Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 9 - MCQExams.com

If vectors A=2ˆi+3ˆj+4ˆk,B=ˆi+ˆj+5ˆk and C form a left-handed system, then C is
  • 11ˆi6ˆjˆk
  • 11ˆi+6ˆj+ˆk
  • 11ˆi6ˆj+ˆk
  • 11ˆi+6ˆjˆk
If 2a+3b+4c=0a×b+b×c+c×a=
  • 0
  • 3a×b
  • 3b×c
  • 3c×a
If |a|=5,|ab|=8 and |a+b|=10, then |b| is equal to :
  • 1
  • 57
  • 13
  • 14
Let a=ˆi+2ˆj+ˆk,b=ˆiˆj+ˆk and c=ˆi+ˆjˆk . A vector in the plane of a and b, where projection on c is 13, is
  • 4ˆiˆj+4ˆk
  • 3ˆi+ˆj3ˆk
  • 2ˆi+ˆj
  • 4ˆi+ˆj4ˆk
If ˉa,ˉb,ˉc are position vectors of the non-collinear points A, B, C respectively, the shortest distance of A and BC is?
  • ˉa(ˉbˉc)
  • ˉb(ˉcˉa)
  • |ˉbˉa|
  • |ba|2[(ab(bc)|bc|]2

If A,B,C,D be any four points and E and F be the mid-points of AC and BD, respectively, then AB+CB+CD+AD is equal to
  • 3EF
  • 4EF
  • 4FE
  • 3FE
Let a=2ˆi3ˆj+6ˆk and b=2ˆi+3ˆjˆk then projection of a on b: projection of b on a=
  • 3:7
  • 7:3
  • 4
  • 3
Let u=ˆi+ˆj,v=ˆiˆj,w=ˆi+2ˆj+3ˆk If ˆn is a unit vector such that u.ˆn=0 and v.ˆn=0, then |w.ˆn|=
  • 0
  • 1
  • 2
  • 3
Let a=ˆi+2ˆj+ˆk,b=ˆiˆj+ˆk and c=ˆi+ˆjˆk . A vector in the plane of a and b, where projection on c is 13, is
  • 4ˆiˆj+4ˆk
  • 3ˆi+ˆj3ˆk
  • 2ˆi+ˆj
  • 4ˆi+ˆj4ˆk
let u,v,w be such that |u|=1,|v|=2,|w|=3. If the projection of v along u is equal to the projection of w along u and v,w are perpendicular to each other, then|uv+w|=
  • 2
  • 17
  • 14
  • 15
If a+b+c=vec0 then a×b=?
  • c×b
  • b×c
  • a×c
  • 2b×c
The ratio in which i+2j+3k divides the join of 2i+3j+5k and 7ik is?
  • 3:2
  • 1:2
  • 2:3
  • 4:3
If a×b=c and b×c=a, then 
  • |a|=|b|=|c|
  • |a|=|c|,|b|=1
  • c×a=b
  • c×a=[a,b,c]b
Let |¯a+¯b|=|¯a¯b|. If |¯aׯb|=λ|¯a|, then λ=
  • |¯a|
  • |¯b|
  • 1
  • 2
The projection of the vector ˆi2ˆj+ˆk on he vector 4ˆi4ˆj+7ˆk is equal to:
  • 199
  • 919
  • 319
  • 193
If |a|=1, the projection of r along a is 2 and a×r+b=r, then r=
  • 12[ab+a×b]
  • 12[2a+b+a×b]
  • a+a×b
  • aa×b
Let A,B,C be distinct point with position vectors ˆi+ˆj, ˆiˆj, pˆiqˆj+rˆk respectively. Points A,B,C are collinear, then which of the following can be correct:
  • p=q=r=1
  • p=q=r=0
  • p=q=2,r=0
  • p=1,q=2,r=0
D,E and F are the mid-point of the sides BC,CA and AB respectively of the triangle ABC. Which of the following is true?
  • AB=2ED
  • AB=2DE
  • AB=ED
  • AB=2DF
If a×b=b×c=c×a0 then a+b+c=
  • b
  • 2a
  • 0
  • none of these

A unit vector perpendicular to the plane of the triangle ABC with the position vectors  abc of the vectors A,B,C, is 

  • (a×b+b×c+c×a)Δ
  • (a×b+b×c+c×a)2Δ
  • (a×b+b×c+c×a)4Δ
  • none of these
If a=2ˆi+ˆj+ˆk,b=3ˆi4ˆj+2ˆk,c=ˆi2ˆj+2ˆk then the projection of a+b on c is
  • 173
  • 53
  • 43
  • 1743
If |a|=5.|b|=4, and |c|=3. then what will be the value of a.b+b.c+c.a given that a+b+c=0
  • 25
  • 50
  • 25
  • 50
If A(6,3,2),B(5,1,4),C(3,4,7),D(0,2,5) are four points, then projection of CD on AB is
  • 133
  • 137
  • 313
  • 713
If a,b and c are unit vectors, then |a+b|2+|bc|2+|ca|2 does NOT exceed 
  • 4
  • 9
  • 8
  • 6
If ¯a and ¯b include an angle of 120o and their magnitudes are 2 and 3 then ¯a.¯b is
  • 3
  • 3
  • 3
  • 3
If |a|=2,|b|=3 and  |2ab|=5, then  |2a+b| equals:
  • 17
  • 7
  • 5
  • 1
If the vectors a=ˆiˆj+2ˆk;b=2ˆi+4ˆj+ˆk;c=λˆi+ˆj+μˆk are mutually orthogonal, then (λ,μ)=
  • (2,3)
  • (2,3)
  • (3,2)
  • (3,2)
If |a|=3,|b|=4, if (a+λb) is perpendicular to (aλb) then λ=
  • 916
  • 35
  • 34
  • 43
Let ˉa,ˉb be two noncollinear vectors. If A=(x+4y)ˉa+(2x+y+1)ˉb,
B=(y2x+2)ˉa+(2x3y1)ˉband3A=2B then (x,y) =
  • (1,2)
  • (1,-2)
  • (2,-1)
  • (-2,-1)
The projection of the vector 2ˆi+ˆj3ˆk on  the vector ˆi2ˆjˆk
  • 314
  • 314
  • 32
  • 32
The position vectors of the points A,B,C are ¯i+2¯j¯k,¯i+¯j+¯k,2¯i+3¯j+2¯k respectively. If A is chosen as the origin then the position vectors of B and C are 
  • ¯i+2¯k,¯i+¯j+3¯k
  • ¯j+2¯k,i+¯j+3¯k
  • ¯j+2¯k,i¯j+3¯k
  • ¯j+2¯k,¯i+¯j+3¯k
Given α=3ˆi+ˆj+2ˆk , β=ˆi2ˆj4ˆk are the position vectors of the points A and B. Then the distance of the point ˆi+ˆj+ˆk from the passing through B and perpendicular to AB is 
  • 7
  • 10
  • 15
  • 20
If M and N are the mid-points of the diagonals AC and BD respectively of a quadrilateral ABCD, then the value of ¯AB+¯AD+¯CB+¯CD
  • 2¯MN
  • 2¯NM
  • 4¯NM
  • 4¯MN
If S is the circumcentre, O is the orthocentre of ABC, then ¯SA+¯SB+¯SB equals
  • ¯SO
  • 2¯SO
  • ¯OS
  • 2¯OS
A (1,-1,-1) , B (2,1,-2) and C (-5,2,-6) are the position vectors of the vertices of triangle ABC  The length of the bisector of its internal angle at A is:
  • 104
  • 3104
  • 10
  • none
If ¯a=(2¯i10¯j+6¯k);¯b=(5¯i3¯j+¯k). The ratio of projection of ¯a on ¯b to projection of ¯b on ¯a is
  • 2:1
  • 1:2
  • 2:3
  • 3:2
Let a and b be two unit vectors such that |a+b|=3. If c=a+2b+3(a×b), then 2|c| is equal to:

  • 55
  • 51
  • 43
  • 37
The X & Y components of vector A have numerical values 6 each & that of (A+B) have numerical values 10 and 9 What is the numerical value of B ?

  • 2
  • 3
  • 4
  • 5
ABC is an isosceles triangle right angled at A. Force of magnitude 22,5 and 6 act along ¯BC,¯CA,¯AB respectively. The magnitude of their resultant force is
  • 4
  • 5
  • 11+22
  • 30
If ¯a is a vector of magnitude 3 and ¯b is unit vector making an angle tan1(1/2) with ¯a then projection of ¯a on ¯b is
  • 32
  • 2
  • 3
  • 6
In the figure given below ¯AE, ¯DB, ¯CF ¯BD, ¯DF = ¯BE, ¯AD, = ¯BC  
then ¯DC=¯AB.  
1211158_35bf6200029b48098b260ed669c240bd.png
  • True
  • False
Given a parallelogram ABCD. If |AB=a,|AD|=b and |vecAC|=c, then |DB|.|AB| has the
  • 3a2+b2c22
  • a2+3b2c22
  • a2+b23c22
  • none
If |ˉaˉb|=|ˉa|=|ˉb|, where ˉa and ˉb are non zero vecrors then the angle between ˉaˉb and ˉb is
  • 120o
  • 45o
  • 60o
  • 90o
The vector T+2¯y+2k restated through an angle θ and doubled in magnitude then it becomes 2T+(2x+2)}+(6x2)k values of x are 
  • 1,13
  • 1,13=
  • 1,13
  •  (0,3)
If AD, BE and CF are ΔABC, then AD+BE+CF
  • 0
  • 1
  • 0
  • 2
Let ¯a,¯b,¯c be three vectors such that ¯a0, and ¯aׯb=2¯aׯc,|¯a|=|¯c|=1,|¯a|
|¯bׯc|=15. If ¯b2¯c=λ¯a, then λ equals to
  • 1
  • ±4
  • 3
  • 2
 ˉa, ˉb are unit vectors such that ˉa×ˉb∣=ˉa.ˉb , then ˉa+ˉb2=
  • 2
  • 2+2
  • 22
  • 2
The length of the projection of the line segment joining the points (5,1,4) and (4,1,3) on the plane , x+y+z=7 is : 
  • 23
  • 13
  • 23
  • 23
a,b,c,d are the position vectors of four coplanar points A,B,C,D respectively. If no three of them are collinear and |ad|=|bd|=|cd| then for triangle ABC, D is
  • centroid
  • orthocenter
  • incenter
  • circumcenter
If the position vectors of P, Q are respectively 5a + 4b and 3a - 2b then QP =
  • 2a+6b
  • 2a6b
  • 2a+5b
  • 2a5b
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers