Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 12 Commerce Maths Continuity And Differentiability Quiz 7 - MCQExams.com

If x=asin1t;y=acos1t, then dydx=yx
  • True
  • False

f(x)=1cos(1cosx)x4 is continuous at x=0, then f(0)=

  • 12
  • 14
  • 16
  • 18
Let f(x) be a function defined on(-a,a) with a > 0. Amuse that f(x) is continuous at x=0 and \underset{x\to 0}{\lim}\dfrac {f(x)-f(kx)}{x}=\alpha, where k \in (0,1) then compute f'(0^{+}) and f'(0^{-}), and comment upon the differentiablity of f at x=0? Denote \alpha.
  • \underset{x\to o}{\lim}\dfrac{f(x) - f(0)}{x} \cdot \dfrac{f(kx) - f(0)}{kx} \times k = \alpha
  • \underset{x\to o}{\lim}\dfrac{f(kx) - f(0)}{kx} \cdot \dfrac{f(kx) - f(0)}{kx} \times k = \alpha
  • \underset{x\to 0}{\lim}\dfrac{f(x) - f(kx)}{x} \cdot \dfrac{f(kx) - f(0)}{kx} \times k = \alpha
  • \underset{x\to o}{\lim}\dfrac{f(kx) - f(0)}{x} \cdot \dfrac{f(kx) - f(0)}{kx} \times k = \alpha
If x=a\left(\cos t+\log \tan\dfrac{t}{2}\right), y=a\sin t, then evaluate \dfrac{d^2y}{dx^2} at t=\dfrac{\pi}{3}.
  •  \cfrac{4\sqrt3}{a}
  •  \cfrac{\sqrt3}{a}
  •  \cfrac{8\sqrt3}{a}
  •  \cfrac{8\sqrt3}{5a}
Let f(x) be a continuous funct and g(x) be a discontinuous funct^{n}, then   f(x) + g(x) is continuous funct^{n}. ? it is .  
  • True
  • False
If x=\cos ec \theta-\sin \theta,y=\cos ec^{n}\theta-\sin^{n}\theta then (x^{2}+4)\left(\dfrac {dy} {dx}\right)^{2}-n^{2}y^{2}= 
  • n^{2}
  • 2n^{2}
  • 3n^{2}
  • 4n^{2}
If x=a\sec^{2}\theta, y=a\tan^{3}\theta then \dfrac {d^{3}y}{dx^{3}}
  • \dfrac {-3}{8a^{2}}\cot^{3}\theta
  • `\dfrac {3}{8a^{2}}\cot^{3}\theta
  • 3\sec^{2}\theta \tan \theta
  • \dfrac {3}{4a^{2}}\cot^{3}\theta
The value of k which makes f(x)=\left\{\begin{matrix} \sin\dfrac{1}{x}, x\neq 0\\ k, x=0\end{matrix}\right. continuous at x=0 is?
  • 8
  • 1
  • -1
  • None
Let f(x) = \underset{0}{\overset{x}{\int}} |2t - 3| dt, then f is 
  • continuous at x = \dfrac{3}{2}
  • continuous at x = 3
  • differentiable at x = \dfrac{3}{2}
  • differentiable at x = 0
Let f(x) = \left\{\begin{matrix}x &x < 1 \\ 2 - x & 1 \leq x \leq 2\\ -2 + 3x - x^{2} & x > 2\end{matrix}\right. then f(x) is
  • Differentiable at x = 0
  • Differentiable at x = 2
  • Differentiable at x = 1 and x = 2
  • Not differentiable at x = 0
Range of function f(x)-g(x) in [-\pi, \pi] is-
  • [0, e^{\pi}+1]
  • [0, e^{\pi}-1]
  • e^{\pi}-1, e^{\pi}+1]
  • [e^{-\pi}, e^{\pi}]
Which of the following is NOT CORRECT-
  • b=d
  • a=d
  • a\neq b
  • c\neq d
If f\left( x \right) = \left( {x - a} \right)g\left( x \right) and g\left( x \right) is continuous x = a then {f^{'}}\left( 1 \right) =
  • g\left( 1 \right)
  • {g^{'}}\left( 1 \right)
  • - {g^{'}}\left( 1 \right)
  • {g^{'}}\left( { - 1} \right)
Function f(x)-g(x) is-
  • continuous & differentiable at x=0
  • continuous but not differentiable at x=0
  • discontinuous at x=0
  • non differentiable because it is discontinuous at x=0
Differentiate \log(1+x^{2}) with respect \tan^{-1}x.
  • 2x
  • x^2
  • x
  • x^3
An angle \theta through which a pulley turns with time 't' is completed by \theta = t^{2} + 3t - 5\ sq. cms/ min. Then the angular velocity for t = 5\ sec.
  • 5^{c}/ sec
  • 13^{c}/ sec
  • 23^{c}/ sec
  • 35^{c}/ sec
If the following function is continuous at x=0, find the value of k:
f\left( x \right) = \left\{ {\begin{array}{ccccccccccccccc}{\dfrac{{\sin \frac{{3x}}{2}}}{x}}&{,x \ne 0}\\k&{,x = 0}\end{array}} \right.
  • \dfrac{1}{3}
  • \dfrac{2}{3}
  • \dfrac{4}{3}
  • \dfrac{3}{2}
Let g\left(x\right)=\dfrac{f\left(x\right)}{x+1} where f\left(x\right) is differentiable on  \left[0,5\right] such that f\left(0\right)=4,f\left(5\right)=-1. There exists c\in \left(0,5\right) such that g^{ ' }\left( c \right) is ?
  • -\dfrac{1}{6}
  • \dfrac{1}{6}
  • -\dfrac{5}{6}
  • -1
Let f(x)=3x^{10}-7x^8+5x^6-21x^3+3x^2-7.
The value of \lim _{ h\rightarrow 0 }{ \dfrac { f\left( 1-h \right) -f\left( 1 \right)  }{ { h }^{ 3 }+3h }  }  is
  • \dfrac{50}{3}
  • \dfrac{22}{3}
  • 13
  • None of these
If f is differentiable on (a,b) and if f(a)=f(b)=0 then for any \alpha there is an x\in (a,b) such that \alpha f(x)+f'(x)-1=0
  • True
  • False
A function f:R\rightarrow R is such that f(1)=3 and f'(1)=6. Then \rightarrow { \displaystyle \lim _{ x\rightarrow 0 }{ \left[ \dfrac { f\left( 1+x \right)  }{ f\left( 1 \right)  }  \right]  }  }^{ 1/x }= ?
  • 1
  • e^{2}
  • e^{1/2}
  • e^{3}
If y=y(x) and it follows the relation e^{xy^{2}}+y\cos(x^{2})=5 then y'(0) is equal to
  • 4
  • -16
  • -4
  • 16
If f is a real valued differentiable function satisfying \left| f\left( x \right) -f\left( y \right)  \right| \le { \left( x-y \right)  }^{ 2 },x,y\epsilon R\ and f\left( 0 \right) ,\ then f\left( 1 \right) equals ?
  • -1
  • 0
  • 2
  • 1
If f (x) is differentiable everywhere, then:
  • | f | is differentiable everywhere
  • |  { f } | ^ { 2 } is differentiable everywhere
  • f | f | is not differentiable at some point
  • f + | f | is differentiable everywhere
Let f differentiable at x=0 and f'\left( 0 \right) = 1. Then \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( h \right) - f\left( { - 2h} \right)}}{h} = =
  • 3
  • 2
  • 1
  • 6
Let f(x) be differentiable function such that f\left(\dfrac{x+y}{1-xy}\right)=f(x)+f(y) \forall x and y. If \underset { x\rightarrow 0 }{ lt } \dfrac { f\left( x \right)  }{ x } =\dfrac { 1 }{ 3 } then f(1) equals 
  • \dfrac{1}{4}
  • \dfrac{1}{6}
  • \dfrac{1}{12}
  • \dfrac{1}{8}
If f(x)=x^{n}\sin \dfrac {1}{x},f(0)=0
  • f is continuous differentiable at x=0 for any n< 2, n\in N
  • f is continuous differentiable for all x for any n\ge 2, n\in N
  • f is discountinuous at x=0 if n=0
  • f'(x) is discountinuous at x=0 if n=0
If x=\dfrac{e^t+e^{-t}}{2}, y=\dfrac{e^t-e^{-t}}{2}, then \dfrac{dx}{dy}=
  • -\dfrac{x}{y}
  • \dfrac{y}{x}
  • \dfrac{x}{y}
  • -\dfrac{y}{x}
If y=a^{{a}^{{x}}}, then \dfrac {dy}{dx}=

  • y.a^{x}{(\log a)}^{2}
  • y.a^{x}.\log a
  • {(y.a^{x})}^{2}
  • (y.a^{x})
Solve:
\dfrac { d } { d x } \tan ^ { - 1 } ( \sec x + \tan x )
  • 1
  • 1 / 2
  • \cos x
  • sec x
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers