Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 12 Commerce Maths Continuity And Differentiability Quiz 6 - MCQExams.com

If y=Tan1(log(e/x2)logex2)+Tan1(3+2logx16logx) then (dydx)x=2+(dydx)x=3.
  • 6
  • 2
  • 0
  • 2
If y=(tan1x)2 and (x2+1)2d2ydx2+2x(x2+1)dydx=k, then the value of k is
  • 3
  • 2
  • 1
  • 0
Let f(x)={xx<12x1x22+3xx2x>2
 then f(x) is 
  • differentiable at x=1
  • differentiable at x=2
  • differentiable at x=1 and x=2
  • not differentiable at x=10
Which of the following  is not differentiable in the interval (1,2)?
  • 2xx(logx)2dx
  • 2xxsinxxdx
  • 2xx1t+t21+t+t2dt
  • none of these
Let  f:(0,)R be a differentiable function such that f(x)=2f(x)x for all x(0,) and f(1)1
  • limx0f(1x)=1
  • limx0xf(1x)=2
  • limx0x2f(x)=0
  • |f(x)|2 for all x(0,2)
If x=at2,y=2at, then dydx=_____;t0
  • at
  • t2
  • 2t
  • 1t
Let f(x)={(x1)sin(1x1) if x10, if x1.
Then which one of the following is true?
  • f is differentiable neither at x=0 nor at x=1
  • f is differentiable at x=0 and x=1
  • f is differentiable at x=0 but not at x=1
  • f is differentiable at x=1 but not at x=0
If the function f(x)=\dfrac{e^{x^{2}}-\cos x}{x^{2}} for x \neq 0 continuous at x=0 then f(0)=
  • \dfrac{1}{2}
  • \dfrac{3}{2}
  • 2
  • \dfrac{1}{3}

The function f : R /{0} \rightarrow R given by f(x) = \dfrac{1}{x} - \dfrac{2}{e^{2x} -1} can be made continuous at x=0 by
defining f(0) as 

  • 0
  • 1
  • 2
  • -1
The function f(x) = \ sin^{-1} (\ cosx) is 
  • Discontinuous at x=0
  • continuous at x=0
  • differentiable at x=0
  • None of these
If y=x^x then  \dfrac{d^2y}{dx^2}-\dfrac{1}{y}\left(\dfrac{dy}{dx}\right)^2-\dfrac{y}{x}=0
  • True
  • False
Let f\left( x \right) =\begin{cases} x\quad \quad \quad \quad \quad \quad \quad \quad x<1 \\ 2-x\quad \quad \quad \quad \quad \quad 1\le x\le 2 \\ -2+3x-{ x }^{ 2 }\quad \quad \quad x>2 \end{cases} then f(x) is
  • Differentiable at x=1
  • Differentiable at x=2
  • Differentiable at x=1 and x=2
  • Not differentiable at x=0
If y = {\left( {\sin \,x} \right)^x}, then \dfrac{{dy}}{{dx}} =
  • (\sin x)^x(\ln (\sin x)+x\cot x)
  • (\ln (\sin x)+x\cot x)
  • (\sin x)^x(\ln (\sin x)+x\tan x)
  • (\sin x)^x(\ln (\sin x)-\cot x)
If f(x) = \bigg[ \frac {a+x}{1+x} \bigg]^{a+1+2x}  then {a^{a+1}} \bigg [ 2 \ log \ a + {\frac {1-a ^2}{a}} \bigg] is
  • f^\prime (1)
  • f^\prime (0)
  • f^\prime (2)
  • f^{\prime \prime}
If a continuous function f satisfies the relation 
\overset{t}{\underset{0}{\int}} \left(f(x) - \sqrt{f'(x)}\right)dx = 0 and f(0) = \dfrac{-1}{2}
Then f(x) is equal to
  • \dfrac{-1}{x + 2}
  • \dfrac{-x + 2}{4}
  • \dfrac{-1}{x^2 + 2}
  • \dfrac{x^2 - 2}{4}
Differentiate with respect to x.
{x^{\cos x}} + \sin {x^{\tan x}}
  • x^{\cos x}\left[\dfrac {\cos x}{x}-\sin x\right]+\sin x^{\tan x}[1+\sec^2x.\log \sin x]
  • x^{\cos x}\left[\dfrac {\cos x}{x}-\sin x.\log x\right]+\sin x^{\tan x}[1+\sec^2x.\log \sin x]
  • x^{\cos x}\left[ {\cos x}-\sin x.\log x\right]+\sin x^{\tan x}[1+\sec x.\log \sin x]
  • None
If x = a{\text{ (}}\cos \theta  + \theta {\text{ }}\sin \theta ),{\text{ }}y = a{\text{ (}}\sin \theta  - \theta {\text{ }}\cos \theta ), then \dfrac{{{d^2}x}}{{d{\theta ^2}}} = a{\text{ (}}\cos \theta  - \theta\sin \theta ),{\text{ }}\dfrac{{{d^2}y}}{{d{\theta ^2}}} = a{\text{ (}}\sin \theta  + \theta \;\cos \theta ) 
  • True
  • False
Differentiate {x^{\tan x}} + {{\mathop{\rm tanx}\nolimits} ^x} with respect to x
  • x^{\tan x}(\sec^2x \log x+\dfrac{\tan x}{x})+\tan x^x(\log \tan x+\dfrac{2}{\sin 2x})
  • x^{\tan x}(\sec^2x \log \sec x+\dfrac{\tan x}{x})+\tan x^x(\log \tan x+\dfrac{2}{\sin 2x})
  • x^{\tan x}(\sec^2x \log x+\dfrac{\tan x}{x})-\tan x^x(\log \tan x+\dfrac{2}{\sin 2x})
  • x^{\tan x}(\sec^2x \log x+\dfrac{\tan x}{x})+\tan x^x(\log \tan x-\dfrac{2}{\sin 2x})
If f:R \to R be a differentiable function, such that f\left( {x + 2y} \right) = f\left( x \right) + f\left( {2y} \right) + 4xy for all x,y \in R then
  • f'\left( 1 \right) = f'\left( 0 \right) + 1
  • f'\left( 1 \right) = f'\left( 0 \right) - 1
  • f'\left( 0 \right) = f'\left( 1 \right) + 2
  • f'\left( 0 \right) = f'\left( 1 \right) - 2
Let f\left( x \right) = \left\{ \begin{array}{l}\begin{array}{*{20}{c}}{ - 1\,\,\, - }&{2\,\,\, \le \,\,\,{\rm{x}}}&\rangle &0\end{array}\\\begin{array}{*{20}{c}}{{x^2}\,\, - }&{1,\,0\,\,\,\,\rangle }&{{\rm{x}}\,\,\rangle }&2\end{array}\end{array} \right. and g \left( x \right) = \left| {f\left( x \right)\left| { + f\left| {x\left. {} \right|} \right.} \right.} \right. then the number of points which g(x) is non differentiable,is
  • at most one point
  • 2
  • exactly one point
  • infinite
If f(x) is twice differentiable function such that f(a)=0, f(b)=2, f(c)=-1, f(d)=2, f(e)=0, where a<b<c<d<e, then the minimum number of zeroes of g(x)={(f'(x))}^{2}+f''(x).f(x) in the interval [a, e] is 
  • 4
  • 5
  • 6
  • 7
f(x)=\dfrac { \left[ x \right] +1 }{ \left\{ x \right\} +1 } for f:\left[  0,\dfrac { 5 }{ 2 }  \right)   \rightarrow \left[  \dfrac { 1 }{ 2 } ,3 \right)   , where [.] represent the integer function and \left\{ . \right\} represent the fraction part of x. then which of the following is true?
  • f(x) is injective discontinuous function
  • f(x) is surjective non-differntiable function
  • \min { \left( \lim _{ x\rightarrow { 1 }^{ - } }{ f(x) } ,\lim _{ x\rightarrow { 1 }^{ + } }{ f(x) } \right) }
  • \max { \left( x\ values\ of\ point\ of\ discontinuity \right) =f(1) }
If y=(x^{x})^{x} then \dfrac {dy}{dx}=
  • (x^{x})^{x}(1+2\log x)
  • (x^{x})^{x}(1-2\log x)
  • x(x^{x})^{x}(1+2\log x)
  • x(x^{x})^{x}(1-2\log x)
Let f(x)=\dfrac{1}{ax+b} then f''(0)=
  • \dfrac{2a^3}{b^2}
  • \dfrac{2a^2}{b^3}
  • \dfrac{2a^3}{b^3}
  • none of these
If x=a(\cos\theta+log\ \tan\dfrac{\theta}{2}) and y=a\sin\theta, then\dfrac{dy}{dx} is equal to
  • \cot\theta
  • \tan\theta
  • \sin\theta
  • \cos\theta
If f(x)=\dfrac{a^x}{x^a} then f'(a)=?
  • log a-1
  • log a-a
  • a log a-a
  • a log a+a
If \sqrt { { x }^{ 2 }+{ y }^{ 2 } } ={ e }^{ t } where t=\sin ^{ -1 }{ \left( \cfrac { y }{ \sqrt { { x }^{ 2 }+{ y }^{ 2 } }  }  \right)  } then \cfrac { dy }{ dx } is equal to

  • \cfrac { x-y }{ x+y }
  • \cfrac { x+y }{ x-y }
  • \cfrac { y-x }{ y+x }
  • \cfrac { x-y }{ 2x+y }
If y=\tan^{-1}x+\cot^{-1}x+\sec^{-1}x+\csc^{-1}x,then \dfrac {dy}{dx} is equal to
  • -1
  • \pi
  • 0
  • 1
Solve this:-\dfrac{d}{{dx}}\left( {\tan^{ - 1}\left( {\sinh \,X} \right)} \right) =
  • \operatorname{csch} x
  • \operatorname{sech} x
  • \sinh x
  • \cosh x
If f(x)=\sin^4x+\cos^4x. Then f is an increasing function in the interval
  • \left [ \dfrac{5\pi}{8},\dfrac{3\pi}{4} \right ]
  • \left [ \dfrac{\pi}{2},\dfrac{5\pi}{8} \right ]
  • \left [ \dfrac{\pi}{4},\dfrac{\pi}{2} \right ]
  • \left [ 0,\dfrac{\pi}{4} \right ]
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers