Explanation
$${\textbf{Step - 1: Draw the diagram}}{\text{.}}$$
$${\text{At first if we see two given circles , both have a center at (0,0)}}{\text{.}}$$
$${\text{Radius of 1st one, namely }}{{x}^2} + {{y}^2} = 1,{\text{ is 1}}{\text{.}}$$
$${\text{Radius of 2nd one, }}{{x}^2} + {{y}^2} = 4{\text{ , is 2}}{\text{.}}$$
$${\text{Given pair of lines}} \Rightarrow \sqrt 3 \left( {{{x}^2} + {{y}^2}} \right) = 4{xy}{\text{.}}$$
$$ \Rightarrow \left( {\sqrt 3 } \right){{x}^2} - 4{xy} + \left( {\sqrt 3 } \right){{y}^2} = 0$$
$$\sqrt 3 {{x}^2} - 3{xy} - {xy} + + \sqrt 3 {{y}^2} = 0$$
$$ \Rightarrow \left( {{x} - \sqrt 3 {y}} \right)\left( {\sqrt 3 {x} - {y}} \right).$$
$${\text{So two lines }x} - \sqrt 3 {y} = 0{\text{ and }}\sqrt 3 {x} - {y} = 0.$$
$${\textbf{Step - 2: Find angle between pair of lines}}{\textbf{.}}$$
$${\text{The standard equation of pair of lines is a}}{{x}^2} + 2{hxy} + {b}{{y}^2} = \left( {{x} + {my}} \right)\left( {{px} + {qy}} \right) = 0$$
$${\text{There the angles between them, is }}\theta = {\tan ^{ - 1}}\dfrac{{2\sqrt {{{x}^2} - {ab}} }}{{\left| {\left. {{a} + {b}} \right|} \right.}}$$
$$ \Rightarrow \theta = {\tan ^{ - 1}}\dfrac{2}{{2\sqrt 3 }}$$
$$ \Rightarrow \theta = \dfrac{\pi }{6}$$
$${\textbf{Step - 3: Find the area}}{\textbf{.}}$$
$${\text{As per formula area of sectors of two circles is }}\dfrac{\theta }{{2\pi }} \times \pi \left( {{{\text{R}}^2} - {{r}^2}} \right)$$
$${\text{Here R}} = 2,{\text{ and }r} = 1{\text{, }}\theta = \dfrac{\pi }{6}$$
$${\text{So area}} = \dfrac{{\dfrac{\pi }{6}}}{{2\pi }} \times \pi \left( {{2^2} - {1^2}} \right)$$
$$ = \dfrac{\pi }{{6 \times 2}} \times \left( {4 - 1} \right)$$
$$ = \dfrac{{\pi \times 3}}{{6 \times 2}}$$
$$ = \dfrac{\pi }{4}$$
$${\textbf{Thus, the area bounded is }}\boldsymbol{\mathbf{\dfrac{\pi }{4}}{\textbf{ unit}}{^2}}{\text{ }}.$$
$$= \cfrac{16}{3}(4 \pi + \sqrt{3})$$
$$ = (\cfrac{-2x^3}{3} + x^2) | _0 ^1 - \int xlogxdx $$to Integrate $$xlogxdx$$, substitute $$logx =t,$$ $$dx= x dt$$Integral becomes $$ \int e^{2t}tdt $$Integration by parts and then putting limits gives $$= -1/4$$
The ratio in which the area bounded by the curves $$y^2=12x $$ and $$x^2=12y$$ is divided by the line x $$=$$ 3 is
$$y^2 =12 x$$ $$x^2 =12 y$$ $$\displaystyle \int_0^3 \sqrt{12 x}-\int_0^3 \dfrac{x^2}{12} =\int_0^3 \sqrt{12 x} -\dfrac{x^2}{12}$$ $$\displaystyle \dfrac{2\sqrt{12}x^{\dfrac{3}{2}}}{3} - \dfrac{x^3}{36}\int_0^3$$ $$\displaystyle \dfrac{\sqrt{12}3\sqrt{3}}{3} - \dfrac{27}{36}$$ $$12 - \dfrac{3}{4} =\dfrac{45}{4}$$ Same as $$\dfrac{8}{4} $$ for remaining part $$\therefore ratio =\dfrac{15}{49}$$
Please disable the adBlock and continue. Thank you.