Processing math: 0%

CBSE Questions for Class 12 Commerce Maths Determinants Quiz 5 - MCQExams.com

If A is any square matrix of order 2, then  adj(adjA) =
  • A
  • det
  • A^{-1}
  • None of these
If \displaystyle A= \begin{bmatrix}0 &i-\sin x  &i- \cos x\\sin x -i &0  &\sin x-i \\cos x-i &- \sin x+ i  &0 \end{bmatrix} then \displaystyle \left | A \right | equals
  • 0
  • \displaystyle \sin x
  • \displaystyle \cos x
  • 1
If \Delta =\begin{vmatrix} a & 5-i & 7+i\\ 5+i & b & 3+i\\ 7-i & 3-i & c \end{vmatrix}, then \Delta is always
  • real
  • imaginary
  • 0
  • None of these
  • Both (A) & (R) are individually true & (R) is correct explanation of (A),
  • Both (A)& (R) are individually true but (R) is not the correct (proper) explanation of (A).
  • (A)is true but (R) is false,
  • (A)is false but (R ) is true.
\displaystyle A=\begin{bmatrix}1 &-1  &1 \\2  &1  &-3 \\1  &1  &1 \end{bmatrix} and \displaystyle B= \begin{bmatrix}4 &2  &2 \\-5  &0  &\alpha \\1  &-2  &3 \end{bmatrix} If B is the adjoint of A then \displaystyle \alpha equals
  • 2
  • -1
  • -2
  • 5
 If (-3, 11), (6, 2) and (k, 4) are  collinear points, then k is equal to
  • 8
  • -8
  • 4
  • -4
The points X(-1, 3), Y (8, -3) and Z(2, 1)
  • are collinear
  • not decided
  • cannot be plotted
  • are not collinear
If the points \displaystyle \left(\frac{2}{5}, \frac{1}{3}\right), \left(\frac{1}{2} , k \right) and \displaystyle \left(\frac{4}{5}, 0 \right) are collinear then find the value of k
  • \displaystyle k = \frac{1}{2}
  • \displaystyle k = \frac{1}{4}
  • \displaystyle k = \frac{1}{5}
  • \displaystyle k = -\frac{1}{2}
The points A(7, 8), B(-5, 2) and C(3, 6)  
  • are not collinear
  • cannot be plotted
  • are not defined
  • are collinear
If every element of third order determinant of \displaystyle \Delta is multiplied by 5 then value of new determinant equals to,
  • \displaystyle \Delta
  • \displaystyle 5 \Delta
  • \displaystyle 25 \Delta
  • \displaystyle 125 \Delta
If \omega \neq 1 is a complex cube root of unity, and
x+iy=\begin{vmatrix} 1 & i & -\omega \\ -i & 1 & \omega ^{2}\\ \omega  & -\omega ^{2} & 1 \end{vmatrix}
then
  • x=-1, y=0
  • x=1, y=-1
  • x=1, y=1
  • none of these
The points (a, b + c), (b, c + a) and (c, a + b) are
  • vertices of an equilateral triangle
  • concyclic
  • vertices of a right angled triangle
  • collinear
The points (k, 2-2k), (-k+1, 2k) and (-4-k, 6-2k) are collinear for
  • all values of k
  • k=-1
  • k=1/2
  • no value of k.
If \triangle ABC is not a right triangle, then value of
\Delta =\begin{vmatrix} \tan A & 1 & 1\\ 1 & \tan B & 1\\ 1 & 1 & \tan C \end{vmatrix}
is
  • -1
  • 2
  • 3
  • 0
If \displaystyle \Delta =\begin{vmatrix} 0 &b-a  &c-a \\ a-b &0  &c-b \\ a-c &b-c  &0 \end{vmatrix} then \displaystyle \Delta is equal to
  • \displaystyle a+b+c
  • \displaystyle -(a+b+c)
  • \displaystyle abc
  • \displaystyle 0
If points (x,0), (0,y) and (1,1) are collinear then the relation is-
  • x+y=1
  • x+y=xy
  • x+y+1=0
  • x+y+xy=0
If a, b, c> 1, \Delta =\begin{vmatrix} \log _{a}\left ( abc \right ) & \log _{a}b & \log _{a}c\\ \log _{b}\left ( abc \right ) & 1 & \log _{b}c\\ \log _{c}\left ( abc \right ) & \log _{c}b & 1 \end{vmatrix} is
  • 0
  • \log _{a}b+\log _{b}c+\log _{c}a
  • \log _{abc}\left ( a+b+c \right )
  • none of these
For which value of 'k' the points (7, -2), (5, 1), (3, k) are collinear?
  • -4
  • 4
  • 8
  • -8
If (3,2), (4,k) and (5,3) are collinear, then k is equal to:
  • \dfrac { 3 }{ 2 }
  • \dfrac { 2 }{ 5 }
  • \dfrac { 5 }{ 2 }
  • \dfrac { 3 }{ 5 }
Let A be a non-singular matrix. Then \left| adjA \right| is equal to
  • { \left| A \right|  }^{ n }
  • { \left| A \right|  }^{ n-1 }
  • { \left| A \right|  }^{ n-2 }
  • None of these
The value of the determinant \begin{vmatrix} -a& b & c\\ a & -b &c \\ a & b &-c \end{vmatrix} is equal to
  • 0
  • (a-b)(b-c)(c-a)
  • (a+b)(b+c)(c+a)4abc
  • 4abc
If A=\begin{bmatrix} 0&\sin \alpha   & \sin \alpha\sin \beta \\-\sin \alpha &0  &\cos \alpha \sin \beta  \\-\sin \alpha \sin \beta  &-\cos \alpha \cos \beta   &0 \end{bmatrix}, then which of the following is true?
  • |A| is independent of \alpha and \beta .
  • A^{-1} depends only on \alpha .
  • A^{-1} depends only on \beta .
  • None of these
If D_p=\begin{vmatrix} p& 15 & 8\\ p^2 & 35 & 9\\ p^3 & 25 & 10\end{vmatrix}, then D_1+D_2+D_3+D_4+D_5 is equal to
  • 0
  • 25
  • 625
  • none of these
\displaystyle a_{0} equals

  • 0
  • 1
  • 2
  • 3
The minors and cofactors of -4 and 9 in determinant \begin{vmatrix} -1 & -2 & 3 \\ -4 & -5 & -6 \\ -7 & 8 & 9\end{vmatrix} are respectively
  • 42, 42 ; 3, 3
  • -42, 42 ; -3, -3
  • 42, -42 ; 3, -3
  • 42, 3 ; 42, 3
If A=\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}, then adj (adj A) is equal to
  • \begin{bmatrix} 3 & -2 \\ -3 & 4 \end{bmatrix}
  • \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}
  • 6\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}
  • None of these
A set of points which lie on same line are called as
  • collinear
  • non-collinear
  • concurrent
  • none of these
If A=\begin{bmatrix} 0& 0 & 1\\  0& 1 & 0\\ 1 &0 & 0\end{bmatrix}, then
  • AdjA is zero matrix
  • AdjA=\begin{bmatrix} 0& 0 & -1\\ 0& -1 & 0\\ -1 &0 & 0\end{bmatrix}
  • A^{-1} = A
  • A^2 = I
The point with the co-ordinates (2a,\ 3a),\ (3b,\ 2b) & (c,\ c) are collinear _____________ .
  • for no value of a,\ b,\ c
  • for all values of a,\ b,\ c
  • if a,\ \dfrac {c}{5},\ b are in H.P.
  • if a,\ \dfrac {2}{5}c,\ b are in H.P.
If lines AB, AC, AD and AE are parallel to a line then_______
  • A, B, C, D, E are collinear points
  • A, B, C, D, E are noncolinear points
  • AB & AC are parallel and AD & AE are perpendicular
  • None of these
Three lines px + qy + r = 0, qx + ry + p = 0 and rx + py + q = 0 are concurrent if
  • p + q + r = 0
  • p^2 + q^2 + r^2 = pr + qr + pq
  • p^3 + q^3 + r^3 = 3pqr
  • none of these
The adjoint of the matrix \begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & -1 \\ -4 & 5 & 2 \end{bmatrix} is:
  • \begin{bmatrix} 9 & 19 & -4 \\ 4 & 14 & 1 \\ 8 & 3 & 2 \end{bmatrix}
  • \begin{bmatrix} 9 & 4 & 8 \\ 19 & 14 & 3 \\ -4 & 1 & 2 \end{bmatrix}
  • \begin{bmatrix} 9 & -19 & -4 \\ -4 & 14 & -1 \\ 8 & -3 & 2 \end{bmatrix}
  • none of these
If A and B are square matrices of same orders then adj. (AB) equals
  • adj A. adj B
  • adj B/adj A
  • adj A+ adj B
  • adj A-adj B
If cofactor of 2x in the determinant \begin{vmatrix}x & 1 & -2 \\ 1 & 2x & x-1 \\ x-1 & x & 0\end{vmatrix} is zero, then x equals to
  • 0
  • 2
  • 1
  • -1
If A = (a_{ij}) is a 4\times 4 matrix and C_{ij} is the co-factor of the element a_{ij} in Det (A), then the expression a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + a_{14}C_{14} equals
  • 0
  • -1
  • 1
  • Det. (A)
Consider the determinant \Delta=\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}
M_{ij} = Minor of the element of i^{th} row & j^{th} column.
C_{ij} = Cofactor of element of i^{th} row & j^{th} column.
a_3M_{13} - b_3M_{23} + c_3M_{33} is equal to
  • 0
  • 4\Delta
  • 2\Delta
  • \Delta
Let A = [a_{ij}]_{n\times n} be a square matirx and let c_{ij} be cofactor of a_{ij} in A. If C = [c_{ij}], then
  • |C|=|A|
  • |C|=|A|^{n-1}
  • |C|=|A|^{n-2}
  • none of these
If in the determinant \Delta=\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}, A_i, B_i, C_i etc. be the co-factors of a_i, b_i, c_i etc., then which of the following relations is incorrect?
  • a_1A_1 + b_1B_1 + c_1C_1=\Delta
  • a_2A_2 + b_2B_2 + c_2C_2=\Delta
  • a_3A_3 + b_3B_3 + c_3C_3=\Delta
  • a_1A_2 + b_1B_2 + c_1C_2=\Delta
Consider the determinant \Delta=\begin{vmatrix}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}
M_{ij} = Minor of the element of i^{th} row & j^{th} column.
C_{ij} = Cofactor of element of i^{th} row & j^{th} column.
Value of b_1.C_{31} + b_2.C_{32} + b_3.C_{33} is
  • 0
  • \Delta
  • 2\Delta
  • \Delta^2
If A+B+C=\pi, then \begin{vmatrix}sin(A+B+C) & sin B & cos C\\ -sinB & 0 & tan A\\ cos(A+B) & -tanA & 0\end{vmatrix} equals
  • 0
  • 2 sin B tan A cos C
  • 1
  • none of these
If f(x)=\begin{vmatrix} cos x & 1 & 0 \\ 1 & cos x & 1 \\ 0 & 1 & cos x\end{vmatrix} the f'(\dfrac \pi 3) equals
  • \dfrac {11\sqrt 3}{8}
  • \dfrac {5\sqrt 3}{8}
  • -\dfrac {5\sqrt 3}{8}
  • none of these
If x, y, z are positive numbers, then value of the determinant \begin{vmatrix}1 & log_xy & log_xz \\ log_yx & 1 & log_yz\\ log_zx & log_zy & 1\end{vmatrix} is equal to
  • 0
  • 3
  • log xyz
  • none
If \Delta =\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix} and A_2, B_2, C_2 are respectively cofactors of a_2, b_2, c_2 then a_1A_2 + b_1B_2 + c_1C_2 is equal to
  • -\Delta
  • 0
  • \Delta
  • none of these
If [a] denotes the greatest integer less than or equal to a and -1 \leq x < 0, 0 \leq y < 1, 1 \leq z < 2, then \begin{vmatrix}[x]+1 & [y] & [z] \\ [x] & [y]+1 & [z] \\ [x] & [y] & [z]+1\end{vmatrix} is equal to
  • [x]
  • [y]
  • [z]
  • None of these
If A =\displaystyle \begin{bmatrix}\alpha  & 2\\ 2 & \alpha \end{bmatrix} and \displaystyle \left | A \right |^{3}=125 then the value of \displaystyle \alpha is
  • \displaystyle \pm 1
  • \displaystyle \pm 2
  • \displaystyle \pm 3
  • \displaystyle \pm 5
If the points A(1, 2) ,\ O (0, 0) and C (a, b) are collinear then 
  • a = b
  • a = 2b
  • 2a = b
  • a = -b
The points (-a ,-b), (0, 0) (a, b) and \displaystyle (a^{2},ab) are
  • Collnear
  • Vertices of parallelogram
  • Vertices of a rectangle
  • None of these
If A=\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, then A(Adj. A) equals-
  • \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}
  • \begin{bmatrix} 0 & 10 \\ 10 & 0 \end{bmatrix}
  • \begin{bmatrix} 10 & 1 \\ 1 & 10 \end{bmatrix}
  • none of these
If A=\begin{bmatrix} 1 & -2 & 3 \\ 4 & 0 & -1 \\ -3 & 1 & 5 \end{bmatrix}, then {(adj. A)}_{23} is equal to
  • 13
  • -13
  • 5
  • -5
If the points (5, 1),\  (1, p)\  \& \  (4, 2) are collinear then the value of p will be 
  • 1
  • 5
  • 2
  • -2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers