Explanation
A unit vector perpendicular to the plane of the triangle ABC with the position vectors →a→b→c of the vectors A,B,C, is
We have,
\overrightarrow{\alpha }=3\widehat{i}+\widehat{j}+2\widehat{k}
\overrightarrow{\beta }=\widehat{i}-2\widehat{j}-4\widehat{k}
So,
\overrightarrow{AB}=\overrightarrow{\beta }-\overrightarrow{\alpha }
\overrightarrow{AB}=\left( \widehat{i}-2\widehat{j}-4\widehat{k} \right)-\left( 3\widehat{i}+\widehat{j}+2\widehat{k} \right)
\overrightarrow{AB}=\widehat{i}-2\widehat{j}-4\widehat{k}-3\widehat{i}-\widehat{j}-2\widehat{k}
\overrightarrow{AB}=-2\widehat{i}-3\widehat{j}-6\widehat{k}
Now, equation of plane passing through the point and perpendiular vector is
\left( -2\widehat{i}-3\widehat{j}-6\widehat{k} \right).\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right)=\left( -2\widehat{i}-3\widehat{j}-6\widehat{k} \right).\left( -\widehat{i}+\widehat{j}+\widehat{k} \right)
\Rightarrow 2x+3y+6z=2-3-6
\Rightarrow 2x+3y+6z=-7
Please disable the adBlock and continue. Thank you.