CBSE Questions for Class 12 Commerce Maths Determinants Quiz 4 - MCQExams.com

If the points $$(a, 0), (0, b)$$ and $$(1, 1)$$ are collinear, then $$\displaystyle \frac{1}{a} + \frac{1}{b}$$ equal to -
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
If A is a square matrix so that $$AadjA=diag\left ( k,k,k \right )$$ then $$\left | adj\: A \right |=$$ 
  • $$k$$
  • $$k^{2}$$
  • $$k^{3}$$
  • $$k^{4}$$
If A is a square matrix such that  $$\displaystyle \left | \begin{matrix}4 &0  &0 \\0 &4  &0 \\0 &0  &4\end{matrix} \right |$$=
  • $$4$$
  • $$16$$
  • $$64$$
  • $$256$$
If  $$\displaystyle A=\:\left [ \begin{matrix}1 &x \\x^{2}  &4y \end{matrix} \right ], B = \left [ \begin{matrix}-3 &1 \\1  &0 \end{matrix} \right ]$$ and $$adj \: \left( A \right) +B=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] , $$ then the values of $$x$$ and $$y$$ are respectively
  • $$\displaystyle \:\left ( 1,1 \right )$$
  • $$\displaystyle \:\left ( -1,1 \right )$$
  • $$\displaystyle \:\left ( 1,0 \right )$$
  • none of these
If $$A$$ is a non-singular matrix of order $$\displaystyle 3\times 3$$, then adj $$\displaystyle \left ( adj\:A \right )$$ is equal to
  • $$\displaystyle \left | A \right |A$$
  • $$\displaystyle \left | A \right |^{2}A$$
  • $$\displaystyle \left | A \right |^{-1}A$$
  • none of these
$$A=\left[\begin{matrix}1&0&0\\2&1&0\\3&2&1\end{matrix}\right], U_1, U_2$$ and $$U_3$$ are columns matrices satisfying $$AU_1=\left[\begin{matrix}1\\0\\0\end{matrix}\right], AU_2 = \left[\begin{matrix}2\\3\\0\end{matrix}\right], AU_3 = \left[\begin{matrix}2\\3\\1\end{matrix}\right]$$ and $$U$$ is $$3\times3$$ matrix whose columns are $$U_1, U_2, U_3$$ then answer the following question
The value of $$|U|$$ is
  • $$3$$
  • $$-3$$
  • $$\dfrac32$$
  • $$2$$
If $$\displaystyle \omega$$ is an imaginary cube root of unity,then the value of
$$\left | \begin{matrix}
a  &b\omega ^{2}  & a\omega \\
 b\omega & c &b\omega ^{2} \\
 c\omega ^{2}&a\omega   &c
\end{matrix} \right |$$,is ?
  • $$\displaystyle a^{3}+b^{3}+c^{3}$$
  • $$\displaystyle a^{2}b-b^{2}c$$
  • 0
  • $$\displaystyle a^{3}b+b^{3}+3abc $$

If $$A\displaystyle= \left | \begin{matrix}a &b  &c \\ x &y  &z \\ p &q  &r \end{matrix} \right |$$ and $$B=\left | \begin{matrix}q &-b  &y \\  -p&a  &-x \\  r&-c  &z \end{matrix} \right |$$, then 
  • $$A= 2B$$
  • $$A= B$$
  • $$A= -B$$
  • none of these
The value of the determinant $$\displaystyle \left | \begin{matrix}
1 &\omega ^{3}  &\omega ^{5} \\
 \omega ^{3}&1  &\omega ^{4} \\
 \omega ^{5}&\omega ^{4}  &1
\end{matrix} \right |$$ , where $$\omega$$ is an imaginary cube root of unity,is
  • $$\displaystyle (1-\omega )^{2} $$
  • 3
  • -3
  • none of these
Let $$\displaystyle \omega =-\frac{1}{2}+i\frac{\sqrt{3}}{2}$$,then the value of the determinant
$$\left | \begin{matrix}
1 & 1 &1 \\
 1& -1-\omega ^{2} &\omega ^{2} \\
 1& \omega ^{2} & \omega ^{4}
\end{matrix} \right |,$$is
  • $$\displaystyle 3\omega$$
  • $$\displaystyle 3\omega(\omega -1)$$
  • $$\displaystyle 3\omega ^{2}$$
  • $$\displaystyle 3 (-2\omega-1 )$$
Let $$\displaystyle A=\left [ \begin{matrix}1 &0  &0 \\ 2 &1  &0 \\ 3 &2  &1 \end{matrix} \right ]$$ and $$\displaystyle U_{1}, U_{2}, U_{3}$$ be column
matrices satisfying $$\displaystyle AU_{1}=\left [ \begin{matrix}1\\ 0\\ 0\end{matrix} \right ], AU_{2}=\left [ \begin{matrix}2\\ 3\\ 0\end{matrix} \right ], AU_{3}=\left [ \begin{matrix}2\\ 3\\ 1\end{matrix} \right ]$$. If U is
$$\displaystyle 3\times 3$$ matrix whose columns are  $$\displaystyle U_{1}, U_{2}, U_{3}$$, then $$\displaystyle \left | U \right |=$$
  • $$\displaystyle 3$$
  • $$\displaystyle -3$$
  • $$\displaystyle\dfrac{3}{2}$$
  • $$\displaystyle 2$$
The value of $$\displaystyle \left | \begin{matrix}
11 & 12 &13 \\
 12&13  &14 \\
 13&14  &15
\end{matrix} \right |$$,is
  • 1
  • 0
  • -1
  • 67
If the lines $$L_{1}:\lambda ^{2}x-y-1=0$$ $$L_{2}:x-\lambda ^{2}y+1=0$$ $$L_{3}:x+y-\lambda ^{2}=0$$ pass through the same point the value(s) of $$\lambda$$ equals
  • $$1$$
  • $$\sqrt{2}$$
  • $$2$$
  • $$0$$
When the determinant $$\begin{vmatrix} \cos { 2x }  & \sin ^{ 2 }{ x }  & \cos { 4x }  \\ \sin ^{ 2 }{ x }  & \cos { 2x }  & \cos ^{ 2 }{ x }  \\ \cos { 4x }  & \cos ^{ 2 }{ x }  & \cos { 2x }  \end{vmatrix}$$ is expanded in powers of $$\sin { x }$$, then the constant term in that expression is
  • 1
  • 0
  • -1
  • 2
If $$p+q+r=0=a+b+c$$, then the value of the determinant $$\begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix}$$ is

  • $$0$$
  • $$pq+qb+ra$$
  • $$1$$
  • none of these
If $$\displaystyle a\neq b\neq c,$$ are value of x which satisfies the equation $$\displaystyle \left | \begin{matrix}0 &x-a  &x-b \\ x+a &0  &x-c \\ x+b &x+c  &0 \end{matrix} \right |=0$$ is given by
  • $$x=0$$
  • $$x=c$$
  • $$x=b$$
  • $$x=a$$
The value of $$\begin{vmatrix} -1 & 2 & 1 \\ 3+2\sqrt { 2 }  & 2+2\sqrt { 2 }  & 1 \\ 3-2\sqrt { 2 }  & 2-2\sqrt { 2 }  & 1 \end{vmatrix}$$ is equal to
  • zero
  • $$-16\sqrt { 2 }$$
  • $$-8\sqrt { 2 }$$
  • one of these
Number of values of $$a$$ for which the lines $$2x+y-1=0, ax+3y-3=0, 3x+2y-2=0$$ are concurrent is

  • 0
  • 1
  • 2
  • $$\infty$$
Let $$\begin{vmatrix} x & 2 & x \\ { x }^{ 2 } & x & 6 \\ x & x & 6 \end{vmatrix}=A{ x }^{ 4 }+B{ x }^{ 3 }+C{ x }^{ 2 }+Dx+E$$. Then the value of $$5A+4B+3C+2D+E$$ is equal to
  • zero
  • -16
  • 16
  • -11
In triangle $$ABC$$, if $$\begin{vmatrix} 1 & 1 & 1 \\ \cot { \cfrac { A }{ 2 }  }  & \cot { \cfrac { B }{ 2 }  }  & \cot { \cfrac { C }{ 2 }  }  \\ \tan { \cfrac { B }{ 2 }  } +\tan { \cfrac { C }{ 2 }  }  & \tan { \cfrac { C }{ 2 }  } +\tan { \cfrac { A }{ 2 }  }  & \tan { \cfrac { A }{ 2 }  } +\tan { \cfrac { B }{ 2 }  }  \end{vmatrix}=0$$, then the triangle must be

  • equilateral
  • isosceles
  • obtuse angled
  • none of these
The value of the determinant $$\begin{vmatrix} 1 & 1 & 1 \\ { _{  }^{ m }{ C } }_{ 1 } & { _{  }^{ m+1 }{ C } }_{ 1 } & { _{  }^{ m+2 }{ C } }_{ 1 } \\ { _{  }^{ m }{ C } }_{ 2 } & { _{  }^{ m+1 }{ C } }_{ 2 } & { _{  }^{ m+2 }{ C } }_{ 2 } \end{vmatrix}$$ is equal to
  • $$1$$
  • $$-1$$
  • $$0$$
  • none of these
If $$a,b,c$$ are different, then the value of $$x$$ satisfying $$\begin{vmatrix} 0 & { x }^{ 2 }-a & { x }^{ 3 }-b \\ { x }^{ 2 }+a & 0 & { x }^{ 2 }+c \\ { x }^{ 4 }+b & x-c & 0 \end{vmatrix}=0$$ is
  • $$a$$
  • $$c$$
  • $$b$$
  • $$0$$
$$\Delta =\begin{vmatrix} a & { a }^{ 2 } & 0 \\ 1 & 2a+b & (a+b) \\ 0 & 1 & 2a+3b \end{vmatrix}$$ is divisible by
  • $$a+b$$
  • $$a+2b$$
  • $$2a+3b$$
  • $${ a }^{ 2 }$$
If $$\Delta =\begin{vmatrix} \sin { \theta  } \cos { \phi  }  & \sin { \theta  } \sin { \phi  }  & \cos { \theta  }  \\ \cos { \theta  } \cos { \phi  }  & \cos { \theta  } \sin { \phi  }  & -\sin { \theta  }  \\ -\sin { \theta  } \sin { \phi  }  & \sin { \theta  } \cos { \phi  }  & 0 \end{vmatrix}$$, then
  • $$\Delta$$ is independent of $$\theta$$
  • $$\Delta$$ is independent of $$\phi$$
  • $$\Delta$$ is a constant
  • $$ \displaystyle \cfrac { d\Delta }{ d\theta }| {_{ \theta =\pi / 2 }{ =0 }_{ } } $$
If $$\alpha$$ is a characteristic root of a nonsingular matrix, then the corresponding characteristic root of adj A is
  • $$\displaystyle \frac{|A|}{\alpha} $$
  • $$\displaystyle |\frac{A}{\alpha}| $$
  • $$\displaystyle \frac{|adj A|}{\alpha} $$
  • $$\displaystyle |\frac{adj A}{\alpha}| $$
If $$A$$ is a square matrix of order $$m\times n$$, then $$adj(adj\space A)$$ is equal to
  • $$|A|^n A$$
  • $$|A|^{n-1} A$$
  • $$|A|^{n-2} A$$
  • $$|A|^{n-3} A$$
If $$A = \begin{bmatrix}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{bmatrix}$$, Then $$adj(A)$$ equals
  • $$A$$
  • $$A^T$$
  • $$3A$$
  • $$3A^T$$
Find the determinants of minors and cofactors of the determinant $$\begin{vmatrix}2 & 3 & 4\\ 7 & 2 & -5\\ 8 & -1 & 3\end{vmatrix}$$
  • $$\begin{vmatrix}1 & 61 & -23\\ 13 & -26 & -26\\ -23 & -38 & -17\end{vmatrix}$$ and $$\begin{vmatrix}1 & 61 & -23\\ -13 & -26 & 26\\ -23 & 38 & -17\end{vmatrix}$$
  • $$\begin{vmatrix}1 & 61 & -23\\ 13 & -26 & -26\\ -23 & -38 & -17\end{vmatrix}$$ and $$\begin{vmatrix}1 & -61 & 23\\ -13 & -26 & 26\\ -23 & 38 & -17\end{vmatrix}$$
  • $$\begin{vmatrix}1 & 61 & -23\\ 13 & -26 & -26\\ -23 & -38 & -17\end{vmatrix}$$ and $$\begin{vmatrix}1 & 61 & 23\\ -13 & -26 & 26\\ -23 & 38 & -17\end{vmatrix}$$
  • None of these.
The adjoint of the matrix $$ A = \begin{bmatrix}1 & 1 & 1\\ 2 & 1 & -3\\ -1 & 2 & 3\end{bmatrix}$$ is
  • $$\frac{1}{11} \begin{bmatrix}9 & -1 & -4\\ -3 & 4 & 5\\ 5 & -3 & -1\end{bmatrix}$$
  • $$\begin{bmatrix}9 & 1 & -4\\ 3 & 4 & -5\\ 5 & 3 & -1\end{bmatrix}$$
  • $$\begin{bmatrix}9 & -3 & 5\\ -1 & 4 & -3\\ -4 & 5 & -1\end{bmatrix}$$
  • $$\begin{bmatrix}9 & -1 & -4\\ -3 & 4 & 5\\ 5 & -3 & -1\end{bmatrix}$$
If $$A^2 = I$$, then the value of $$det(A - I)$$ is (where $$A$$ has order $$3$$)
  • $$1$$
  • $$-1$$
  • $$0$$
  • cannot say anything
If $$A=\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix}$$and $$f(x) = \displaystyle \frac{1 + x}{1- x}$$, then $$f(|A|)$$ is
  • $$\dfrac{-1}{2}$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{-1}{3}$$
  • none of these
If $$A$$ is a square matrix of order $$n\times n$$ and $$k$$ is a scalar, then $$adj(kA)$$ is equal to _____________.
  • $$k^{n-1}adj\space A$$
  • $$k^{n}adj\space A$$
  • $$k^{n+1}adj\space A$$
  • $$kadj\space A$$
Find the adjoint of the matrix $$A = \begin{bmatrix}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12\end{bmatrix}$$.
If $$\mbox{Adjoint A: } \begin{bmatrix}a & -9 & 1 \\ b & 9 & -2 \\ 2 & c & 1\end{bmatrix} \\$$, find the value of $$abc$$.
  • 231
  • 213
  • 321
  • 312
If matrix A is given by $$A = \begin{bmatrix}6 & 11\\ 2 & 4\end{bmatrix}$$, then the determinant of $$A^{2005} - 6A^{2004}$$ is
  • $$2^{2006}$$
  • $$(-11) 2^{2005}$$
  • $$-2^{2005}$$
  • $$(-9)2^{2004}$$
$$\displaystyle \left | \begin{matrix}0 &p-q  &p-r \\ q-p &0  &q-r \\ r-p &r-q  &0 \end{matrix} \right |$$ is equal to
  • $$\displaystyle p+q+r$$
  • $$0$$
  • $$\displaystyle p-q-r$$
  • $$\displaystyle -p+q+r$$
If $$\displaystyle \left | \begin{matrix}6i &-3i  &1 \\ 4 &3i  &-1 \\ 20 &3  &i \end{matrix} \right |=x+iy$$ then
  • $$\displaystyle x=3, y=1$$
  • $$\displaystyle x=1, y=3$$
  • $$\displaystyle x=0, y=3$$
  • $$\displaystyle x=0, y=0$$
If $$A = \begin{bmatrix}3& -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{bmatrix}$$ then find $$Adj(Adj\space A)$$.
  • $$\quad \begin{bmatrix}3& -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{bmatrix}$$
  • $$\quad \begin{bmatrix}3& 3 & 4 \\ 2 & -3 & -4 \\ 0 & -1 & 1\end{bmatrix}$$
  • $$\quad \begin{bmatrix}3& 3 & 4 \\ 2 & -3 & 4 \\ 0 & 1 & 1\end{bmatrix}$$
  • $$\quad \begin{bmatrix}3& -3 & 4 \\ 2 & -3 & -4 \\ 0 & 1 & 1\end{bmatrix}$$
The matrix $$\begin{bmatrix}1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$ is
  • non-singular
  • singular
  • skew-symmetric
  • symmetric
The value of the $$\displaystyle m^{th}$$ order determinant of a matrix $$\displaystyle A$$ is $$\displaystyle 15$$ then the value of determinant formed by the cofactors of $$\displaystyle A$$ will be
  • $$\displaystyle \left ( 15 \right )^{m}$$
  • $$\displaystyle 15^{2m}$$
  • $$\displaystyle \left ( 15 \right )^{m-1}$$
  • $$\displaystyle \left ( 15 \right )^{2m-1}$$
The points $$\displaystyle(a, b+c),(b, c+a),(c, a+b)$$ are 
  • vertices of an equilateral triangle
  • collinear
  • concyclic
  • none of these
In a third order determinant $$a_{ij}$$ denotes the element in the ith row and the jth column If $$ a_{ij} = \left\{\begin{matrix}0, & i = j\\ 1, & i > j\\ -1,  & i < j\end{matrix}\right.$$ then the value of the determinant
  • 0
  • 1
  • -1
  • none of these
The value of the determinant $$\begin{vmatrix} \sqrt { 6 }  & 2i & 3+\sqrt { 6 }  \\ \sqrt { 12 }  & \sqrt { 3 } +\sqrt { 8 } i & 3\sqrt { 2 } +\sqrt { 6 } i \\ \sqrt { 18 }  & \sqrt { 2 } +\sqrt { 12 } i & \sqrt { 27 } +2i \end{vmatrix}$$ is
  • complex
  • real
  • irrational
  • rational
If $$\displaystyle \left | \begin{matrix}a+x &a  &x \\ a-x &a  &x \\ a-x &a  &-x \end{matrix} \right |=0$$ then $$\displaystyle x$$ is
  • $$0$$
  • $$\displaystyle a$$
  • $$3$$
  • $$\displaystyle 2a$$
If $$\Delta =\begin{vmatrix}
\cos \theta /2 & 1 & 1\\
1 & \cos \theta /2 & -\cos \theta /2\\
-\cos \theta /2 & 1 & -1
\end{vmatrix}$$, If the minimun of $$\Delta $$ is $$m_{1}$$ and maximum of $$\Delta $$ is $$m_{2}$$, then $$\left [ m_{1}, m_{2} \right ]$$ are related
  • [-4, -2]
  • [2, 4]
  • [-4, 0]
  • [0, 2]
If $$\displaystyle A= \begin{bmatrix}2 &14  &17 \\0  &\sin 2x  &\cos 2x \\0  &\cos 2x  &\sin 2x \end{bmatrix}$$ then $$\displaystyle \left | A \right |$$ equals
  • $$\displaystyle \cos 2x $$
  • $$-2$$
  • $$\displaystyle -2 \cos 4x $$
  • $$\displaystyle \sin 4x $$
If $$x$$ is a non-real cube root of $$-2$$, then the value of
$$\begin{vmatrix}
1 & 2x & 1\\
x^{2} & 1 & 3x^{2}\\
2 & 2x & 1
\end{vmatrix}$$ equals to
  • $$-7$$
  • $$-13$$
  • $$0$$
  • $$-12$$
If $$\begin{vmatrix}x^{2}+3x &x+1  &x-2 \\ x-1 &1-2x  &x+4 \\ x+3 &x-4  &3x \end{vmatrix}= Ax^{4}+Bx^{3}+Cx^{2}+Dx+\varrho  $$
Then value of $$\varrho$$ equals to,
  • -10
  • 10
  • 0
  • None of these
If $$A=\begin{pmatrix}
1 & 2 & 1\\
-1 & 0 & 3\\
2 & -1 & 1
\end{pmatrix}$$ then characteristic equation is given by
  • $$-\lambda ^{3}+2\lambda ^{2}-4\lambda +18=0$$
  • $$\lambda ^{3}+2\lambda ^{2}+4\lambda +18=0$$
  • $$2\lambda ^{3}-\lambda ^{2}+6\lambda -2=0$$
  • None of these
If the determinant $$\begin{vmatrix}a & b & at-b\\ b & c & bt-c\\ 2 & 1 & 0\end{vmatrix}=0$$, if $$a, b, c$$ are in
  • $$A.P.$$
  • $$G.P.$$
  • $$H.P.$$
  • $$k=1/2$$
If $$A=\begin{bmatrix}
-1 & -3 & -3\\
3 & 1 & -3\\
3 & -3 & 1
\end{bmatrix}$$ then adj (A) is
  • $$=4\begin{bmatrix} -2 & 3 & 3 \\ -3 & 2 & -3 \\ -3 & 3 & 2 \end{bmatrix}$$
  • $$=4\begin{bmatrix} -2 & 3 & 3 \\ 3 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}$$
  • $$=4\begin{bmatrix} -2 & -3 & 3 \\ -3 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}$$
  • $$=4\begin{bmatrix} -2 & 3 & 3 \\ -3 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers