Explanation
y=tan−1(logex2logex2)+tan−1(3+2logx1−6logx)=tan−1(loge−logx2loge+logx2)+tan−1[3+2logx1−3−2logx]=tan−1[1−logx21+logx2]+tan−13+tan−12logx=tan−11−tan−1log(x)2+tan−13+tan−1log(x)2=tan−11+tan−13y=tan−11+tan−13 is constant
So, dydx=0
Answer C
The function f : R /{0} \rightarrow R given by f(x) = \dfrac{1}{x} - \dfrac{2}{e^{2x} -1} can be made continuous at x=0 bydefining f(0) as
We have,
y={{\left( {{x}^{x}} \right)}^{x}}
y={{x}^{{{x}^{2}}}}
On taking \log both sides, we get
\log y={{x}^{2}}\log x …… (1)
On differentiating w.r.t x, we get
\dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{{{x}^{2}}}{x}+\log x\left( 2x \right)
\dfrac{1}{y}\dfrac{dy}{dx}=x+2x\log x
\dfrac{dy}{dx}=y\left( x+2x\log x \right)
\dfrac{dy}{dx}={{\left( {{x}^{x}} \right)}^{x}}\left( x+2x\log x \right)
\dfrac{dy}{dx}=x{{\left( {{x}^{x}} \right)}^{x}}\left( 1+2\log x \right)
Hence, this is the answer.
Consider the given equation.
y={{\tan }^{-1}}x+{{\cot }^{-1}}x+{{\sec }^{-1}}x+{{\csc }^{-1}}x
\dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}-\dfrac{1}{1+{{x}^{2}}}+\dfrac{1}{\left| x \right|\sqrt{{{x}^{2}}-1}}-\dfrac{1}{\left| x \right|\sqrt{{{x}^{2}}-1}}
\dfrac{dy}{dx}=0
Please disable the adBlock and continue. Thank you.