
  • \dfrac{3|\vec{a}||\vec{c}|}{3|\vec{c}|+2|\vec{a}|}\left\{\dfrac{\vec{a}}{|\vec{a}|}+\dfrac{\vec{c}}{|\vec{c}|}\right\}
  • \dfrac{|\vec{a}||\vec{c}|}{3|\vec{c}+2|\vec{a}|}\left\{\dfrac{\vec{a}}{|\vec{a}|}+\dfrac{\vec{c}}{|\vec{c}|}\right\}
  • \dfrac{2|\vec{a}||\vec{c}|}{3|\vec{c}|+2|\vec{a}|}\left\{\dfrac{\vec{a}}{|\bar{a}|}+\dfrac{\vec{c}}{|\vec{c}|}\right\}
  • \dfrac{3|\vec{a}||\vec{c}|}{3|\vec{c}|+2\vec{a}|}\left\{\dfrac{\vec{a}}{|\vec{a}|}-\dfrac{\vec{c}}{|\vec{c}|}\right\}
If a^b=b^c=ab, then b+c always equals?
  • \dfrac{1}{bc}
  • \dfrac{1}{2}bc
  • 1
  • bc
If \overline { a } =\cfrac { 1 }{ \sqrt { 10 }  } \left( 3\overline { i } +\overline { k }  \right) ;\overline { a } =\cfrac { 1 }{ 7 } \left( 2\overline { i } +3\overline { j } -6\overline { k }  \right) then the value of
(2\overline { a } -\overline { b } ).[(\overline { a } \times \overline { b } )\times (\overline { a } +2\overline { b } )]
  • 5
  • 3
  • -5
  • -3
Let P, Q, R and S be the points on the plane with position vectors -2\hat{i}-\hat{j}, 4\hat{i}, 3\hat{i}+3\hat{j} and -3\hat{i}+2\hat{j} respectively. the quadrilateral PQRS must be a.
  • Parallelogram, which is neither a rhombus nor a rectangle
  • Square
  • Rectangle, but not a square
  • Rhombus, but not a square
If \vec a,\vec b,\vec c non-zero vectors such that \vec a is perpendicular to \vec b and \vec c and non-zero  vector coplanar with \vec a + \vec b and 2\vec b - \vec c and \vec d.\vec a = 1 , then the minimum value of \left| {\vec d} \right|
  • \frac{2}{{\sqrt {13} }}
  • \frac{1}{{\sqrt {13} }}
  • \frac{3}{{\sqrt {13} }}
  • \frac{4}{{\sqrt {13} }}
If a,b,c \in N, the number of points having position vectors a\hat i + b\hat j + c\hat k such that 6 \le a + b + c \le 10 is
  • 110
  • 116
  • 120
  • 127
If \bar a + \bar b is perpendicular to \bar b and \bar a + 2\bar b is perpendicular to \bar a then. 

  • \left| {\bar a} \right| = \left| {\bar b} \right|
  • \left| {\bar a} \right| = \sqrt 2 \left| {\bar b} \right|
  • \left| {\bar b} \right| = \sqrt 2 \left| {\bar a} \right|
  • \left| {\bar a} \right| = \left| {\bar b} \right|\sqrt 3
The length of the projection of the line segment joining points (5, -1, 4) and (4, -1, 8) on the plane x+y+z=7.
  • \dfrac{2}{\sqrt{3}}
  • \dfrac{2}{3}
  • \sqrt{5}
  • \sqrt{\dfrac{2}{3}}
A unit vector {\vec a} in the plane of \vec  = 2\hat i + \hat j and \vec c = \hat i - \hat j + \hat k is such that angle between {\vec a} and {\vec b} is the same angle between {\vec a}  and {\vec d}   where \vec d = \hat j + 2\hat k
  • \frac{{\hat i + \hat j + \hat k}}{{\sqrt 3 }}
  • \frac{{\hat i - \hat j + \hat k}}{{\sqrt 3 }}
  • \frac{{2\hat i + \hat j}}{{\sqrt 5 }}
  • \frac{{2\hat i - \hat j}}{{\sqrt 5 }}
If the unit vectors \vec{e}_1 \, and \, \vec{e}_2 are inclined at an angle 2 \theta \, and \, |\vec{e}_1 - \vec{e}_2| < 1, then for \theta \in [0, \pi] , \theta may lie in the interval
  • \left[0, \dfrac{\pi}{6} \right]
  • \left[ \dfrac{\pi}{6} , \dfrac{\pi}{2} \right]
  • \left[ \dfrac{5 \pi}{6} , \pi \right]
  • \left[\dfrac{\pi}{2}, \dfrac{5 \pi}{6} \right]
Let \vec{a},\vec{b},\vec{c} be three non-zero vectors such that \vec{a}+\vec{b}+\vec{c}=0 and \lambda \vec{b}\times \vec{a}+\vec{b}\times \vec{c}+\vec{c}\times \vec{a}=0, then \lambda is
  • 1
  • 2
  • -1
  • -2
If [\vec{a}\vec{b}\vec{c}]=2, then find the value of [(\vec{a}+2\vec{b}-\vec{c}(\vec{a}-\vec{b})(\vec{a}-\vec{b}-\vec{c})].
  • 6
  • 8
  • 12
  • 11
A non-zero vectors \overrightarrow{a} is such that its projections along the vectors \dfrac{\hat{i}+\hat{j}}{\sqrt{2}} and \dfrac{-\hat{i}+\hat{j}}{\sqrt{2}} and \hat{k} are equal then unit vector along \overrightarrow{a} is
  • \dfrac{\sqrt{2}\hat{j}-\hat{k}}{\sqrt{3}}
  • \dfrac{\hat{j}-\sqrt{2}\hat{k}}{\sqrt{3}}
  • \dfrac{\sqrt{2}}{\sqrt{3}}\hat{j}+\dfrac{\hat{k}}{\sqrt{3}}
  • \dfrac{\hat{j}-\hat{k}}{\sqrt{2}}
If a and b are unit vectors along OA, OB and OC bisects the angle AOB. The unit vector along OC is   
  • \dfrac{a+b}{2}
  • \dfrac{b-b}{2}
  • \dfrac{a+b}{|a+b|}
  • \dfrac{a-b}{|a-b|}
If \overrightarrow {a}, \overrightarrow {b} and \overrightarrow {c} be three non-zero vectors, non-coplanar and if \overrightarrow {d} is such that \bar { a } =\dfrac { 1 }{ y } \left( \overrightarrow { b } +\overrightarrow { c } +\overrightarrow { d}  \right) and  where x and y are non-zero real numbers, then \dfrac { 1 }{ xy } \left( \vec { a } +\vec { b } +\vec { c } +\vec { d }  \right) =
  • -\vec {a}
  • \vec {0}
  • -2\vec {a}
  • -3\vec {c}
If the vector 6\hat { i } -3\hat { j } -6\hat { k } is decomposed into vectors parallel and perpendicular to the vector \hat { i } +\hat { j } +\hat { k } then the vectors are :
  • -\left( \hat { i } +\hat { j } +\hat { k } \right) +\hat { 7i } -\hat { 2j } -\hat { 5k }
  • -2\left( \hat { i } +\hat { j } +\hat { k } \right) +\hat { 8i } -\hat { j } -\hat { 4k }
  • \left( \hat { i } +\hat { j } +\hat { k } \right)+ \hat { 4i } -\hat { 5j } -\hat { 8k }
  • none
The value of \left(a.i\right)i+\left(a.j\right)j+\left(a.k\right)k in terms of vector a
  • \overrightarrow{a}
  • \overrightarrow{a}\hat{i}
  • \overrightarrow{a}\hat{j}
  • \overrightarrow{a}\hat{k}
If the position vectors of A, B, C, D are \vec{a}, \vec{b}. 2\vec{a}+3\vec{b}, \vec{a}-2\vec{b} respectively, then \vec{AC}, \vec{DB}, \vec{BA}, \vec{DA} are?
  • \vec{a}+3\vec{b}, 3\vec{b}-\vec{a}, \vec{a}-\vec{b}, 2\vec{b}
  • 2\vec{b}, \vec{b}-2\vec{a}, 3\vec{b}+\vec{a}, \vec{b}-\vec{a}
  • \vec{a}-3\vec{b}, 3\vec{b}-\vec{a}, \vec{a}+\vec{b}, 2\vec{b}
  • -2\vec{b}, \vec{b}-2\vec{a}, 3\vec{b}-\vec{a}, \vec{b}-\vec{a}
What vector must be added to the two vectors \hat{i}+2\hat{j}+2\hat{k} and 2\hat{i}-\hat{j}-\hat{k}, so that the resultant may be a unit vector along x-axis
  • 2\hat{i}+\hat{j}+\hat{k}
  • -2\hat{i}+\hat{j}-\hat{k}
  • 2\hat{i}-\hat{j}+\hat{k}
  • -2\hat{i}-\hat{j}-\hat{k}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers