Processing math: 54%

CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 9 - MCQExams.com

If vectors A=2ˆi+3ˆj+4ˆk,B=ˆi+ˆj+5ˆk and C form a left-handed system, then C is
  • 11ˆi6ˆjˆk
  • 11ˆi+6ˆj+ˆk
  • 11ˆi6ˆj+ˆk
  • 11ˆi+6ˆjˆk
If 2a+3b+4c=0a×b+b×c+c×a=
  • 0
  • 3a×b
  • 3b×c
  • 3c×a
If |a|=5,|ab|=8 and |a+b|=10, then |b| is equal to :
  • 1
  • 57
  • 13
  • 14
Let a=ˆi+2ˆj+ˆk,b=ˆiˆj+ˆk and c=ˆi+ˆjˆk . A vector in the plane of a and b, where projection on c is 13, is
  • 4ˆiˆj+4ˆk
  • 3ˆi+ˆj3ˆk
  • 2ˆi+ˆj
  • 4ˆi+ˆj4ˆk
If ˉa,ˉb,ˉc are position vectors of the non-collinear points A, B, C respectively, the shortest distance of A and BC is?
  • ˉa(ˉbˉc)
  • ˉb(ˉcˉa)
  • |ˉbˉa|
  • |ba|2[(ab(bc)|bc|]2

If A,B,C,D be any four points and E and F be the mid-points of AC and BD, respectively, then AB+CB+CD+AD is equal to
  • 3EF
  • 4EF
  • 4FE
  • 3FE
Let a=2ˆi3ˆj+6ˆk and b=2ˆi+3ˆjˆk then projection of a on b: projection of b on a=
  • 3:7
  • 7:3
  • 4
  • 3
Let u=ˆi+ˆj,v=ˆiˆj,w=ˆi+2ˆj+3ˆk If ˆn is a unit vector such that u.ˆn=0 and v.ˆn=0, then |w.ˆn|=
  • 0
  • 1
  • 2
  • 3
Let a=ˆi+2ˆj+ˆk,b=ˆiˆj+ˆk and c=ˆi+ˆjˆk . A vector in the plane of a and b, where projection on c is 13, is
  • 4ˆiˆj+4ˆk
  • 3ˆi+ˆj3ˆk
  • 2ˆi+ˆj
  • 4ˆi+ˆj4ˆk
let u,v,w be such that |u|=1,|v|=2,|w|=3. If the projection of v along u is equal to the projection of w along u and v,w are perpendicular to each other, then|uv+w|=
  • 2
  • 17
  • 14
  • 15
If a+b+c=vec0 then a×b=?
  • c×b
  • b×c
  • a×c
  • 2b×c
The ratio in which i+2j+3k divides the join of 2i+3j+5k and 7ik is?
  • 3:2
  • 1:2
  • 2:3
  • 4:3
If a×b=c and b×c=a, then 
  • |a|=|b|=|c|
  • |a|=|c|,|b|=1
  • c×a=b
  • c×a=[a,b,c]b
Let |¯a+¯b|=|¯a¯b|. If |¯aׯb|=λ|¯a|, then λ=
  • |¯a|
  • |¯b|
  • 1
  • 2
The projection of the vector ˆi2ˆj+ˆk on he vector 4ˆi4ˆj+7ˆk is equal to:
  • 199
  • 919
  • 319
  • 193
If |a|=1, the projection of r along a is 2 and a×r+b=r, then r=
  • 12[ab+a×b]
  • 12[2a+b+a×b]
  • a+a×b
  • aa×b
Let A,B,C be distinct point with position vectors ˆi+ˆj, ˆiˆj, pˆiqˆj+rˆk respectively. Points A,B,C are collinear, then which of the following can be correct:
  • p=q=r=1
  • p=q=r=0
  • p=q=2,r=0
  • p=1,q=2,r=0
D,E and F are the mid-point of the sides BC,CA and AB respectively of the triangle ABC. Which of the following is true?
  • AB=2ED
  • AB=2DE
  • AB=ED
  • AB=2DF
If a×b=b×c=c×a0 then a+b+c=
  • b
  • 2a
  • 0
  • none of these

A unit vector perpendicular to the plane of the triangle ABC with the position vectors  abc of the vectors A,B,C, is 

  • (a×b+b×c+c×a)Δ
  • (a×b+b×c+c×a)2Δ
  • (a×b+b×c+c×a)4Δ
  • none of these
If a=2ˆi+ˆj+ˆk,b=3ˆi4ˆj+2ˆk,c=ˆi2ˆj+2ˆk then the projection of a+b on c is
  • 173
  • 53
  • 43
  • 1743
If |a|=5.|b|=4, and |c|=3. then what will be the value of a.b+b.c+c.a given that a+b+c=0
  • 25
  • 50
  • 25
  • 50
If A(6,3,2),B(5,1,4),C(3,4,7),D(0,2,5) are four points, then projection of CD on AB is
  • 133
  • 137
  • 313
  • 713
If a,b and c are unit vectors, then |a+b|2+|bc|2+|ca|2 does NOT exceed 
  • 4
  • 9
  • 8
  • 6
If ¯a and ¯b include an angle of 120o and their magnitudes are 2 and 3 then ¯a.¯b is
  • 3
  • 3
  • 3
  • 3
If |a|=2,|b|=3 and  |2ab|=5, then  |2a+b| equals:
  • 17
  • 7
  • 5
  • 1
If the vectors a=ˆiˆj+2ˆk;b=2ˆi+4ˆj+ˆk;c=λˆi+ˆj+μˆk are mutually orthogonal, then (λ,μ)=
  • (2,3)
  • (2,3)
  • (3,2)
  • (3,2)
If \left| \overrightarrow { a }  \right| =3,\left| \overrightarrow { b }  \right| =4, if \left( \overrightarrow { a } +\lambda \overrightarrow { b }  \right) is perpendicular to \left( \overrightarrow { a } -\lambda \overrightarrow { b }  \right) then \lambda =
  • \cfrac{9}{16}
  • \cfrac{3}{5}
  • \cfrac{3}{4}
  • \cfrac{4}{3}
Let \bar{a},\bar{b} be two noncollinear vectors. If A=(x+4y)\bar{a}+(2x+y+1)\bar{b},
B=(y-2x+2)\bar{a}+(2x-3y-1)\bar{b} \quad and \quad 3A=2B then (x,y) =
  • (1,2)
  • (1,-2)
  • (2,-1)
  • (-2,-1)
The projection of the vector 2\hat i + \hat j - 3\hat k on  the vector \hat i - 2\hat j - \hat k
  • - \dfrac{3}{{\sqrt {14} }}
  • \dfrac{3}{{\sqrt {14} }}
  • - \sqrt {\dfrac{3}{2}}
  • \sqrt {\dfrac{3}{2}}
The position vectors of the points A,B,C are \overline { i } + 2 \overline { j } - \overline { k } , \overline { i } + \overline { j } + \overline { k } , 2 \overline { i } + 3 \overline { j } + 2 \overline { k } respectively. If A is chosen as the origin then the position vectors of B and C are 
  • \overline { i } + 2 \overline { k } , \overline { i } + \overline { j } + 3 \overline { k }
  • \overline { j } + 2 \overline { k } , \vec { i } + \overline { j } + 3 \overline { k }
  • - \overline { j } + 2 \overline { k } , \vec { i } - \overline { j } + 3 \overline { k }
  • - \overline { j } + 2 \overline { k } , \overline { i } + \overline { j } + 3 \overline { k }
Given \vec{\alpha} = 3\hat{i} + \hat{j} + 2\hat{k}\ ,\ \vec{\beta} = \hat{i} - 2\hat{j} - 4\hat{k} are the position vectors of the points A and B. Then the distance of the point -\hat{i} + \hat{j} + \hat{k} from the passing through B and perpendicular to AB is 
  • -7
  • 10
  • 15
  • 20
If M and N are the mid-points of the diagonals AC and BD respectively of a quadrilateral ABCD, then the value of \overline { AB } +\overline { AD } +\overline { CB } +\overline { CD }
  • 2\overline { MN }
  • 2\overline { NM }
  • 4\overline { NM }
  • 4\overline { MN }
If S is the circumcentre, O is the orthocentre of \triangle{ABC}, then \overline { SA } +\overline { SB } +\overline { SB } equals
  • \overline { SO }
  • 2\overline { SO }
  • \overline { OS }
  • 2\overline { OS }
A (1,-1,-1) , B (2,1,-2) and C (-5,2,-6) are the position vectors of the vertices of triangle ABC  The length of the bisector of its internal angle at A is:
  • \dfrac{\sqrt{10}}{4}
  • \dfrac{3\sqrt{10}}{4}
  • \sqrt{10}
  • none
If \overline { a } =\left( 2\overline { i } -10\overline { j } +6\overline { k }  \right) ;\overline { b } =\left( 5\overline { i } -3\overline { j } +\overline { k }  \right) . The ratio of projection of \overline { a } on \overline { b } to projection of \overline { b } on \overline { a } is
  • 2:1
  • 1:2
  • 2:3
  • 3:2
Let \vec a and \vec b be two unit vectors such that \left| {\vec a + \vec b} \right| = \sqrt 3. If \vec c = \vec a + 2\vec b + 3(\vec a \times \vec b), then 2\left| {\vec c} \right| is equal to:

  • \sqrt {55}
  • \sqrt {51}
  • \sqrt {43}
  • \sqrt {37}
The X & Y components of vector A have numerical values 6 each & that of (A+B) have numerical values 10 and 9 What is the numerical value of B ?

  • 2
  • 3
  • 4
  • 5
ABC is an isosceles triangle right angled at A. Force of magnitude 2\sqrt{2},5 and 6 act along \overline { BC } ,\overline { CA } ,\overline { AB } respectively. The magnitude of their resultant force is
  • 4
  • 5
  • 11+2\sqrt{2}
  • 30
If \overline { a } is a vector of magnitude \sqrt{3} and \overline { b } is unit vector making an angle \tan ^{ -1 }{ \left( 1/\sqrt { 2 }  \right)  } with \overline { a } then projection of \overline { a } on \overline { b } is
  • \cfrac{\sqrt{3}}{2}
  • \sqrt{2}
  • \sqrt{3}
  • \sqrt{6}
In the figure given below \bar { AE }, \bot\bar { DB }, \bar { CF } \bot\bar { BD }, \bot\bar { DF } = \bar { BE }, \bar { AD }, = \bar { BC }  
then \bar { DC }=\bar { AB }.  
1211158_35bf6200029b48098b260ed669c240bd.png
  • True
  • False
Given a parallelogram ABCD. If |\vec{AB}=a, |\vec{AD}|=b and |vec{AC}|=c, then |\vec{DB}|.|\vec{AB}| has the
  • \dfrac{3a^{2}+b^{2}-c^{2}}{2}
  • \dfrac{a^{2}+3b^{2}-c^{2}}{2}
  • \dfrac{a^{2}+b^{2}-3c^{2}}{2}
  • none
If |\bar {a}-\bar {b}|=|\bar {a}|=|\bar {b}|, where \bar a and \bar b are non zero vecrors then the angle between \bar {a}-\bar {b} and \bar b is
  • 120^{o}
  • 45^{o}
  • 60^{o}
  • 90^{o}
The vector T + 2 \overline { y } + 2 k restated through an angle \theta and doubled in magnitude then it becomes 2 T + ( 2 x + 2 ) \} + ( 6 x - 2 ) k values of x are 
  • 1,\frac { 1 } { 3 }
  • - 1 , \frac { 1 } { 3 } =
  • 1,\frac { - 1 } { 3 }
  •  ( 0,3 )
If AD, BE and CF are \Delta ABC, then \\ \vec { AD } +\vec { BE } \vec { +CF }
  • \vec { 0 }
  • 1
  • 0
  • 2
Let \overline a,\overline b, \overline c be three vectors such that \overline a \ne 0, and \overline a \times \overline b= 2\overline a \times \overline c, |\overline a|=|\overline c|=1, |\overline a|
|\overline b \times \overline c|= \sqrt 15. If \overline b - 2 \overline c= \lambda \overline a, then \lambda equals to
  • 1
  • ± 4
  • 3
  • -2
 \bar{a}, \bar{b} are unit vectors such that \mid\bar{a}\times\bar{b}\mid = \bar{a}. \bar{b} , then \mid\bar{a}+\bar{b}\mid^2 =
  • 2
  • 2+\sqrt{2}
  • 2-\sqrt{2}
  • \sqrt{2}
The length of the projection of the line segment joining the points (5, -1, 4) and (4, -1, 3) on the plane , x+ y+ z = 7 is : 
  • \dfrac{2}{3}
  • \dfrac{1}{3}
  • \sqrt{\dfrac{2}{3}}
  • \dfrac{2}{\sqrt{3}}
\vec{a},\vec{b},\vec{c},\vec{d} are the position vectors of four coplanar points A,B,C,D respectively. If no three of them are collinear and |\vec{a}-\vec{d}|=|\vec{b}-\vec{d}|=|\vec{c}-\vec{d}| then for triangle ABC, D is
  • centroid
  • orthocenter
  • incenter
  • circumcenter
If the position vectors of P, Q are respectively 5a + 4b and 3a - 2b then \vec {QP} =
  • 2a + 6b
  • 2a  -  6b
  • 2a  +  5b
  • 2a  -  5b
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers