Processing math: 19%

CBSE Questions for Class 12 Commerce Maths Application Of Integrals Quiz 6 - MCQExams.com

From a piece of cardboard, in the shape of a trapezium ABCD, and AB||CD and BCD=90o, quarter circle is removed. Given AB=BC=3.5cm and DE=2cm. Calculate the area of the remaining piece of the cardboard.(Take π to be 227)
1141303_5801d059cb2c4b69a1726ef30e9a6058.jpg
  • 9.625cm2
  • 6.125cm2
  • 2.625cm2
  • None of these
The area between the curves y=x2 and y=21+x2 is-
  • π13
  • π2
  • π23
  • π+23
The area (in sq. units) of the region {(x,y):y22xandx2+y24x,x0} is
  • π43
  • π83
  • π423
  • π2223
The area of the region [(x,y):x2+y21x+y| is
  • π5
  • π4
  • π23
  • π412
The area of the region bounded by the x-axis and the curves
y=tanx(π3xπ3),andy=cotx(π6x3π2) is
  • log2
  • 2log2
  • log2
  • log(32)
The area of the region bounded by the curves y=exlogx and y=logxex is
  • e254e
  • e2+12e
  • e22
  • None of these
Area bounded  by the curve x2=4y and the straight line x=4y2 is 
  • 89 sq. unit
  • 98 sq. unit
  • 43 sq. unit
  • None of these
If the area enclosed between y=mx2 and x=ny2 is 13 sq. units, then m,n can be roots of (where m,n are non zero real numbers)
  • 2x2+5x+1=0
  • 2x2+3x2=0
  • 2x2+3x+2=0
  • 2x2+5x1=0
In the given figure, a square OABC has been inscribed in the quadrant OPBQ. If OA=20cm then the area of the shaded region is [takeπ=3.14]
1168351_05db577288cb4de3b938a97f0b42ea5a.png
  • 214cm2
  • 228cm2
  • 222cm2
  • 242cm2
The area bounded by y=x^2,x=y^2 is
  • 1
  • \dfrac 16
  • \dfrac 34
  • None\ of\ these
The area of the plane region bounded by the curve x + 2 y ^ { 2 } = 0 and x + 3 y ^ { 2 } = 1 is equal to:
  • -\dfrac{4}{3}
  • \dfrac{4}{3}
  • \dfrac{2}{3}
  • None of these
The maximum area of the triangle whose sides a, b \, and \, c satisfy 0 \le a \le 1, \, 1 \le b \le 2 and 2 \le c \le 3
  • 1
  • \frac {1}{2}
  • 2
  • \frac {3}{2}
The area enclosed between the curve {y^2} = 4x and line y = xis
  • \frac {8}{3}
  • \frac {4}{3}
  • \frac {2}{3}
  • \frac {1}{2}
If the area anclosed by f\left( x \right) = \sin x + \cos x,y = a between two consecutive points of extremum is minimum, then the value of a is
  • 0
  • -1
  • 1
  • 2
The area of the region bounded by the curve y = 2x - {x^2} and the line y = x is 
  • \dfrac{1}{2}
  • \dfrac{1}{3}
  • \dfrac{1}{4}
  • \dfrac{1}{6}
Area bounded by the curve y = \sin ^ { - 1 } x , y - a x i s and y = \cos ^ { - 1 } x is equal to
  • ( 2 + \sqrt { 2 } ) sq. unit
  • ( 2 - \sqrt { 2 } ) sq. unit
  • ( 1 + \sqrt { 2 } ) sq. unit
  • ( \sqrt { 2 } - 1 ) sq. unit
The area bounded by |x|=1-y^{2} and |x|+|y|=1 is
  • \dfrac{1}{3}
  • \dfrac{1}{2}
  • \dfrac{2}{3}
  • 1
Find the area enclosed between y=1+\left| x+1 \right| ,y=4.
  • 9 sq. units
  • 25 sq. units
  • 18 sq. units
  • 21 sq. units
Area bounded by the curves y=x\sin x\ and x-axis between x=0\ and x=2\pi is 
  • 2\pi
  • 3\pi
  • 4\pi
  • None of these
The area of the figure bounded by the parabola (y-2)^2=x-1, the tangent to it at the point with the ordinate x=3, and the x-axis is
  • 7 sq. units
  • 6 sq. units
  • 9 sq. units
  • None of these
The area bounded by the curve y=\cos x and y=\sin x between the ordinates x=0 and x=\dfrac {3\pi}{2} is
  • 4\sqrt {2}+2
  • 4\sqrt {2}-1
  • 4\sqrt {2}+1
  • 4\sqrt {2}-2
Let y=g(x) be the inverse of a bijective mapping f:R\rightarrow R\quad f(x)=3{ x }^{ 3 }+2x. The area bounded by graph of g(x), the axis and the ordinate at x=5 is
  • \displaystyle\frac { 5 }{ 4 }
  • \displaystyle\frac { 7 }{ 4 }
  • \displaystyle\frac { 9 }{ 4 }
  • \displaystyle\frac { 13 }{ 4 }
The area bounded by the curves |x|+|y|\ge1 and x^2+y^2\le1 is 
  • 2 sq unit
  • \pi sq unit
  • (\pi-2) sq unit
  • None of these
The area of the figure bounded by the parabola x = - 2 y ^ { 2 } \text { and } x = 1 - 3 y ^ { 2 } is ?
  • 1 / 6
  • 2/3
  • 3/2
  • 4/3
The area bounded by parabola y^{2}=x, straight line y=4 and  y-axis is-
  • \dfrac{16}{3}
  • 7\sqrt{2}
  • \dfrac{32}{3}
  • \dfrac{64}{3}
The angle between the curves y=sin x and y=cos x is : 
  • tan^{-1}(2\sqrt{2})
  • tan^{-1}(3\sqrt{2})
  • tan^{-1}(3\sqrt{3})
  • tan^{-1}(5\sqrt{2})
The area bounded by \dfrac { | x | } { a } + \dfrac { | y | } { b } = 1 where a > 0 and b > 0 is
  • \dfrac { 1 } { 2 } a b
  • ab
  • 2ab
  • 4ab
Area bounded by y=x^2and line y=x
  • 2/3
  • 1/6
  • 1/3
  • 1/4
The area bounded by the curve y=(x+1)^2,y=(x-1)^2 and the line y=0 is
  • \dfrac{1}{6}
  • \dfrac{2}{3}
  • \dfrac{1}{4}
  • \dfrac{1}{3}
The area (in sq\ unit) of the region \left\{(x,y):y^{2}\ge 2x\ and\ x^{2}+y^{2} \le 4x,x \ge 0,y\ \ge 0\right\} is:-
  • \dfrac {\pi}{2}+\dfrac {2\sqrt {2}}{3}
  • \pi-\dfrac {4}{3}
  • \pi-\dfrac {8}{3}
  • \pi-\dfrac {4\sqrt {2}}{3}
Area common to the cutve y=\sqrt {9-x^{2}} and x^{2}-y^{2}=6x is:
  • \dfrac {\pi +\sqrt {3}}{4}
  • \dfrac {\pi -\sqrt {3}}{4}
  • 3\left(\pi +\dfrac {\sqrt {3}}{4}\right)
  • None\ of\ these
If the point (\lambda, \lambda +1) lies inside the region bounded by the curve x=\sqrt{25-y^2} and y-axis, then \lambda belongs to the interval.
  • (-1, 3)
  • (-4, 3)
  • (-\infty, -4)\cup (3, \infty)
  • None of these
The area enclosed by the curves y=x^{2},y=x^{3},x=0 and x=p, where p > 1, is \dfrac{1}{6}. then p equals 
  • 8/3
  • 16/3
  • 4/3
  • 2
Area of the region bounded by the curve y=e^x and lines x=0 and y=e is?
  • e-1
  • 1
  • 2
  • e^2-1
The area (in sq units) of the region \{ (x,y):{ y }^{ 2 }\ge 2x and { x }^{ 2 }+{ y }^{ 2 }\le 4x ,\chi \ge 0, Y\ge 0\} 
  • \pi -\frac { 4 }{ 3 }
  • \pi -\frac { 8 }{ 3 }
  • \pi -\frac { 4\sqrt { 2 } }{ 3 }
  • -\frac { 2\sqrt { 2 } }{ 3 }
The area bounded by the curve xy^{2}=1 and the lines x=1, x=2 is
  • 4\left( {\sqrt 2 - 1} \right)
  • 4\left( {\sqrt 2 + 1} \right)
  • 2\left( {\sqrt 2 - 1} \right)
  • 2\left( {\sqrt 2 + 1} \right)
The area in square units bounded by the curves y = x ^ { 3 } , y = x ^ { 2 } and the ordinates x = 1 , x = 2 is
  • \frac { 17 } { 12 }
  • \frac { 12 } { 13 }
  • \frac { 2 } { 7 }
  • \frac { 7 } { 2 }
The area bounded by the curves y=\sqrt{-x} and x=-\sqrt{-y}, where x,y\le0, is equal to
  • \dfrac{2}{3}sq. unit
  • \dfrac{1}{3}sq. unit
  • \dfrac{1}{2}sq. unit
  • Cannot\ be\ determined
Let T be the triangle with vertices \left (0,0\right), \left (0,{c}^{2}\right)\ and \left (c,{c}^{2}\right) and let R be the region between y=cx and y={x}^{2}\ where c>0 then 
  • Area \left( R \right) =\dfrac { { c }^{ 3 } }{ 6 }
  • Area of R=\dfrac {e^{x}}3{3}
  • \lim_{c \rightarrow 0}\dfrac {Area(T)}{Area(R)}=3
  • \lim_{c \rightarrow 0}\dfrac {Area(T)}{Area(R)}=\dfrac {3}{2}
Let f(x)=minimum (x+1,\sqrt{1-x})  for all x \le 1. Then the area bounded by y=f(x) and the x-axis is
  • \dfrac{7}{3} sq. units
  • \dfrac{1}{6} sq. units
  • \dfrac{11}{6} sq. units
  • \dfrac{7}{6} sq. units
Tangents are drawn from a point P to a parabola y^{2}=4ax. The area enclosed by the tangents and the corresponding chord of contact is 4a^{2}. Then point P satisfies
  • y^{2}=4ax
  • y^{2}=2a(x+a)
  • y^{2}=4a(x-a)
  • y^{2}=4a(x+a)
The area of the figure bounded by the curves y ^ { 2 } = 2 x + 1 and x - y - 1 = 0 is 
  • \dfrac {2}{3}
  • \dfrac {4}{3}
  • \dfrac {8}{3}
  • \dfrac {16}{3}
Area (in sq. unit) of region bounded by y=2\cos x,\ y=3\tan x and y-axis is
  • 1+3ln \left(\dfrac {2}{\sqrt {3}}\right)
  • 1+\dfrac {3}{2}ln3-3ln2
  • 1+\dfrac {3}{2}ln3-ln2
  • ln \left(\dfrac {3}{2}\right)
Let f\left( x \right) be a non-negative continuous function such that the area bounded by the curve y= f\left( x \right) , x-axis and the ordinates x=\cfrac { \pi  }{ 4 } , x=\beta >\cfrac { \pi  }{ 4 } is \left( \beta \sin { \beta  } +\cfrac { \pi  }{ 4 } \cos { \beta  } +\sqrt { 2 } \beta -\cfrac { \pi  }{ 2 }  \right) . Then f\left( \cfrac { \pi  }{ 2 }  \right) is
  • \left( 1-\dfrac { \pi }{ 4 } -\sqrt { 2 } \right)
  • \left( 1-\dfrac { \pi }{ 4 } +\sqrt { 2 } \right)
  • \left( \cfrac { \pi }{ 4 } +\sqrt { 2 } -1 \right)
  • \left( \cfrac { \pi }{ 4 } -\sqrt { 2 } +1 \right)
The area of (in sq. units ) of the region described by A={(x,y): x^2+y^2 \leq 1\ and\ y^2 \leq 1-x }
  • \dfrac{\pi}{2}+\dfrac{4}{3}
  • \dfrac{\pi}{2}-\dfrac{4}{3}
  • \dfrac{\pi}{2}-\dfrac{2}{3}
  • \dfrac{\pi}{2}+\dfrac{2}{3}
The area of the region bounded by the curves y=|x-1| and y=3-|x| is?
  • 2 sq. units
  • 3 sq. units
  • 4 sq. units
  • 6 sq. units
The area bounded by y=|x-1|, y=0 and |x|=2 is?
  • 4
  • 5
  • 3
  • 10
Area of the  region containing all points (x, y) satisfying 0\le y\le \sqrt{4-x^{2}}, y \le x^{2}+x+1 and y=\left[\sin^{2}\dfrac{\pi}{4}+\cos\dfrac{x}{4}\right] is equal to ( where [.] denotes the greatest integer function ). 
  • \dfrac{4\pi-1}{6}+\sqrt{3}
  • \dfrac{4\pi+1}{6}+\sqrt{3}
  • \dfrac{2\pi-1}{6}+\sqrt{3}
  • \dfrac{2\pi+1}{6}+\sqrt{3}
The area bounded by x^2=4ay and y=2a is?
  • \dfrac{16\sqrt{2}a^2}{3}
  • \dfrac{16a^2}{3}
  • \dfrac{8a^2}{3}
  • \dfrac{8\sqrt{2}a^2}{3}
The area enclosed between the curves {y^2} = x and y = |x|\;is
  • \dfrac {2}{3}
  • 1
  • \dfrac {1}{6}
  • \dfrac {1}{3}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers