CBSE Questions for Class 12 Commerce Maths Determinants Quiz 12 - MCQExams.com

If $$A=A=\left[ \begin{matrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{matrix} \right]$$,then $$\left| A \right| \left| AdjA \right|$$ is equal to
  • $${a}^{9}$$
  • $${a}^{27}$$
  • $${a}^{61}$$
  • $$none \ of \ these$$
The adjoining of the matrix $$\begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & -1 \\ -4 & 5 & 2 \end{bmatrix}$$, is 
  • $$\begin{bmatrix} 9 & 19 & -4 \\ 4 & 14 & 1 \\ 8 & 3 & 2 \end{bmatrix}$$
  • $$ \begin{bmatrix} 9 & 4 & 8 \\ 19 & 14 & 3 \\ -4 & 1 & 2 \end{bmatrix}$$
  • $$\begin{bmatrix} 9 & -19 & -4 \\ -4 & 14 & -1 \\ 8 & -3 & 2 \end{bmatrix}$$
  • None of these
There are 12 points in a plane of which 5 are collinear. The maximum number of distinct quadrilaterals which can be formed with vertices at these points is 
  • $$2.^{ 7 }{ { { p } } }_{ 3 }$$
  • $$^{ 7 }{ { { p } } }_{ 3 }$$
  • $$6.^{ 7 }{ { { C } } }_{ 3 }$$
  • 420
If $$A$$ is a square matrix $$(adj \,A)' - (adj \,A')$$
  • $$2A$$
  • $$2 \,adj \,A$$
  • Unit matrix
  • Null matrix
If $$A$$ is singular matrix, then $$A.(adj\,A)$$ is 
  • $$singular$$
  • $$non-singular$$
  • $$symmetric$$
  • $$not \,defined$$
If $$A$$ is $$4\times 4$$ matrix and if $$\left| \left| A \right| adj\left( \left| A \right| A \right)  \right| ={ \left| A \right|  }^{ n }$$, then $$n$$ is 
  • $$11$$
  • $$13$$
  • $$17$$
  • $$19$$
A= \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} then Adj(A)=
  • $${A^T}$$
  • $$3{A^T}$$
  • $${A^{ - 1}}$$
  • $$ - {A^T}$$
If $$A=\begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix}$$ then the determinant of the matrix $$\left( {A}^{2016}-2{A}^{2015}-{A}^{2014} \right) $$ is
  • $$-2016$$
  • $$-25$$
  • $$2016$$
  • $$-175$$
If adj B = A, |P| = |Q| = 1, then adj $$\left( { Q }^{ -1 }{ BP }^{ -1 } \right) $$ is
  • PQ
  • QAP
  • PAQ
  • $${ PA }^{ -1 }Q$$
There are  $$12$$  points in a plane. The number of the straight lines joining any two of them when  $$3$$  of them are collinear is.
  • $$60$$
  • $$62$$
  • $$64$$
  • $$66$$
If $$A=\begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$$ and $$A(adj\, A)=A{A}^{T}$$ then $$5a+3b$$ is equal to 
  • $$5$$
  • $$4$$
  • $$11$$
  • $$-1$$
If $$\Delta_1 = \begin{vmatrix}x & \sin \theta & \cos \theta\\-\sin \theta & -x & 1\\\cos \theta & 1 &x\end{vmatrix}$$ and $$\Delta_2 = \begin{vmatrix}x & \sin 2\theta & \cos 2\theta\\-\sin 2\theta & -x & 1\\ \cos 2\theta & 1 & x\end{vmatrix}, x \neq 0$$; then for all $$\theta \in \left(0, \dfrac{\pi}{2}\right):$$
  • $$\Delta_1 - \Delta_2 = x(\cos 2\theta - \cos 4\theta)$$
  • $$\Delta_1 + \Delta_2 = -2x^3$$
  • $$\Delta_1 - \Delta_2 = -2x^3$$
  • $$\Delta_1 + \Delta_2 = -2(x^3 + x - 1)$$
Two straight lines intersects at a point O. Points $$A_1, A_2,....A_n $$ are taken on one line and $$B_1,B_2,....B_n $$  on the other. If the point O is not to be used, the number of triangles that can be drawn using these points as vertices, is:
  • $$n(n-1)$$
  • $$n(n-1)^2$$
  • $$n^2(n-1)$$
  • $$n^2(n-1)^2$$
If $$f'(x)=\begin{vmatrix} mx & mx-p & mx+p \\ n & n+p & n-p \\ mx+2n & mx+2n+p & mx+2n-p \end{vmatrix}$$, then $$y=f(x)$$ represents
  • a straight line parallel to x-axis
  • a straight line parallel to y-axis
  • parabola
  • a straight line with negative slope
If $${ f }_{ r }\left( x \right) ,{ g }_{ r }\left( x \right) ,{ h }_{ r }\left( x \right),\ r =1,2,3$$ are polynomials in $$x$$ such that $${ f }_{ r }\left( a \right) = { g }_{ r }\left( a \right) = { h }_{ r }\left( a \right),\ r =1,2,3$$ and  $${ F }\left( x \right) = \begin{vmatrix} { f }_{ 1 }\left( x \right) & { f }_{ 2 }\left( x \right) & { f }_{ 3 }\left( x \right) \\ { g }_{ 1 }\left( x \right) & { g }_{ 2 }\left( x \right) & { g }_{ 3 }\left( x \right) \\ { h }_{ 1 }\left( x \right) & { h }_{ 2 }\left( x \right) & { h }_{ 3 }\left( x \right) \end{vmatrix}$$
then $${ F }^{ ' }\left( x \right)$$ at $$x = a $$ is
  • $$1$$
  • $$2$$
  • $$3$$
  • None of these
If A and B are square matrices of order 3 such that $$\left | A \right | $$= -1,$$\left | B \right | $$=3, then $$\left | 3AB \right | $$ equals
  • -9
  • -81
  • -27
  • 81
If $$ A  = \left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{matrix} \right] $$ then 
  • $$ adj(adj A ) = A $$
  • $$ | adj(adj A) | = 1 $$
  • $$ |adj A | = 1 $$
  • none of these
Let $$ A=  \left[ \begin{matrix} 1 & 2 & 3 \\ 2 & 0 & 5 \\ 0 & 2 & 1 \end{matrix} \right]  $$ and $$ B =  \left[ \begin{matrix} 0 \\ -3 \\ 1 \end{matrix} \right]  $$ which of the following is true ?
  • $$ AX = B $$ has a unique solution
  • $$ AX = B $$ has exactly three solution
  • $$ AX =B $$ has infinitely many solutions
  • $$ AX = B $$ is inconsistent
Let $$f\left( x \right) =\begin{vmatrix} { x }^{ 3 } & \sin { x }  & \cos { x }  \\ 6 & -1 & 0 \\ p & { p }^{ 2 } & { p }^{ 3 } \end{vmatrix}$$ where $$p$$ is a constant. Then $$\dfrac{d^2 }{d x^3}\left\{ f\left( x \right) \right\} $$ at $$x=0$$ is
  • $$p$$
  • $$p + p^{2}$$
  • $$p + p^{3}$$
  • Independent of $$p$$
Consider an arbitary $$ 3 \times 3 $$ matrix $$ A = [a_{ij} ] $$ , a matrix $$ B = [ b_{ij} ] $$ is formed such that $$ b_{ij} $$ i sthe sum of all the elements expect $$ a_{ij} $$ in the $$ i^{th} $$ row of A . answer the following questions.
The value of $$to  |B| $$ is equal 
  • $$ |A| $$
  • $$ |A| / 2 $$
  • $$ 2|A| $$
  • None of these
If $$ A =  \left[ \begin{matrix} x & 5 & 2 \\ 2 & y & 3 \\ 1 & 1 & z \end{matrix} \right]   ,xyz = 80 , 3x +2y +10z = 20 $$ then  $$ A adj \quad A = \left[ \begin{matrix} 81 & 0 & 0 \\ 0 & 81 & 0 \\ 0 & 0 & 81 \end{matrix} \right]  $$
  • True
  • False
The value of $$ | \cup | $$ equals 
  • 0
  • 1
  • 2
  • -1
The maximum value of $$  \left| \begin{matrix}1  &1  &1  \\ 1 & (1+sin \theta) &1  \\ 1 & 1 & 1 +cos \theta \end{matrix} \right|  $$ is $$ \frac {1}{2} $$
  • True
  • False
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers