Explanation
We have,
$$f\left( x \right)$$ is a polynomial.
Then,
The second order of $$f\left( {{e}^{x}} \right)=?$$
Find that,
$$\dfrac{d}{dx}\left[ \dfrac{d}{dx}f\left( {{e}^{x}} \right) \right]=?$$
So,
We know that,
$$ \dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}} $$
$$ So, $$
$$ \dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=g'\left( x \right)f'\left( g\left( x \right) \right) $$
Now. Using formula,
$$\dfrac{d}{dx}\left( I.II \right)=I.\dfrac{d}{dx}II+II.\dfrac{d}{dx}I$$
$$\dfrac{d}{dx}\left[ f\left( {{e}^{x}} \right) \right]={{e}^{x}}.f'\left( {{e}^{x}} \right)\,\,\,......\,\,\left( 1 \right)$$
Again differentiating and we get,
$$ \dfrac{d}{dx}\left[ \dfrac{d}{dx}f\left( {{e}^{x}} \right) \right]=\dfrac{d}{dx}\left[ f'\left( {{e}^{x}} \right).{{e}^{x}} \right]=f'\left( {{e}^{x}} \right){{e}^{x}}+{{e}^{x}}\left[ {{e}^{x}}f''\left( {{e}^{x}} \right) \right] $$
$$ =\dfrac{d}{dx}\left[ \dfrac{d}{dx}f\left( {{e}^{x}} \right) \right]={{e}^{x}}f'\left( {{e}^{x}} \right)+{{e}^{2x}}f''\left( {{e}^{x}} \right) $$
Hence, this is the answer.
Please disable the adBlock and continue. Thank you.