Explanation
Given, $$y=\sin ^{ -1 }{ x } $$
$$ { y }_{ 1 }=\dfrac { dy }{ dx } =\dfrac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } $$
$$ { y }_{ 2 }=\dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } =-\dfrac { 1 }{ 2 } \dfrac { 1 }{ { (1-{ x }^{ 2 }) }^{ \dfrac { 3 }{ 2 } } } (-2x)=\dfrac { x }{ (1-{ x }^{ 2 })\sqrt { 1-{ x }^{ 2 } } } $$
Thus the value of $$ (1-{ x }^{ 2 }){ y }_{ 2 }-x{ y }_{ 1 } $$ is
$$(1-{ x }^{ 2 })\dfrac { x }{ (1-{ x }^{ 2 })\sqrt { 1-{ x }^{ 2 } } } -x\dfrac { 1 }{ \sqrt { 1-{ x }^{ 2 } } } $$
$$ =\dfrac { x }{ \sqrt { 1-{ x }^{ 2 } } } -\dfrac { x }{ \sqrt { 1-{ x }^{ 2 } } } \\ =0$$
Please disable the adBlock and continue. Thank you.