CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 8 - MCQExams.com

Find $$k$$ if magnitude of vectors joining $$(0,k,0)$$ and $$(1,1,1)$$ is $$\sqrt {11}$$
  • $$-3$$
  • $$2$$
  • $$-2$$
  • $$0$$
Let $$ABC$$ be an acute scalene triangle, and $$O$$ and $$H$$ be its circumcentre and orthocentre respectively. Further let $$N$$ be the midpoint of $$OH$$. The value of the vector sum $$\vec {NA} + \vec {NB} + \vec {NC}$$ is
  • $$\vec {0}$$ (zero vector)
  • $$\vec {HO}$$
  • $$\dfrac {1}{2}\vec {HO}$$
  • $$\dfrac {1}{2}\vec {OH}$$
The projection of the vector $$\hat {i} - 2\hat {j} + \hat {k}$$ on the vector $$4\hat {i} - 4\hat {j} + 7\hat {k}$$ is
  • $$\dfrac {5}{19}\sqrt {5}$$
  • $$\dfrac {19}{9}$$
  • $$\dfrac {9}{19}$$
  • $$\dfrac {1}{19}\sqrt {6}$$
The position vectors of A, B are a, 6 respectively. The position vector of C is $$\dfrac {5\bar{a}}{3} -\bar{b}$$. Then 3 
  • C is inside the $$\Delta OAB $$
  • C is outside the $$\Delta OAB $$ but inside the angle OAB
  • C is outside the$$\Delta OAB $$ but inside the angle OBA
  • None of these
$$\overline { a } ,\overline { b } ,\overline { c } $$ are three vectors such that $$\left| \overline { a }  \right| =1,\left| \overline { b }  \right| =2,\left| \overline { c }  \right| =3$$ and $$\overline { b } ,\overline { c } $$ are perpendicular. IF projection of $$\overline { b } $$ on $$\overline { a } $$ is the same as the projection of $$\overline { c } $$ on $$\overline { a } $$, then $$\left| \overline { a } -\overline { b } +\overline { c }  \right| $$
  • $$\sqrt { 2 } $$
  • $$\sqrt { 7 } $$
  • $$\sqrt { 14 } $$
  • $$\sqrt { 21 } $$
If $$\bar{a},\bar{b}, \bar{c}$$ are unit vectors such that $$\bar{a}+ \bar{b}+ \bar{c}=\bar{0}$$, then $$\bar{a}.\bar{b}+ \bar{b}.\bar{c}+ \bar{c}.\bar{a}=$$
  • $$\dfrac{3}{2}$$
  • $$-\dfrac{3}{2}$$
  • $$\dfrac{1}{2}$$
  • $$-\dfrac{1}{2}$$
Let $$\vec {a} = x\hat {i} + 12\hat {j} - \hat {k}, \vec {b} = 2\hat {i} + 2x\hat {j} + \hat {k}$$ and $$\vec {c} = \hat {i} + \hat {k}$$. If ordered set $$[\vec {b} \vec {c} \vec {a}]$$ is left handed, then.
  • $$x\epsilon (2, \infty)$$
  • $$x\epsilon (-\infty, -3)$$
  • $$x\epsilon (-3, 2)$$
  • $$x\epsilon \left \{3, 2\right \}$$
If $$\vec {a}$$ and $$\vec {b}$$ are unit vectors, then angle between $$\vec {a}$$ and $$\vec {b}$$ for $$\sqrt {3} \vec {a} - \vec {b}$$ to be unit vector is
  • $$60^{\circ}$$
  • $$90^{\circ}$$
  • $$45^{\circ}$$
  • $$30^{\circ}$$
Which is a unit vector?
  • $$(Cos \alpha, 2 Sin \alpha)$$
  • $$(Sin \alpha, Cos \alpha)$$
  • $$(1, -1)$$
  • $$(2Cos \alpha, Sin \alpha)$$
If $$ \vec a+2\vec b+3 \vec c =0$$, then $$\vec{b}\times \vec{c}+\vec{c}\times \vec{a}+\vec{a} \times \vec{b}$$ equals to:
  • $$6\left( b\times c \right)$$
  • $$\left( a\times b \right)$$
  • $$6\left( c\times a \right)$$
  • 0
Let $$\overline a ,\overline b ,\overline c $$ be vectors of length $$3, 4, 5 $$respectively. Let $$\overline a $$ be perpendicular to $$\overline b  + \overline c ,\overline b \,to\,\overline c  + \overline a \,{\text{and}}\,\overline c \,{\text{to}}\,\overline a  + \overline b .\,{\text{Then}}|\overline a  + \overline b  + \overline c |$$ is equals to:
  • $$2\sqrt 5 $$
  • $$2\sqrt 2 $$
  • $$10\sqrt 5 $$
  • $$5\sqrt 2 $$
If the projection of $$\vec{a}$$ on $$\vec{b}$$ and the projection of $$\vec{b}$$ on $$\vec{a}$$ are equal then the angle between $$\vec{a}+\vec{b}$$ and $$\vec{a}-\vec{b}$$ is
  • $$\large{\frac{\pi}{3}}$$
  • $$\large{\frac{\pi}{2}}$$
  • $$\large{\frac{\pi}{4}}$$
  • $$\large{\frac{2\pi}{3}}$$
The value of $$|\overrightarrow A  + \overrightarrow B  - \overrightarrow C  + \overrightarrow D |$$ can be zero if :-
  • $$|\overrightarrow A | = 5,\,|\overrightarrow B | = 3,|\overrightarrow C | = 4;|\overrightarrow D | = 12$$
  • $$|\overrightarrow A | = 2\sqrt 2 ,\,|\overrightarrow B | = 2,|\overrightarrow C | = 2;|\overrightarrow D | = 5$$
  • $$|\overrightarrow A | = 2\sqrt 2 ,\,|\overrightarrow B | = 2,|\overrightarrow C | = 2;|\overrightarrow D | = 10$$
  • $$|\overrightarrow A | = 5,\,|\overrightarrow B | = 4,|\overrightarrow C | = 3;|\overrightarrow D | = 8$$
Let $$\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}, \,\,\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$$ and $$\vec{c} = \vec{i} + \vec{j} - 2\vec{k} $$ be three vectors. A vector of the type $$\vec{b} + \lambda \vec{c}$$ for some scalar $$\lambda$$, whose projection on $$\vec{a}$$ is of magnitude $$\sqrt {\frac{2}{3}}$$. Thenthe value of $$\lambda$$ is
  • $$1$$
  • $$0$$
  • $$-1$$
  • $$2$$
Given that P = 12, Q = 5 and R = 13 also $$\vec P + \vec Q = \vec R$$, then the angle between $$\vec P$$ and $$\vec Q$$ will be :
  • $$

