Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Determinants Quiz 11 - MCQExams.com
CBSE
Class 12 Commerce Maths
Determinants
Quiz 11
If
D
r
=
|
r
x
n
(
n
+
1
)
/
2
2
r
−
1
y
n
2
3
r
−
2
z
n
(
3
n
−
1
)
/
2
|
, then
n
∑
r
×
1
D
r
is equal to
Report Question
0%
1
6
n
(
n
+
1
)
(
2
n
+
1
)
0%
1
4
n
2
(
n
+
1
)
2
0%
0
0%
None of these
Δ
=
|
1
+
a
2
+
a
4
1
+
a
b
+
a
2
b
2
1
+
a
c
+
a
2
c
2
1
+
a
b
+
a
2
b
2
1
+
b
2
+
b
4
1
+
b
c
+
b
2
c
2
1
+
a
c
+
a
2
c
2
1
+
b
c
+
b
2
c
2
1
+
c
2
+
c
4
|
i
s
e
q
u
a
l
t
o
Report Question
0%
(
a
+
b
+
c
)
6
0%
(
a
−
b
)
2
(
b
−
c
)
2
(
c
−
a
)
2
0%
4 (a-b)(b-c)(c-a)
0%
None of these
If in the determinant
Δ
=
|
a
1
b
1
c
1
a
2
b
2
c
2
a
3
b
3
c
3
|
,
A
1
,
B
1
,
C
1
etc., be the co-factors of
a
1
,
b
1
,
c
1
etc., then which of the following relations is incorrect?
Report Question
0%
a
1
A
1
+
b
1
B
1
+
c
1
C
1
=
Δ
0%
a
2
A
2
+
b
2
B
2
+
c
2
C
2
=
Δ
0%
a
3
A
3
+
b
3
B
3
+
c
3
C
3
=
Δ
0%
a
1
A
2
+
b
1
B
2
+
c
1
C
2
=
Δ
Explanation
Expand determinant in terms of the elements of any row.
Given,
⇒
Δ
=
|
a
1
b
1
c
1
a
2
b
2
c
2
a
3
b
3
c
3
|
⇒
A
1
,
B
1
,
C
1
etc. be the co-factors of
a
1
,
b
1
,
c
1
etc.
Now,
Sum of the product of element of a row with their co-factor is equal to the value of the determinant.
So,
For
1
s
t
row,
a
1
A
1
+
b
1
B
1
+
c
1
C
1
=
Δ
Similarly, for
2
n
d
and
3
r
d
row, it will be
⇒
a
2
A
2
+
b
2
B
2
+
c
2
C
2
=
Δ
⇒
a
3
A
3
+
b
3
B
3
+
c
3
C
3
=
Δ
Therefore, the incorrect relation is
a
1
A
2
+
b
1
B
2
+
c
1
C
2
=
Δ
.
Hence, the correct option is (D).
Let
A
=
[
1
0
0
2
1
0
3
2
1
]
a
n
d
U
1
,
U
2
,
U
3
be column matrices satisfying
A
U
1
=
[
1
0
0
]
,
A
U
2
=
[
2
3
6
]
,
A
U
3
=
[
2
3
1
]
. If U is
3
×
3
matrix, whose columns are
U
1
,
U
2
,
U
3
. then |U| is
Report Question
0%
−
11
0%
−
3
0%
3
2
0%
2
|
1
+
x
1
1
1
1
+
y
1
1
1
1
+
z
|
=
Report Question
0%
x
y
z
(
1
x
+
1
y
+
1
z
)
0%
x
y
z
0%
1
+
1
x
+
1
y
+
1
z
0%
1
x
+
1
y
+
1
z
If
△
r
=
|
2
r
−
1
2.
3
r
−
1
4.
5
r
−
1
x
y
z
2
n
−
1
3
n
−
1
5
n
−
1
|
, then
n
∑
r
=
1
(
△
r
)
is equal to
Report Question
0%
x
y
z
0%
1
0%
−
1
0%
0
|
a
2
+
2
a
2
a
+
1
1
2
a
+
1
a
+
2
1
3
3
1
|
=
Report Question
0%
(
a
−
1
)
2
0%
(
a
−
1
)
3
0%
(
a
−
1
)
4
0%
2
(
a
−
1
)
Let k be a positive real number and let
A =
[
2
k
−
1
2
√
k
2
√
k
2
√
k
1
−
2
k
−
2
√
k
2
k
−
1
]
B =
[
0
2
k
−
1
√
k
1
−
2
√
k
0
−
2
k
2
√
k
−
√
k
0
]
If
d
e
t
(
A
d
j
(
A
)
)
+
d
e
t
(
A
d
j
(
B
)
)
= 2 then [k] is equal to
Report Question
0%
4
0%
6
0%
0
0%
1
If
θ
ε
R
,
then the determinant
Δ
=
|
sin
θ
cos
θ
sin
2
θ
sin
(
θ
+
2
π
3
)
cos
(
θ
+
2
π
3
)
sin
(
2
θ
+
4
π
3
)
sin
(
θ
−
2
π
3
)
cos
(
θ
−
2
π
3
)
sin
(
2
θ
−
4
π
3
)
|
=
Report Question
0%
−
sin
θ
−
cos
θ
0%
sin
2
θ
0%
1
+
sin
2
θ
−
cos
2
θ
0%
N
o
n
e
o
f
t
h
e
s
e
If
θ
ϵ
R
, then the
d
e
t
e
r
m
i
n
a
n
t
Δ
=
|
sin
θ
cos
θ
sin
2
θ
sin
(
θ
+
2
π
3
)
cos
(
θ
+
2
π
3
)
sin
(
2
θ
+
2
π
3
)
sin
(
θ
−
2
π
3
)
cos
(
θ
−
2
π
3
)
sin
(
2
θ
−
2
π
3
)
|
=
Report Question
0%
−
sin
θ
−
cos
θ
0%
sin
2
θ
0%
1
+
sin
2
θ
−
cos
2
θ
0%
None of these
Solve
Δ
=
|
√
13
+
√
3
2
√
5
√
5
√
15
+
√
26
5
√
10
3
+
√
65
√
15
5
|
=
Report Question
0%
15
√
2
−
25
√
3
0%
25
√
3
−
15
√
2
0%
3
√
5
0%
−
15
√
2
+
7
√
3
Let
[
cos
−
1
x
cos
−
1
y
cos
−
1
z
cos
−
1
y
cos
−
1
z
cos
−
1
x
cos
−
1
z
cos
−
1
x
cos
−
1
y
]
such that
|
A
|
=
0
, then maximum value of
x
+
y
+
z
is
Report Question
0%
3
0%
0
0%
1
0%
2
Matrix
A
=
|
x
3
2
1
y
4
2
2
z
|
, if
x
y
z
=
60
and
8
x
+
4
y
+
3
z
=
20
, then
a
(
a
d
j
A
)
is equal to
Report Question
0%
|
64
0
0
0
64
0
0
0
64
|
0%
|
88
0
0
0
88
0
0
0
88
|
0%
|
68
0
0
0
68
0
0
0
68
|
0%
|
34
0
0
0
34
0
0
0
34
|
The number of distinct values of a
2
×
2
determinant whose entries are from set
{
−
1
,
0
,
1
}
is
Report Question
0%
4
0%
6
0%
5
0%
3
f
(
x
)
=
|
x
−
2
(
x
−
1
)
2
x
3
x
−
1
x
2
(
x
+
1
)
3
x
(
x
+
1
)
2
(
x
+
2
)
3
|
Report Question
0%
0
0%
2
0%
−
2
0%
None of these
If
(
ω
≠
1
)
is a cubic root of unity then
|
1
1
+
i
+
ω
2
ω
2
1
−
i
−
1
ω
2
−
1
−
i
−
1
+
ω
−
i
−
1
|
equals-
Report Question
0%
0
0%
1
0%
i
0%
ω
If A is a square matrix of order 3, then
|
A
d
j
(
A
d
j
A
2
)
|
=
Report Question
0%
|
A
|
2
0%
|
A
|
4
0%
|
A
|
8
0%
|
A
|
16
If
1
,
ω
,
ω
2
are the roots of unity then
△
=
|
1
ω
n
ω
2
n
ω
n
ω
2
n
1
ω
2
n
1
ω
n
|
is equal to-
Report Question
0%
0
0%
1
0%
ω
0%
ω
2
If
|
A
|
denotes the value of the determinant of the square matrix
A
order
3
, then
|
−
2
A
|
=
Report Question
0%
−
8
|
A
|
0%
8
|
A
|
0%
−
2
|
A
|
0%
None of these
f
(
x
)
=
|
2
cos
x
1
0
x
−
π
2
2
cos
x
1
0
1
2
cos
x
|
⇒
f
′
(
x
)
=
Report Question
0%
0
0%
2
0%
π
/
2
0%
π
−
6
State whether the statement is true/false.
If
A
(
x
)
=
[
cos
x
−
sin
x
0
sin
x
cos
x
0
0
0
1
]
, then adj
[
A
(
x
)
]
=
A
(
−
x
)
.
Report Question
0%
True
0%
False
If
a
+
b
+
c
=
0
one root of
|
a
−
x
c
b
c
b
−
x
a
b
a
c
−
x
|
=0 is
Report Question
0%
x
=
1
0%
x
=
2
0%
x
=
a
2
+
b
2
+
c
2
0%
x
=
0
If a matrix
[
(
x
−
a
)
2
(
x
−
b
)
2
(
x
−
c
)
2
(
y
−
a
)
2
(
y
−
b
)
2
(
y
−
c
)
2
(
z
−
a
)
2
(
z
−
b
)
2
(
z
−
c
)
2
]
is a zero matrix, then
a
,
b
,
c
,
x
,
y
,
z
are connected by:
Report Question
0%
a
+
b
+
c
=
0
,
x
+
y
+
z
=
0
0%
a
+
b
+
c
=
0
,
x
=
y
=
z
0%
a
=
b
=
c
,
x
+
y
+
z
=
0
0%
None of these
If
|
x
2
x
x
2
x
0
x
x
8
|
=
A
x
4
+
B
x
3
+
c
x
2
+
D
x
+
E
, then the value of
5
A
+
4
B
+
2
C
+
2
D
+
E
is equal to
Report Question
0%
−
11
0%
17
0%
−
17
0%
0
The maximum and minimum values of
(
3
×
3
)
determinant whose elements belong to
{
0
,
1
,
2
,
3
}
is
Report Question
0%
±
9
0%
±
15
0%
±
54
0%
±
32
The value of
|
1
1
1
(
2
x
+
2
−
x
)
2
(
3
x
+
3
−
x
)
2
(
5
x
+
5
−
x
)
2
(
2
x
−
2
−
x
)
2
(
3
x
−
3
−
x
)
2
(
5
x
−
5
−
x
)
2
|
is equal to
Report Question
0%
0
0%
30
x
0%
30
−
x
0%
N
o
n
e
o
f
t
h
e
s
e
If the points
A
(
x
,
2
)
,
B
(
−
3
,
−
4
)
and
C
(
7
,
−
5
)
are collinear, then the value of
x
is :
Report Question
0%
−
63
0%
63
0%
60
0%
−
60
Explanation
Given points are
A
(
x
,
2
)
B
(
−
3
,
−
4
)
C
(
7
,
−
5
)
(
x
1
,
y
1
)
=
(
x
,
2
)
,
(
x
2
,
y
2
)
=
(
−
3
,
−
4
)
(
x
3
,
y
3
)
=
(
7
,
−
5
)
x
1
[
y
2
−
y
3
]
+
x
2
[
y
3
−
y
1
]
+
x
3
[
y
1
−
y
2
]
=
0
x
[
(
−
4
)
−
(
−
5
)
]
+
(
−
3
)
[
(
−
5
)
−
2
]
+
7
[
2
−
(
−
4
)
]
=
0
x
(
−
4
+
5
)
−
3
(
−
5
−
2
)
+
7
(
2
+
4
)
=
0
x
(
1
)
−
3
(
−
7
)
+
7
(
6
)
=
0
x
+
21
+
42
=
0
x
+
63
=
0
x
=
−
63
∴
The value of x is
−
63
.
The determinant
|
a
b
a
α
+
b
b
c
b
α
+
c
a
α
+
b
b
α
+
c
0
|
is equal to zero, if
Report Question
0%
a
,
b
,
c
are in A.P.
0%
a
,
b
,
c
are in G.P.
0%
a
,
b
,
c
are in H.P.
0%
None of these
The determinant
Δ
=
|
a
2
(
1
+
x
)
a
b
a
c
a
b
b
2
(
1
+
x
)
b
c
a
c
b
c
c
2
(
1
+
x
)
|
is divisible by
Report Question
0%
1
+
x
0%
(
1
+
x
)
2
0%
x
2
0%
n
o
n
e
o
f
t
h
e
s
e
If
A
=
[
2
1
−
1
0
1
4
0
0
3
]
, then
t
r
(
a
d
j
(
a
d
j
A
)
)
is equal to
Report Question
0%
18
0%
24
0%
36
0%
48
Which of the following is/are true ?
(i) Adjoint of a symmetric matrix is symmetric
(ii) Adjoint of a unit matrix is a unit matrix
(iii) A(adj A)=(adj A) A= [A]f and
(iv) Adjoint of a diagonal matrix is a diagonal matrix
Report Question
0%
(
i
)
0%
(
i
i
)
0%
(
i
i
i
)
a
n
d
(
i
v
)
0%
N
o
n
e
o
f
t
h
e
s
e
If
A
=
[
a
0
0
0
a
0
0
0
a
]
, then the value of
|
A
|
|
a
d
j
A
|
is
Report Question
0%
a
9
0%
a
5
0%
a
6
0%
a
27
If
A
=
[
1
2
−
1
−
1
1
2
2
−
1
1
]
, then
d
e
t
(
a
d
j
(
a
d
j
A
)
)
Report Question
0%
(
14
)
4
0%
(
14
)
3
0%
(
14
)
2
0%
(
14
)
1
A
=
[
1
1
3
4
]
and A (adj A)=KI, then the value of 'K' is ...
Report Question
0%
2
0%
-2
0%
10
0%
-10
Let
P
(
x
)
=
|
x
−
3
+
4
i
3
−
4
i
x
−
7
i
5
+
6
i
x
7
−
2
i
−
7
−
2
i
|
The number of values of x for which
P
(
x
)
=
0
is
Report Question
0%
0
0%
1
0%
2
0%
3
Let
f
(
x
)
=
sin
−
1
(
tan
x
)
+
cos
−
1
(
cot
x
)
then
Report Question
0%
f
(
x
)
=
π
2
wherever defined
0%
domain of
f
(
x
)
is
x
=
n
π
±
π
4
,
n
∈
1
0%
period
f
(
x
)
is
π
2
0%
f
(
x
)
in many one function
If
A
=
[
4
2
3
4
]
then |adj A| is equal to
Report Question
0%
16
0%
10
0%
6
0%
none of these
Let
A
be a non-singular matrix of order
n
nad
|
A
|
=
K
, then
(
a
d
j
A
)
−
1
is
Report Question
0%
A
K
0%
K
n
−
1
(
a
d
j
A
)
0%
K
n
−
2
A
0%
K
A
Which of the following values of
α
satisfy the equation
|
(
1
+
α
)
2
(
1
+
2
α
)
2
(
1
+
3
α
)
2
(
2
+
α
)
2
(
2
+
2
α
)
2
(
2
+
3
α
)
2
(
3
+
α
)
2
(
3
+
2
α
)
2
(
3
+
3
α
)
2
|
=
−
648
α
?
Report Question
0%
−
4
0%
9
0%
−
9
0%
4
Let
A
=
[
a
i
j
]
be a
3
×
3
matrix whose determinant is
5
. Then the determinant of the matrix
B
=
[
2
i
−
j
a
i
j
]
is
Report Question
0%
5
0%
10
0%
20
0%
40
If
A
=
[
1
−
1
2
3
0
−
2
1
0
3
]
, value of
|
A
(
a
d
j
A
)
|
:
Report Question
0%
11
0%
11
2
0%
11
3
0%
−
11
If
[
1
2
3
2
3
1
3
1
2
]
then
|
a
d
j
(
a
d
j
A
)
|
is equal to
Report Question
0%
18
3
0%
18
2
0%
18
4
0%
18
6
If
A
=
[
1
−
2
2
0
2
−
3
3
−
2
4
]
, then
A
.
a
d
j
(
a
)
=
Report Question
0%
[
5
0
0
0
5
0
0
0
5
]
0%
[
5
1
1
1
5
1
1
1
5
]
0%
[
0
0
0
0
0
0
0
0
0
]
0%
[
8
0
0
0
8
0
0
0
8
]
If
A
is a square matrix of order
n
and
|
A
|
=
D
and
|
a
d
j
A
|
=
D
′
, then
Report Question
0%
D
D
′
=
D
2
0%
D
D
−
1
=
D
−
1
0%
D
D
′
=
D
n
−
1
0%
D
D
′
=
D
n
If the points (k, 2 - 2k) (1 - k, 2k) and (-k -4, 6 -2x) be collinear the possible values of k are
Report Question
0%
-
1
2
0%
1
2
0%
1
0%
- 1
Explanation
Given three points
(
K
,
2
−
2
K
)
(
1
−
K
,
2
K
)
(
−
K
−
4
,
6
−
2
K
)
Noe three points
(
x
1
,
y
1
)
(
x
2
,
y
2
)
(
x
3
,
y
3
)
will be collinear
if
⇒
[
x
1
(
y
2
−
y
3
)
+
x
2
(
y
3
−
y
1
)
+
x
3
(
y
1
−
y
2
)
]
=
0
⟶
(
1
)
Putting
x
1
=
K
;
y
1
=
2
−
2
K
x
2
=
1
−
K
;
y
2
=
2
K
x
3
=
−
K
−
4
;
y
3
=
6
−
2
K
in the equation
(
1
)
we get
⇒
K
(
2
K
−
6
+
2
K
)
+
(
1
−
K
)
(
6
−
2
K
−
2
+
2
K
)
+
(
K
−
4
)
(
2
−
2
K
−
2
K
)
=
0
⇒
K
(
4
K
−
6
)
+
(
1
−
K
)
(
4
)
+
(
−
K
−
4
)
(
2
−
4
K
)
=
0
⇒
4
K
2
−
6
K
+
4
−
4
K
−
(
2
K
−
4
K
2
+
8
−
16
K
)
=
0
⇒
4
K
2
−
6
K
+
4
−
4
K
−
2
K
+
4
K
2
−
8
+
16
K
=
0
⇒
8
K
2
+
4
K
−
4
=
0
⇒
2
K
2
+
K
−
1
=
0
⇒
2
K
2
+
2
K
−
K
−
1
=
0
⇒
2
K
(
K
+
1
)
−
1
(
K
+
1
)
=
0
⇒
(
2
K
−
1
)
(
K
+
1
)
=
0
∴
K
=
1
/
2
,
−
1
[option B, option D]
If
A
=
[
2
−
3
−
4
1
]
, then
a
d
j
(
3
A
2
+
12
A
)
is equal to:
Report Question
0%
[
72
−
63
−
84
51
]
0%
[
72
−
84
−
63
51
]
0%
[
51
63
84
72
]
0%
[
51
84
63
72
]
Let
Δ
o
=
[
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
]
and let
Δ
1
denote the determinant formed by the cofactors of elements of
Δ
0
and
Δ
2
denote the determinant formed by the cofactor of
Δ
1
,
similarly
Δ
n
denotes the determinant formed by the cofactors of
Δ
n
−
1
then the determinant value of
Δ
n
is
Report Question
0%
Δ
0
2
n
0%
Δ
0
2
n
0%
Δ
0
n
2
0%
Δ
2
0
Explanation
Let
A
be a matrix of order
m
×
m
and
C
be its co-factor matrix
We know that
A
.
a
d
j
(
A
)
=
|
A
|
.
I
⇒
|
A
|
|
a
d
j
(
A
)
|
=
|
A
|
m
.
|
I
|
⇒
|
A
|
|
a
d
j
(
A
)
|
=
|
A
|
m
......
(
1
)
since
|
I
|
=
1
But
a
d
j
(
A
)
=
C
T
∴
|
a
d
j
(
A
)
|
=
|
C
T
|
=
|
C
|
.......
(
2
)
since
|
C
|
=
|
C
T
|
From
(
1
)
and
(
2
)
we have
|
A
|
|
C
|
=
|
A
|
m
⇒
|
C
|
=
|
A
|
m
−
1
Let
Δ
i
be the cofactor matrix then
Δ
i
=
(
Δ
i
−
1
)
m
−
1
where
m
=
3
⇒
Δ
i
=
(
Δ
i
−
1
)
3
−
1
⇒
Δ
i
=
(
Δ
i
−
1
)
2
⇒
Δ
n
=
(
Δ
n
−
1
)
2
=
(
(
Δ
n
−
2
)
2
)
2
=
(
(
(
Δ
n
−
3
)
2
)
2
)
2
and so on.
⇒
Δ
n
−
1
=
(
Δ
n
−
2
)
2
⇒
Δ
n
−
2
=
(
Δ
n
−
3
)
2
and so on.
Hence
Δ
0
=
(
Δ
0
)
2
n
P
=
[
1
α
3
1
3
3
2
4
4
]
is the adjoint of a
3
×
3
matrix A and
|
A
|
=
4
,
then
α
is equal to
Report Question
0%
4
0%
11
0%
5
0%
0
If
A
=
(
1
2
3
5
)
,
then the value of the determinant
|
A
2009
−
5
A
2008
|
is
Report Question
0%
−
6
0%
−
5
0%
−
4
0%
4
0%
6
If
A
=
[
a
1
a
2
a
3
b
1
b
2
b
3
c
1
c
2
c
3
]
and
A
i
,
B
i
,
C
i
are cofactors of
a
i
,
b
i
,
c
i
then
a
1
B
1
+
a
2
B
2
+
a
3
B
3
=
Report Question
0%
0
0%
|A|
0%
|
A
|
2
0%
2|A|
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page