Explanation
Consider the given vectors,
→a=2ˆi−ˆj+ˆk,→b=ˆi+2ˆj−ˆk,→c=ˆi+ˆj−2→k
Given that projection of →b+λ→c on →a =√23
Hence,
[→b+λ→c].→a|→a| =√23
[ˆi+2ˆj−ˆk+λ(ˆi+ˆj−2ˆk)].(2ˆi−ˆj+ˆk)|2ˆi−ˆj+ˆk|=√23
[(1+λ)ˆi+(2+λ)ˆj+(1−2λ)ˆk].(2ˆi−ˆj+ˆk)√22+(−1)2+12=√23
(1+λ).2+(2+λ)(−1)+(1−2λ)(1)√6=√23
2+2λ−2−λ+1−2λ=√23.√6
−λ+1=2
−λ=1
λ=−1
Hence, this is the answer.
Which of the following is the unit vector perpendicular to →A and →B ?
According to question:
B=→a+→c→E=2→c+→a+→c3=3→c+→a3then,Positionvectoris:→OP=λ(→a+→c)−−−−−(i)Now,positonvectorof→p:→p=→a+μ(3→c+→a3−→a)→p=→a+μ(3→c−2→a3)−−−−−(ii)Now,equatingeqn.(i)&(ii)λ(→a|¯a|+→c|¯c|)=→a+μ3(3→c−2→a)λ|¯a|=1−2μ3(cofficientcompare)λ|¯a|=3μ3,μ=λ|¯a|And,λ|¯a|=1−23.λ|¯c|λ(1|¯a|+23.1|¯c|)=1λ=3|¯a||¯c|3|¯c|+2|¯a|positonvectorof→p:→p=3|¯a||¯c|3|¯c|+2|¯a|(→a|¯a|+→c|¯c|)so,thecorrectoptionisA.
Please disable the adBlock and continue. Thank you.