Explanation
A unit vector perpendicular to the plane of the triangle ABC with the position vectors →a→b→c of the vectors A,B,C, is
We have,
→α=3ˆi+ˆj+2ˆk
→β=ˆi−2ˆj−4ˆk
So,
→AB=→β−→α
→AB=(ˆi−2ˆj−4ˆk)−(3ˆi+ˆj+2ˆk)
→AB=ˆi−2ˆj−4ˆk−3ˆi−ˆj−2ˆk
→AB=−2ˆi−3ˆj−6ˆk
Now, equation of plane passing through the point and perpendiular vector is
(−2ˆi−3ˆj−6ˆk).(xˆi+yˆj+zˆk)=(−2ˆi−3ˆj−6ˆk).(−ˆi+ˆj+ˆk)
⇒2x+3y+6z=2−3−6
⇒2x+3y+6z=−7
Please disable the adBlock and continue. Thank you.