Explanation
A unit vector perpendicular to the plane of the triangle ABC with the position vectors $$\vec a\,\,\,\,\vec b\,\,\vec c$$ of the vectors A,B,C, is
We have,
$$ \overrightarrow{\alpha }=3\widehat{i}+\widehat{j}+2\widehat{k} $$
$$ \overrightarrow{\beta }=\widehat{i}-2\widehat{j}-4\widehat{k} $$
So,
$$ \overrightarrow{AB}=\overrightarrow{\beta }-\overrightarrow{\alpha } $$
$$ \overrightarrow{AB}=\left( \widehat{i}-2\widehat{j}-4\widehat{k} \right)-\left( 3\widehat{i}+\widehat{j}+2\widehat{k} \right) $$
$$ \overrightarrow{AB}=\widehat{i}-2\widehat{j}-4\widehat{k}-3\widehat{i}-\widehat{j}-2\widehat{k} $$
$$ \overrightarrow{AB}=-2\widehat{i}-3\widehat{j}-6\widehat{k} $$
Now, equation of plane passing through the point and perpendiular vector is
$$ \left( -2\widehat{i}-3\widehat{j}-6\widehat{k} \right).\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right)=\left( -2\widehat{i}-3\widehat{j}-6\widehat{k} \right).\left( -\widehat{i}+\widehat{j}+\widehat{k} \right) $$
$$ \Rightarrow 2x+3y+6z=2-3-6 $$
$$ \Rightarrow 2x+3y+6z=-7 $$
Please disable the adBlock and continue. Thank you.