    {\pi}

    $$
  • $$

    {\pi}\over{2}

    $$

  • zero
  • $$

    {\pi}\over{4}

    $$
The vertices of a triangle are $$A(1,1,2),B(4,3,1)$$ and $$C(2,3,5).$$ A vector representing the internal bisector of the angle $$A$$ id 
  • $$\hat{i}+\hat{j}+2\hat{k}$$
  • $$2\hat{i}-2\hat{j}+\hat{k}$$
  • $$2\hat{i}+2\hat{j}-\hat{k}$$
  • $$2\hat{i}+2\hat{j}+\hat{k}$$
A unit vector along the direction $$\hat i + \hat j + \hat k$$ has a magnitude:
  • $$\sqrt 3 $$
  • $$\sqrt 2 $$
  • $$1$$
  • $$0$$
If $$\overline {OA}=i+j+k, \overline {AB}=3i-2j+k,\overline {BC}=i+2j-2k$$ and $$\overline {CD}=2i+j+3k $$ then find the vector $$\overline{OD}$$.
  • $$7i-2j-6k$$
  • $$7i+2j+3k$$
  • $$7i+2j+5k$$
  • None of these
Let $$\vec{a}$$, $$\vec{b}$$, $$\vec{c}$$ and $$\vec{d}$$ are four distinct vectors satisfying the conditions $$\vec{a} \times \vec{b}$$ = $$\vec{c} \times \vec{d}$$ & $$\vec{a} \times \vec{c}$$ =$$\vec{b} \times \vec{d}$$ then  $$\vec{a}.\vec{b} + \vec{c}.\vec{d} \neq \vec{a}.\vec{c} + \vec{b}.\vec{d}$$ .
  • True
  • False
Four forces act on a point object. The object will be in equilibrium, if:
  • all of them are in the same plane
  • they are opposite to each other in pairs
  • the sum of x, y and z - components of forces zero separately
  • they form a closed figure of 4 sides when added as Polygon law
The value of $$\bar {a} \times (\bar {b}+\bar {c})+\bar {b}\times (\bar {c}+\bar {a})+\bar {c}\times (\bar {a}+\bar {b})=$$
  • $$0$$
  • $$-1$$
  • $$2\ \bar {a}\times (\bar {b}+\bar {c})$$
  • $$[\bar {a}\bar {b}\bar {c}]$$

  Which of the following is the unit vector perpendicular to $$ \vec{A} $$ and $$ \vec{B} $$ ?

  • $$ {{\vec{A}\times \vec{B}} \over {AB\sin \theta }}$$
  • $$\left|{{\vec{A}\times \vec{B}} \over {AB\sin \theta }}\right|$$
  • $$ {{\vec{A}\times \vec{B}} \over {AB\cos \theta }}$$
  • $$\left|{{\vec{A}\times \vec{B}} \over {AB\cos \theta }}\right|$$
The vector that must be added to the vector $$\hat{i}-3\hat{j}+2\hat{k}$$ and $$3\hat{i}+6\hat{j}-7\hat{k}$$ so that the resultant vector is a unit vector along the y-axis is:
  • $$4\hat{i}+2\hat{j}+5\hat{k}$$
  • $$-4\hat{i}-2\hat{j}+5\hat{k}$$
  • $$3\hat{i}+4\hat{j}+5\hat{k}$$
  • Null vector
The vector equation of the plane containing the line $$\vec {r}=(-2\hat {i}-3\hat {j}+4\hat {k})+\lambda(3\hat {i}-2\hat {j}-\hat {k})$$ and the point $$\hat {i}+2\hat {j}+3\hat {k}$$ is:
  • $$\vec {r}\cdot(\hat {i}+3\hat {k})=10$$
  • $$\vec {r}\cdot(\hat {i}-3\hat {k})=10$$
  • $$\vec {r}\cdot(3\hat {i}+\hat {k})=10$$
  • $$none\ of\ these$$
Let $$\vec{a},\vec{b}$$ and $$\vec{c}$$ be three non-zero vectors such that no two of these are collinear. If the vector $$\vec{a}+2\vec{b}$$ is collinear with $$\vec{c}$$ and $$\vec{b}+3\vec{c}$$ is collinear with $$\vec{a}(\lambda$$ being some non-zero scalar), then $$\vec{a}+2\vec{ b}+6\vec{c}$$ equals
  • $$\lambda\vec{a}$$
  • $$\lambda\vec{b}$$
  • $$\lambda\vec{c}$$
  • $$\vec{0}$$
Component of $$\vec{a}=\hat{i}-\hat{j}-\hat{k}$$ perpendicular to the vector $$\vec{b}=2\hat{i}+\hat{j}-\hat{k}$$ is?
  • $$\dfrac{1}{3}(\hat{i}+2\hat{j}+2\hat{k})$$
  • $$\dfrac{1}{3}(\hat{i}-4\hat{j}-2\hat{k})$$
  • $$\dfrac{1}{3}(\hat{i}+4\hat{j}+2\hat{k})$$
  • $$\dfrac{1}{3}(\hat{i}+2\hat{j}+\hat{k})$$
If $$\vec{a}, \vec{b}, \vec{c}$$ are three non-coplanar vectors such that $$\vec{d}\cdot \vec{a}=\vec{d}\cdot \vec{b}=\vec{d}\cdot \vec{c}=0$$, then $$\vec{d}$$ is :-
  • a scalar
  • a null vector
  • has non-zero magnitude
  • an imaginary number
$$\overline a  = \overline i  - \overline k ,\overline b  = x\overline i  + \overline j  + (1 - x)\overline k $$ and $$\overline c  = y\overline i  + \lambda \overline j  + (1 + x - y)\overline k $$ then $$\left[ {\overline a \overline b \overline c } \right]$$ depends on:-
  • neither x nor y
  • both x and y
  • only x
  • only y
$$A(1, -1, -3)$$, $$B(2, 1, -2)$$ & $$C(-5, 2, -6)$$ are the position vectors of the vertices of a triangle ABC. The length of the bisector of its internal angle at A is?
  • $$\sqrt{10}/4$$
  • $$3\sqrt{10}/4$$
  • $$\sqrt{10}$$
  • None
If $$\hat {i},\hat {j},\hat {k}$$ are positive vectors of $$A,B,C$$ and $$\vec {AB}=\vec {CX}$$, then positive vector of $$X$$ is
  • $$-\hat {i}+\hat {j}+\hat {K}$$
  • $$\hat {i}-\hat {j}+\hat {K}$$
  • $$\hat {i}+\hat {j}-\hat {K}$$
  • $$\hat {i}+\hat {j}+\hat {K}$$
The $$P.V.'s$$ of the vertices of a $$\triangle ABC$$ are $$\bar {i}+\bar {j}+\bar {k}, 4\bar {i}+\bar {j}+\bar {k}, 4\bar {i}+5\bar {j}+\bar {k}$$. The $$P.V.$$ of the circumcentre of $$\triangle ABC$$ is
  • $$\dfrac{5}{2}\bar {i}+3\bar {j}+\bar {k}$$
  • $$5\bar {i}+\dfrac{3}{2}\bar {j}+\bar {k}$$
  • $$5\bar {i}+3\bar {j}+\dfrac{1}{2}\bar {k}$$
  • $$\bar {i}+\bar {j}+\bar {k}$$
The position vector of point P, is?
  • $$\dfrac{3|\vec{a}||\vec{c}|}{3|\vec{c}|+2|\vec{a}|}\left\{\dfrac{\vec{a}}{|\vec{a}|}+\dfrac{\vec{c}}{|\vec{c}|}\right\}$$
  • $$\dfrac{|\vec{a}||\vec{c}|}{3|\vec{c}+2|\vec{a}|}\left\{\dfrac{\vec{a}}{|\vec{a}|}+\dfrac{\vec{c}}{|\vec{c}|}\right\}$$
  • $$\dfrac{2|\vec{a}||\vec{c}|}{3|\vec{c}|+2|\vec{a}|}\left\{\dfrac{\vec{a}}{|\bar{a}|}+\dfrac{\vec{c}}{|\vec{c}|}\right\}$$
  • $$\dfrac{3|\vec{a}||\vec{c}|}{3|\vec{c}|+2\vec{a}|}\left\{\dfrac{\vec{a}}{|\vec{a}|}-\dfrac{\vec{c}}{|\vec{c}|}\right\}$$
If $$a^b=b^c=ab$$, then $$b+c$$ always equals?
  • $$\dfrac{1}{bc}$$
  • $$\dfrac{1}{2}bc$$
  • $$1$$
  • $$bc$$
If $$\overline { a } =\cfrac { 1 }{ \sqrt { 10 }  } \left( 3\overline { i } +\overline { k }  \right) ;\overline { a } =\cfrac { 1 }{ 7 } \left( 2\overline { i } +3\overline { j } -6\overline { k }  \right) $$ then the value of
$$(2\overline { a } -\overline { b } ).[(\overline { a } \times \overline { b } )\times (\overline { a } +2\overline { b } )]$$
  • $$5$$
  • $$3$$
  • $$-5$$
  • $$-3$$
Let P, Q, R and S be the points on the plane with position vectors $$-2\hat{i}-\hat{j}, 4\hat{i}, 3\hat{i}+3\hat{j}$$ and $$-3\hat{i}+2\hat{j}$$ respectively. the quadrilateral PQRS must be a.
  • Parallelogram, which is neither a rhombus nor a rectangle
  • Square
  • Rectangle, but not a square
  • Rhombus, but not a square
If $$\vec a,\vec b,\vec c$$ non-zero vectors such that $$\vec a$$ is perpendicular to $$\vec b$$ and $$\vec c$$ and non-zero  vector coplanar with $$\vec a + \vec b$$ and $$2\vec b - \vec c$$ and $$\vec d.\vec a = 1$$ , then the minimum value of $$\left| {\vec d} \right|$$
  • $$\frac{2}{{\sqrt {13} }}$$
  • $$\frac{1}{{\sqrt {13} }}$$
  • $$\frac{3}{{\sqrt {13} }}$$
  • $$\frac{4}{{\sqrt {13} }}$$
If $$a,b,c \in N$$, the number of points having position vectors $$a\hat i + b\hat j + c\hat k$$ such that $$6 \le a + b + c \le 10$$ is
  • 110
  • 116
  • 120
  • 127
If $$\bar a + \bar b$$ is perpendicular to $$\bar b$$ and $$\bar a + 2\bar b$$ is perpendicular to $$\bar a$$ then. 

  • $$\left| {\bar a} \right| = \left| {\bar b} \right|$$
  • $$\left| {\bar a} \right| = \sqrt 2 \left| {\bar b} \right|$$
  • $$\left| {\bar b} \right| = \sqrt 2 \left| {\bar a} \right|$$
  • $$\left| {\bar a} \right| = \left| {\bar b} \right|\sqrt 3 $$
The length of the projection of the line segment joining points $$(5, -1, 4)$$ and $$(4, -1, 8)$$ on the plane $$x+y+z=7$$.
  • $$\dfrac{2}{\sqrt{3}}$$
  • $$\dfrac{2}{3}$$
  • $$\sqrt{5}$$
  • $$\sqrt{\dfrac{2}{3}}$$
A unit vector $${\vec a}$$ in the plane of $$\vec  = 2\hat i + \hat j$$ and $$\vec c = \hat i - \hat j + \hat k$$ is such that angle between $${\vec a}$$ and $${\vec b}$$ is the same angle between $${\vec a}$$  and $${\vec d}$$   where $$\vec d = \hat j + 2\hat k$$
  • $$\frac{{\hat i + \hat j + \hat k}}{{\sqrt 3 }}$$
  • $$\frac{{\hat i - \hat j + \hat k}}{{\sqrt 3 }}$$
  • $$\frac{{2\hat i + \hat j}}{{\sqrt 5 }}$$
  • $$\frac{{2\hat i - \hat j}}{{\sqrt 5 }}$$
If the unit vectors $$\vec{e}_1 \, and \, \vec{e}_2$$ are inclined at an angle $$2 \theta \, and \, |\vec{e}_1 - \vec{e}_2| < 1$$, then for $$\theta \in [0, \pi] , \theta$$ may lie in the interval
  • $$\left[0, \dfrac{\pi}{6} \right]$$
  • $$\left[ \dfrac{\pi}{6} , \dfrac{\pi}{2} \right]$$
  • $$\left[ \dfrac{5 \pi}{6} , \pi \right]$$
  • $$\left[\dfrac{\pi}{2}, \dfrac{5 \pi}{6} \right]$$
Let $$\vec{a},\vec{b},\vec{c}$$ be three non-zero vectors such that $$\vec{a}+\vec{b}+\vec{c}=0$$ and $$\lambda \vec{b}\times \vec{a}+\vec{b}\times \vec{c}+\vec{c}\times \vec{a}=0$$, then $$\lambda$$ is
  • $$1$$
  • $$2$$
  • $$-1$$
  • $$-2$$
If $$[\vec{a}\vec{b}\vec{c}]=2$$, then find the value of $$[(\vec{a}+2\vec{b}-\vec{c}(\vec{a}-\vec{b})(\vec{a}-\vec{b}-\vec{c})]$$.
  • $$6$$
  • $$8$$
  • $$12$$
  • $$11$$
A non-zero vectors $$\overrightarrow{a}$$ is such that its projections along the vectors $$\dfrac{\hat{i}+\hat{j}}{\sqrt{2}}$$ and $$\dfrac{-\hat{i}+\hat{j}}{\sqrt{2}}$$ and $$\hat{k}$$ are equal then unit vector along $$\overrightarrow{a}$$ is
  • $$\dfrac{\sqrt{2}\hat{j}-\hat{k}}{\sqrt{3}}$$
  • $$\dfrac{\hat{j}-\sqrt{2}\hat{k}}{\sqrt{3}}$$
  • $$\dfrac{\sqrt{2}}{\sqrt{3}}\hat{j}+\dfrac{\hat{k}}{\sqrt{3}}$$
  • $$\dfrac{\hat{j}-\hat{k}}{\sqrt{2}}$$
If $$a$$ and $$b$$ are unit vectors along $$OA, OB$$ and $$OC$$ bisects the angle $$AOB$$. The unit vector along $$OC$$ is   
  • $$\dfrac{a+b}{2}$$
  • $$\dfrac{b-b}{2}$$
  • $$\dfrac{a+b}{|a+b|}$$
  • $$\dfrac{a-b}{|a-b|}$$
If $$\overrightarrow {a}$$, $$\overrightarrow {b}$$ and $$\overrightarrow {c}$$ be three non-zero vectors, non-coplanar and if $$\overrightarrow {d}$$ is such that $$\bar { a } =\dfrac { 1 }{ y } \left( \overrightarrow { b } +\overrightarrow { c } +\overrightarrow { d}  \right) $$ and  where $$x$$ and $$y$$ are non-zero real numbers, then $$\dfrac { 1 }{ xy } \left( \vec { a } +\vec { b } +\vec { c } +\vec { d }  \right) =$$
  • $$-\vec {a}$$
  • $$\vec {0}$$
  • $$-2\vec {a}$$
  • $$-3\vec {c}$$
If the vector $$6\hat { i } -3\hat { j } -6\hat { k } $$ is decomposed into vectors parallel and perpendicular to the vector $$\hat { i } +\hat { j } +\hat { k }$$ then the vectors are :
  • $$-\left( \hat { i } +\hat { j } +\hat { k } \right) +\hat { 7i } -\hat { 2j } -\hat { 5k } $$
  • $$-2\left( \hat { i } +\hat { j } +\hat { k } \right) +\hat { 8i } -\hat { j } -\hat { 4k } $$
  • $$\left( \hat { i } +\hat { j } +\hat { k } \right)+ \hat { 4i } -\hat { 5j } -\hat { 8k } $$
  • $$none$$
The value of $$\left(a.i\right)i+\left(a.j\right)j+\left(a.k\right)k$$ in terms of vector $$a$$
  • $$\overrightarrow{a}$$
  • $$\overrightarrow{a}\hat{i}$$
  • $$\overrightarrow{a}\hat{j}$$
  • $$\overrightarrow{a}\hat{k}$$
If the position vectors of A, B, C, D are $$\vec{a}, \vec{b}. 2\vec{a}+3\vec{b}, \vec{a}-2\vec{b}$$ respectively, then $$\vec{AC}, \vec{DB}, \vec{BA}, \vec{DA}$$ are?
  • $$\vec{a}+3\vec{b}, 3\vec{b}-\vec{a}, \vec{a}-\vec{b}, 2\vec{b}$$
  • $$2\vec{b}, \vec{b}-2\vec{a}, 3\vec{b}+\vec{a}, \vec{b}-\vec{a}$$
  • $$\vec{a}-3\vec{b}, 3\vec{b}-\vec{a}, \vec{a}+\vec{b}, 2\vec{b}$$
  • $$-2\vec{b}, \vec{b}-2\vec{a}, 3\vec{b}-\vec{a}, \vec{b}-\vec{a}$$
What vector must be added to the two vectors $$\hat{i}+2\hat{j}+2\hat{k}$$ and $$2\hat{i}-\hat{j}-\hat{k}$$, so that the resultant may be a unit vector along x-axis
  • $$2\hat{i}+\hat{j}+\hat{k}$$
  • $$-2\hat{i}+\hat{j}-\hat{k}$$
  • $$2\hat{i}-\hat{j}+\hat{k}$$
  • $$-2\hat{i}-\hat{j}-\hat{k}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers