Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 11 - MCQExams.com

If Dr=|rxn(n+1)/22r1yn23r2zn(3n1)/2|, then nr×1Dr is equal to
  • 16n(n+1)(2n+1)
  • 14n2(n+1)2
  • 0
  • None of these
 Δ=|1+a2+a41+ab+a2b21+ac+a2c21+ab+a2b21+b2+b41+bc+b2c21+ac+a2c21+bc+b2c21+c2+c4|isequalto                  
  • (a+b+c)6
  • (ab)2(bc)2(ca)2
  • 4 (a-b)(b-c)(c-a)
  • None of these
If in the determinant Δ=|a1b1c1a2b2c2a3b3c3|, A1,B1,C1 etc., be the co-factors of a1,b1,c1 etc., then which of the following relations is incorrect?
  • a1A1+b1B1+c1C1=Δ
  • a2A2+b2B2+c2C2=Δ
  • a3A3+b3B3+c3C3=Δ
  • a1A2+b1B2+c1C2=Δ
Let A=[100210321]andU1,U2,U3 be column matrices satisfying AU1=[100],AU2=[236],AU3=[231]. If U is 3×3 matrix, whose columns are U1,U2,U3. then |U| is 
  • 11
  • 3
  • 32
  • 2
|1+x1111+y1111+z|=
  • xyz(1x+1y+1z)
  • xyz
  • 1+1x+1y+1z
  • 1x+1y+1z
If r=|2r12.3r14.5r1xyz2n13n15n1|, then nr=1(r) is equal to
  • xyz
  • 1
  • 1
  • 0
|a2+2a2a+112a+1a+21331|=
  • (a1)2
  • (a1)3
  • (a1)4
  • 2(a1)
Let k be a positive real number and let 
A = [2k12k2k2k12k2k2k1]
B = [02k1k12k02k2kk0]
If det(Adj(A))+det(Adj(B)) = 2 then [k] is equal to
  • 4
  • 6
  • 0
  • 1
If θεR, then the determinant Δ=|sinθcosθsin2θsin(θ+2π3)cos(θ+2π3)sin(2θ+4π3)sin(θ2π3)cos(θ2π3)sin(2θ4π3)|=
  • sinθcosθ
  • sin2θ
  • 1+sin2θcos2θ
  • None of these
If θϵR, then the determinant  Δ =|sinθcosθsin2θsin(θ+2π3)cos(θ+2π3)sin(2θ+2π3)sin(θ2π3)cos(θ2π3)sin(2θ2π3)|
  • sinθcosθ
  • sin2θ
  • 1+sin2θcos2θ
  • None of these
Solve Δ=|13+325515+265103+65155|=
  • 152253
  • 253152
  • 35
  • 152+73
Let [cos1xcos1ycos1zcos1ycos1zcos1xcos1zcos1xcos1y] such that |A|=0, then maximum value of x+y+z is
  • 3
  • 0
  • 1
  • 2
Matrix A=|x321y422z|, if xyz=60 and 8x+4y+3z=20, then a(adjA) is equal to 
  • |640006400064|
  • |880008800088|
  • |680006800068|
  • |340003400034|
The number of distinct values of a 2×2 determinant whose entries are from set {1,0,1} is
  • 4
  • 6
  • 5
  • 3
f(x)=|x2(x1)2x3x1x2(x+1)3x(x+1)2(x+2)3|
  • 0
  • 2
  • 2
  • None of these
If (ω1)  is a cubic root of unity then |11+i+ω2ω21i1ω21i1+ωi1| equals-
  • 0
  • 1
  • i
  • ω
If A is a square matrix of order 3, then |Adj(AdjA2)|=
  • |A|2
  • |A|4
  • |A|8
  • |A|16
If 1,ω,ω2 are the roots of unity then =|1ωnω2nωnω2n1ω2n1ωn| is equal to-
  • 0
  • 1
  • ω
  • ω2
If |A| denotes the value of the determinant of the square matrix A order 3, then |2A|=
  • 8|A|
  • 8|A|
  • 2|A|
  • None of these
f(x)=|2cosx10xπ22cosx1012cosx|f(x)=
  • 0
  • 2
  • π/2
  • π6
State whether the statement is true/false.

If A(x)  =[cosxsinx0sinxcosx0001], then adj [A(x)]=A(x).
  • True
  • False
If a+b+c=0  one root of |axcbcbxabacx| =0 is
  • x=1
  • x=2
  • x=a2+b2+c2
  • x=0
If a matrix [(xa)2(xb)2(xc)2(ya)2(yb)2(yc)2(za)2(zb)2(zc)2] is a zero matrix, then a,b,c,x,y,z are connected by:
  • a+b+c=0,x+y+z=0
  • a+b+c=0,x=y=z
  • a=b=c,x+y+z=0
  • None of these
If |x2xx2x0xx8| = Ax4+Bx3+cx2+Dx+E , then the value of 5A+4B+2C+2D+E is equal to
  • 11
  • 17
  • 17
  • 0
The maximum and minimum values of (3×3) determinant whose elements belong to {0,1,2,3} is
  • ±9
  • ±15
  • ±54
  • ±32
The value of |111(2x+2x)2(3x+3x)2(5x+5x)2(2x2x)2(3x3x)2(5x5x)2| is equal to
  • 0
  • 30x
  • 30x
  • None of these
If the points A(x,2),B(3,4) and C(7,5) are collinear, then the value of x is :
  • 63
  • 63
  • 60
  • 60
The determinant |abaα+bbcbα+caα+bbα+c0| is equal to zero, if
  • a,b,care in A.P.
  • a,b,c are in G.P.
  • a,b,c are in H.P.
  • None of these
The determinant Δ=|a2(1+x)abacabb2(1+x)bcacbcc2(1+x)| is divisible by  
  • 1+x
  • (1+x)2
  • x2
  • none of these
If A=[211014003], then tr(adj(adj A)) is equal  to
  • 18
  • 24
  • 36
  • 48
Which of the following is/are true ? 
 (i)  Adjoint of a symmetric matrix is symmetric 
(ii)  Adjoint of a unit matrix is a unit matrix
(iii) A(adj A)=(adj A) A= [A]f and 
(iv) Adjoint of a diagonal matrix is a diagonal matrix  
  • (i)
  • (ii)
  • (iii)and(iv)
  • None of these
If A=[a000a000a], then the value of |A||adjA| is 
  • a9
  • a5
  • a6
  • a27
If A=[121112211], then det(adj(adjA))
  • (14)4
  • (14)3
  • (14)2
  • (14)1
A=[1134] and A (adj A)=KI, then the value of 'K' is ...
  • 2
  • -2
  • 10
  • -10
Let P(x)=|x3+4i34ix7i5+6ix72i72i|
The number of values of x for which P(x)=0 is 
  • 0
  • 1
  • 2
  • 3
Let f(x)=sin1(tanx)+cos1(cotx) then
  • f(x)=π2 wherever defined
  • domain of f(x) is x=nπ±π4,n1
  • period f(x) is π2
  • f(x) in many one function
If A=[4234] then |adj A| is equal to 
  • 16
  • 10
  • 6
  • none of these
Let A be a non-singular matrix of order n nad |A|=K, then (adjA)1 is 
  • AK
  • Kn1(adjA)
  • Kn2A
  • KA
Which of the following values of  α satisfy the equation

|(1+α)2(1+2α)2(1+3α)2(2+α)2(2+2α)2(2+3α)2(3+α)2(3+2α)2(3+3α)2|=648α ?
  • 4
  • 9
  • 9
  • 4
Let A=[aij] be a 3×3 matrix whose determinant is 5. Then the determinant of the matrix B=[2ijaij] is
  • 5
  • 10
  • 20
  • 40
If A=[112302103], value of |A(adjA)|:
  • 11
  • 112
  • 113
  • 11
If [123231312] then |adj (adj A)| is equal to
  • 183
  • 182
  • 184
  • 186
If A=[122023324], then A.adj(a)=
  • [500050005]
  • [511151115]
  • [000000000]
  • [800080008]
If A is a square matrix of order n and |A|=D and |adjA|=D, then
  • DD=D2
  • DD1=D1
  • DD=Dn1
  • DD=Dn
If the points (k, 2 - 2k) (1 - k, 2k) and (-k -4, 6 -2x) be collinear the possible values of k are
  • -12
  • 12
  • 1
  • - 1
If A=[2341], then adj(3A2+12A) is equal to:
  • [72638451]
  • [72846351]
  • [51638472]
  • [51846372]
Let Δo= [a11a12a13a21a22a23a31a32a33] and let Δ1 denote the determinant formed by the cofactors of elements of Δ0 and Δ2 denote the determinant formed by the cofactor of Δ1, similarly Δn denotes the determinant formed by the cofactors of Δn1 then the determinant value of Δn is
  • Δ02n
  • Δ02n
  • Δ0n2
  • Δ20
P=[1α3133244] is the adjoint of a 3×3 matrix A and |A|=4, then α is equal to 
  • 4
  • 11
  • 5
  • 0
If  A=(1235),  then the value of the determinant  |A20095A2008|  is
  • 6
  • 5
  • 4
  • 4
  • 6
If A=[a1a2a3b1b2b3c1c2c3] and Ai,Bi,Ci are cofactors of ai,bi,ci then a1B1+a2B2+a3B3=
  • 0
  • |A|
  • |A|2
  • 2|A|
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers