Explanation
$$Area=\int _{ 0 }^{ 2 }{ \left( x-\ln { x } \right) dx } +\int _{ 0 }^{ 2 }{ \left( x-\ln { y } \right) dy } \\ Area={ \left[ \cfrac { { x }^{ 2 } }{ 2 } -\left( x\ln { x-x } \right) \right] }_{ 0 }^{ 2 }+{ \left[ \cfrac { { y }^{ 2 } }{ 2 } -\left( y\ln { y-y } \right) \right] }_{ 0 }^{ 2 }\\ Area=4-4\ln { 2 } +2\\ Area=6-4\ln { 2 } $$
Please disable the adBlock and continue. Thank you.