Explanation
Consider the given vectors,
$$\overrightarrow{a}=2\widehat{i}-\widehat{j}+\widehat{k},\overrightarrow{b}=\widehat{i}+2\widehat{j}-\widehat{k},\overrightarrow{c}=\widehat{i}+\widehat{j}-2\overrightarrow{k}$$
Given that projection of $$\overrightarrow{b}+\lambda \overrightarrow{c}$$ on $$\overrightarrow{a}$$ =$$\sqrt{\dfrac{2}{3}}$$
Hence,
$$\dfrac{\left[ \overrightarrow{b}+\lambda \overrightarrow{c} \right].\overrightarrow{a}}{\left| \overrightarrow{a} \right|}$$ =$$\sqrt{\dfrac{2}{3}}$$
$$ \dfrac{\left[ \widehat{i}+2\widehat{j}-\widehat{k}+\lambda \left( \widehat{i}+\widehat{j}-2\widehat{k} \right) \right].\left( 2\widehat{i}-\widehat{j}+\widehat{k} \right)}{\left| 2\widehat{i}-\widehat{j}+\widehat{k} \right|}=\sqrt{\dfrac{2}{3}} $$
$$ \dfrac{\left[ \left( 1+\lambda \right)\widehat{i}+\left( 2+\lambda \right)\widehat{j}+\left( 1-2\lambda \right)\widehat{k} \right].\left( 2\widehat{i}-\widehat{j}+\widehat{k} \right)}{\sqrt{{{2}^{2}}+{{\left( -1 \right)}^{2}}+{{1}^{2}}}}=\sqrt{\dfrac{2}{3}} $$
$$ \dfrac{\left( 1+\lambda \right).2+\left( 2+\lambda \right)\left( -1 \right)+\left( 1-2\lambda \right)\left( 1 \right)}{\sqrt{6}}=\sqrt{\dfrac{2}{3}} $$
$$ 2+2\lambda -2-\lambda +1-2\lambda =\sqrt{\dfrac{2}{3}}.\sqrt{6} $$
$$ -\lambda +1=2 $$
$$ -\lambda =1 $$
$$ \lambda =-1 $$
Hence, this is the answer.
Which of the following is the unit vector perpendicular to $$ \vec{A} $$ and $$ \vec{B} $$ ?
According to question:
$$\begin{array}{l} B=\overrightarrow { a } +\overrightarrow { c } \\ \overrightarrow { E } =\dfrac { { 2\overrightarrow { c } +\overrightarrow { a } +\overrightarrow { c } } }{ 3 } =\dfrac { { 3\overrightarrow { c } +\overrightarrow { a } } }{ 3 } \\ then, \\ Position\, vector\, is: \\ \, \, \, \, \, \overrightarrow { OP } =\lambda \, (\overrightarrow { a } +\overrightarrow { c } )-----(i) \\ \, \, \, \, Now, \\ \, \, \, \, \, \, \, positon\, \, vector\, of\overrightarrow { \, p } : \\ \, \, \, \, \, \overrightarrow { p } =\overrightarrow { a } +\mu \left( { \dfrac { { 3\overrightarrow { c } +\overrightarrow { a } } }{ 3 } -\overrightarrow { a } } \right) \\ \, \, \, \overrightarrow { p } =\overrightarrow { a } +\mu \left( { \dfrac { { 3\overrightarrow { c } -2\overrightarrow { a } } }{ 3 } } \right) -----(ii) \\ Now,\, equating\, \, eqn.\, \, (i)\, \, \& \, (ii) \\ \lambda \, \left( { \dfrac { { \overrightarrow { a } } }{ { \left| { \overline { a } } \right| } } +\dfrac { { \overrightarrow { c } } }{ { \left| { \overline { c } } \right| } } } \right) =\overrightarrow { a } +\dfrac { \mu }{ 3 } \left( { 3\overrightarrow { c } -2\overrightarrow { a } } \right) \\ \dfrac { \lambda }{ { \left| { \overline { a } } \right| } } =1-\dfrac { { 2\mu } }{ 3 } \, \, \, \, \, \, \, (cofficient\, compare) \\ \dfrac { \lambda }{ { \left| { \overline { a } } \right| } } =\dfrac { { 3\mu } }{ 3 } ,\, \, \, \, \, \, \, \, \, \mu =\dfrac { \lambda }{ { \left| { \overline { a } } \right| } } \\ And, \\ \dfrac { \lambda }{ { \left| { \overline { a } } \right| } } =1-\dfrac { 2 }{ 3 } .\, \dfrac { \lambda }{ { \left| { \overline { c } } \right| } } \\ \lambda \left( { \dfrac { 1 }{ { \left| { \overline { a } } \right| } } +\dfrac { 2 }{ 3 } .\, \dfrac { 1 }{ { \left| { \overline { c } } \right| } } } \right) =1 \\ \lambda =\dfrac { { 3\left| { \overline { a } } \right| \, \left| { \overline { c } } \right| } }{ { 3\left| { \overline { c } } \right| +2\left| { \overline { a } } \right| } } \\ \, positon\, \, vector\, of\overrightarrow { \, p } : \\ \overrightarrow { p } =\dfrac { { 3\left| { \overline { a } } \right| \, \left| { \overline { c } } \right| } }{ { 3\left| { \overline { c } } \right| +2\left| { \overline { a } } \right| } } \, \, \, \left( { \dfrac { { \overrightarrow { a } } }{ { \left| { \overline { a } } \right| } } +\dfrac { { \overrightarrow { c } } }{ { \left| { \overline { c } } \right| } } } \right) \\ so\, ,\, the\, correct\, \, option\, is\, A. \end{array}$$
Please disable the adBlock and continue. Thank you.