CBSE Questions for Class 12 Commerce Maths Application Of Integrals Quiz 7 - MCQExams.com

If $${\int}_{0}^{1}\left(4x^{3}=f(x)\right)f(x)dx=\dfrac{4}{7}$$, then the area of region bounded by $$y=f(x),x-$$ axis and the line $$x=$$ and $$x=2$$ is
  • $$\dfrac{11}{2}$$
  • $$\dfrac{13}{2}$$
  • $$\dfrac{15}{2}$$
  • $$\dfrac{17}{2}$$
The are boundede by the curve $$y=x^{2},y=-x$$ and $$y^{2}=4x-3$$ is $$k$$, them the value of $$9k$$ is
  • $$2$$
  • $$3$$
  • $$0$$
  • $$4$$
If area bounded by to curves $$y^2 = 4ax$$ and y=mx is $$\dfrac{a^2}{3}$$, then the value of m is 
  • $$2$$
  • $$-1$$
  • $$\dfrac{1}{2}$$
  • none of these
The area bounded by curves $$ 3 x^2 + 5 y= 32$$ and $$ y = |x-2| $$ is
  • 25
  • 33/2
  • 17/2
  • 33
The area of the plane region bounded by the curves $$x+{ 2y }^{ 2 }=0$$ and $$x+{ 3y }^{ 2 }=1$$ is equal to 
  • $$\cfrac { 5 }{ 3 } sq.unit$$
  • $$\cfrac { 1 }{ 3 } sq.unit$$
  • $$\cfrac { 2 }{ 3 } sq.unit$$
  • $$\cfrac { 4 }{ 3 } sq.unit$$
The area of the figure formed by $$ |x| + |y| = 2$$ is (in sq. units)
  • $$2$$
  • $$4$$
  • $$6$$
  • $$8$$
The area bounded by the curve $$y=\ln (x)$$ and the lines $$y=\ln (3),y=0$$ and $$x=0$$ is equal 
  • $$3$$
  • $$3\ln (3)-2$$
  • $$3\ln (3)+2$$
  • $$2$$
The area (in sq.units) of the region described by $$\left\{(x,y):y^{2}\le 2x\ and\ y\ge 4x-1\right\}$$ is 
  • $$\dfrac{15}{64}$$
  • $$\dfrac{9}{32}$$
  • $$\dfrac{7}{32}$$
  • $$\dfrac{5}{64}$$
The area bounded by the curves $$y = \log _ { e } x$$ and $$y = \left( \log _ { e } x \right) ^ { 2 }$$ is
  • $$3 - e$$
  • $$e-3$$
  • $$\frac { 1 } { 2 } ( 3 - e )$$
  • $$\frac { 1 } { 2 } ( e - 3 )$$
The area common to the parabola $$y=2{ x }^{ 2 }\quad$$ and $$\quad y={ x }^{ 2 }+4$$
  • $$\dfrac { 2 }{ 3 } sq.\quad units\quad $$
  • $$\dfrac { 3 }{ 2 } sq.\quad units\quad $$
  • $$\dfrac { 32 }{ 3 } sq.\quad units\quad $$
  • none of these.
The area bounded by a the curves y=x(1-/nX) and positive X-axis between $$X={ e }^{ -1 }$$ amd X=e is:-
  • $$\left( \frac { { e }^{ 2 }-{ 4e }^{ -2 } }{ 5 } \right) $$
  • $$\left( \frac { { e }^{ 2 }-{ 5e }^{ -2 } }{ 4 } \right) $$
  • $$\left( \frac { { 4e }^{ 2 }-{ e }^{ -2 } }{ 5 } \right) $$
  • $$\left( \frac { { 5e }^{ 2 }-{ e }^{ -2 } }{ 4 } \right) $$
The area bounded by the curves $$y=x(x-3)^{2}$$ and $$y=x$$ is (in $$sq.units$$) is
  • $$28$$
  • $$32$$
  • $$4$$
  • $$8$$
The area bounded by the curve $$y={ x }^{ 2 }$$, X=axis and the ordinates z=1, z=3 is ____________.
  • $$\dfrac { 26 }{ 3 } sq.units$$
  • $$\dfrac { 28 }{ 3 } sq.unit$$
  • $$\dfrac { 1 }{ 3 } sq.units$$
  • $$9\quad sq.units$$
The area bounded by the curves $$y=x(x-3)^{2}$$ and $$y=x$$ is (in sq.units) is
  • $$28$$
  • $$32$$
  • $$4$$
  • $$8$$
The area bounded by the curve y =  log x, X-axis and the ordinates x =1, x =2 is 
  • log 4 sq. units
  • log 2 sq units
  • (log 4 - 1) sq.units
  • (log 4 + 1)sq. units
The area enclosed by the curves $$xy^{2}=a^{2}(a-x)$$ and $$(a-x)y^{2}=a^{2}x$$ is
  • $$(\pi-2)a^{2}\ sq.units$$
  • $$(4-\pi)a^{2}\ sq.units$$
  • $$(\pi a^{2}/3\ sq.units$$
  • $$\dfrac{\pi+a^{2}}{4}\ sq.units$$
The area bounded by the curved $${ y }^{ 2 }=16x$$  and the line x=4 is  ___________________________.
  • $$\frac { 128 }{ 3 } sq-units$$
  • $$\frac { 64 }{ 3 } squnits$$
  • $$\frac { 32 }{ 3 } sq-units$$
  • $$\frac { 16 }{ 3 } sq-units$$
If $$A_{m}$$ represents the area bounded by the curve $$y=\ln x^{m}$$., the $$x-$$axis and the lines $$x=1$$ and $$x=2$$, then $$A_{m}+m\ A_{m-1}$$ is
  • $$m$$
  • $$m^{2}$$
  • $$m^{2}/2$$
  • $$m^{2}-1$$
The area of the region bounded by the curve $$y=x^{2}-3x$$ with $$y \le 0$$ is
  • $$3$$
  • $$\dfrac {9}{2}$$
  • $$\dfrac {5}{2}$$
  • $$none\ of\ these$$
If a curve $$y = a \sqrt { x } +$$ bx passes through the point $$( 1,2 )$$ and the area bounded by the curve, line $$x = 4$$ and $$x$$ axis is $$8$$ square units, then 
  • $$a = 3 , b = - 1$$
  • $$a = 3 , b = 1$$
  • $$a = - 3 , b = 1$$
  • $$a = - 3 , b = - 1$$
The area bounded by the circle $$x^{2}+y^{2}=8$$, the parabola $$x^{2}=2y$$ and the line $$y=x$$ in first quadrant is $$\dfrac{2}{3}+k\pi$$, where $$k=$$
  • $$\dfrac{5}{7}$$
  • $$2$$
  • $$\dfrac{3}{5}$$
  • $$3$$
The area enclosed between the curve $$y=\log_{e}\left(x+e\right)$$ and the coordinate axes is
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
The area of the region formed by $${ x }^{ 2 }+{ y }^{ 2 }-6x-4y+12\le 0,y\le x\quad and\quad x\quad \le \quad \dfrac { 5 }{ 2 } is$$
  • $$\frac { \pi }{ 6 } -\frac { \sqrt { 3}+1  }{ 8 } $$
  • $$\frac { \pi }{ 6 } +\frac { \sqrt { 3}+1  }{ 8 } $$
  • $$\frac { \pi }{ 6 } -\frac { \sqrt { 3}-1  }{ 8 } $$
  • none of these
Area bounded by $$y=2x^{2}$$ and $$y=\dfrac{4}{(1+x^{2})}$$ will be (in sq units)
  • $$(2\pi+4/3)$$
  • $$(2\pi-4/3)$$
  • $$4/3-2\tan^{-1}2+\pi/2$$
  • $$4/3-8\tan^{-1}2+2\pi$$
$$Letf(x)={ sin }^{ -1 }(sin\quad x)+{ cos }^{ -1 }(\quad cos\quad x),\quad g(x)=mx\quad and\quad h(x)=x\quad $$ are three functions. Now g(x) is divided area between f(x),x=$$\pi $$ and y=0 into two equal parts.
The area bounded by the curve y=f(x), x=$$\pi $$ and y=0 is:
  • $$\dfrac { { \pi }^{ 2 } }{ 4 } sq.\quad units$$
  • $${ \pi }^{ 2 }sq.units$$
  • $$\dfrac { { \pi }^{ 2 } }{ 8 } sq.\quad units$$
  • $$2{ \pi }^{ 2 }sq.units$$
The area of the region bounded by the curves $$ 1-y^{2}= \left | x \right | and \left | x \right |+\left | y \right |= 1 $$  is 
  • $$\frac{1}{3}sq. unit $$
  • $$\frac{2}{3}sq. unit $$
  • $$\frac{4}{3}sq. unit $$
  • $$1 sq.unit$$
Find the area of the region enclosed by the curves $$y=x\ \log x$$ and $$y=2x-2x^{2}$$.
  • $$1/12$$
  • $$1/4$$
  • $$2/12$$
  • $$7/12$$
Area of the region bounded by $$x^{2}+y^{2}-6y\leq 0$$ and $$3y\leq x^{2}$$ is
  • $$\frac{9\pi }{2}-12$$
  • $$\frac{9\pi }{4}-6$$
  • $$9\pi$$-24
  • $$\frac{9\pi }{2}+6$$
The area enclosed by the curves y = cosx - sin x and y = [socx - sin x] and between x = 0 and $$x =\dfrac{\pi}{2}$$ is 
  • $$2(\sqrt{2} + 1)$$ sq. units
  • $$2(\sqrt{2} - 1)$$ sq. units
  • $$(\sqrt{2} - 1)$$ sq. units
  • $$(\sqrt{2} + 1)$$ sq. units
The area bounded by the parabola $${{\text{y}}^{\text{2}}}{\text{ = 4}}\;{\text{ax}}\;{\text{and}}\;{{\text{x}}^{\text{2}}}\;{\text{ = }}\;{\text{4ay}}\;$$ is
  • $$\dfrac{{8{a^2}}}{3}$$
  • $$\dfrac{{16{a^2}}}{3}$$
  • $$\dfrac{{32{a^2}}}{3}$$
  • $$\dfrac{{64{a^2}}}{3}$$
The area (in sq. units) bounded by the parabola $$y = x^{2} - 1$$, the tangent at the point $$(2, 3)$$ to it and the y-axis is
  • $$\dfrac {14}{3}$$
  • $$\dfrac {56}{3}$$
  • $$\dfrac {8}{3}$$
  • $$\dfrac {32}{3}$$
The area ehclosed by the curves y = f(x) and  y =g(x), where f9x) = max $${x , x^2}$$ and g(x) = min $${x, x^2}$$ opver the interval [0,1] is 
  • $$\dfrac{1}{6}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{2}$$
  • 1
The region in the $$xy$$ - plane is bounded by curve $$y=\sqrt {(25-x^2)}$$ and the line $$y=0$$. If the point $$ (a,a+1)$$ lies in the interior of the region, then 
  • $$a \in \left( { - 4,3} \right)$$
  • $$a \in (- \infty, -1) \cup (3, \infty)$$
  • $$a \in (-1,3) $$
  • None of these
The area of the region bounded by the parabolas $$y^2= and x^2 = y, is$$
  • $$\dfrac{1}{3}$$ q.units
  • $$\dfrac{8}{3}$$ q.units
  • $$\dfrac{16}{3}$$ q.units
  • $$\dfrac{4}{3}$$ q.units
If the area of the region bounded by the curves, $$y=x^{2},y=\frac{1}{x}$$ and the lines y=0 and x=t (t > 1) is 1 sq. unit, then t is equal to:
  • $${\dfrac{10}{3}}$$
  • $$\dfrac{4}{3}$$
  • $$\dfrac{7}{3}$$
  • $$\dfrac{11}{3}$$
The area (in sq. units) in the  first quadrant bounded by the parabola, $$y = x^2 + 1$$, the tangent to it at the point $$(2, 5)$$ and the coordinate axes is:-
  • $$\dfrac{14}{3}$$
  • $$\dfrac{187}{24}$$
  • $$\dfrac{37}{24}$$
  • $$\dfrac{8}{3}$$
The slope of the tangent to the curve y =f(x) at a point (x, Y) is 2x + 1 and the curve passes through (1, 2) The area of the region bounded by the curve, the x-axis and the line x= 1 is - 
  • 5/3 units
  • 5/6 units
  • 6/5 units
  • 6 units
The area (in sq. units) of the region  $$\{ { x },{ y }):{ y }^{ { 2 } }\geq 2{ x }$$  and  $$x ^ { 2 } + y ^ { 2 } \leq 4 x , x \geq 0 , y \geq 0 \}$$  is :
  • $$\pi - \dfrac { 4 \sqrt { 2 } } { 3 }$$
  • $$\dfrac { \pi } { 2 } - \dfrac { 2 \sqrt { 2 } } { 3 }$$
  • $$\pi - \dfrac { 4 } { 3 }$$
  • $$\pi - \dfrac { 8 } { 3 }$$
The area of the region
$$A=[(x,y):0\le y\le x|x|+1$$ and $$-1\le x\le 1]$$ in sq . units is :
  • $$\dfrac{2}{3}$$
  • $$\dfrac{1}{3}$$
  • $$2$$
  • $$\dfrac{4}{3}$$
The area (in sq. units) of the region bounded by the parabola,  $$y = x ^ { 2 } + 2$$  and the lines, $$y = x + 1 , x = 0$$  and  $$x = 3 ,$$  is :
  • $$\dfrac { 15 } { 4 }$$
  • $$\dfrac { 15 } { 2 }$$
  • $$\dfrac { 21 } { 2 }$$
  • $$\dfrac { 17 } { 4 }$$
If the area enclosed between the curves $$y=kx^2$$ and $$x=ky^2$$, $$(k > 0)$$, is $$1$$ square unit. Then $$k$$ is?
  • $$\dfrac{1}{\sqrt{3}}$$
  • $$\dfrac{2}{\sqrt{3}}$$
  • $$\dfrac{\sqrt{3}}{2}$$
  • $$\sqrt{3}$$
The area of the region bounded by $$y=\left | x-1 \right | and \,\,y=1 $$ is
  • 1
  • 2
  • 1/2
  • None of these
The area of the region  $$\left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \leq 1 \leq x + y \right\}$$  is
  • $$\dfrac { \pi ^ { 2 } } { 5 } \text { unit } ^ { 2 }$$
  • $$\dfrac { \pi ^ { 2 } } { 2 } \text { unit } ^ { 2 }$$
  • $$\dfrac { \pi ^ { 2 } } { 3 } \text { unit } ^ { 2 }$$
  • $$\left( \dfrac { \pi } { 4 } - \dfrac { 1 } { 2 } \right)\text { unit } ^ { 2 }$$
The area of the region bounded by the parabola y = $$x^2$$ 3x with y 0 is
  • $$3$$
  • $$\dfrac{3}{2}$$
  • $$\dfrac{9}{2}$$
  • $${9}{}$$
The area of the quadrilateral formed by the tangents at the endpoints of the latus recta to the ellipse, $$\dfrac{x^{2}}{9}+\dfrac{y^{2}}{5}=1$$ is 
  • $$\dfrac{27}{4}$$
  • $$18$$
  • $$\dfrac{27}{2}$$
  • $$27$$
The area bounded by curve $$y=x^{2}-1$$ and tangents to it at $$(2,3)$$ and $$y-$$axis is
  • $$8/3$$
  • $$2/3$$
  • $$4/3$$
  • $$1/3$$
The area bounded by the curves $$x+2|y|=1$$ and $$x=0$$ is?
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{2}$$
  • $$1$$
  • $$2$$
Area included between  $${ y }=\dfrac { { x }^{ { 2 } } }{ 4{ a } } $$  and  $$y = \dfrac { 8 a ^ { 3 } } { x ^ { 2 } + 4 a ^ { 2 } }$$  is
  • $$\dfrac { a ^ { 2 } } { 3 } ( 6 \pi - 4 )$$
  • $$\dfrac { a ^ { 2 } } { 3 } ( 4 \pi + 3 )$$
  • $$\dfrac { a ^ { 2 } } { 3 } ( 8 \pi + 3 )$$
  • None of these
The area of the figure formed by $$a|x|+b|y|+c=0$$, is
  • $$\dfrac{c^{2}}{|ab|}$$
  • $$\dfrac{2c^{2}}{|ab|}$$
  • $$\dfrac{c^{2}}{2|ab|}$$
  • $$None\ of\ these$$
The area of the region bounded by the curves  $$y = \sin x$$  and  $$y = \cos x ,$$  and lying between the lines  $$x = \dfrac { \pi } { 4 }$$  and  $$x = \dfrac { 5 \pi } { 4 } ,$$  is
  • $$2 + \sqrt { 2 }$$
  • $$2$$
  • $$2 \sqrt { 2 }$$
  • $$2 - \sqrt { 2 }$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers