MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Differential Equations Quiz 11 - MCQExams.com
CBSE
Class 12 Commerce Maths
Differential Equations
Quiz 11
The solution of $$x^2dy-y^2dx+xy^2(x-y)dy=0$$, is?
Report Question
0%
$$log\left|\dfrac{x-y}{xy}\right|=\dfrac{y^2}{2}+C$$
0%
$$log\left|\dfrac{xy}{x-y}\right|=\dfrac{x^2}{2}+C$$
0%
$$\log \left|\dfrac{x-y}{xy}\right|=\dfrac{x^2}{2}+C$$
0%
$$log\left|\dfrac{x-y}{xy}\right|=x+C$$
Solution of equation $$ \frac { d y } { d x } = \frac { y ^ { \frac { d } { d } ( \phi ( x ) ) } - y ^ { 2 } } { \phi ( x ) } $$ is
Report Question
0%
$$
y = \frac { \phi ( x ) + c } { x }
$$
0%
$$
y = \frac { \phi ( x ) } { x } + c
$$
0%
$$
y = \frac { \phi ( x ) } { x + c }
$$
0%
$$
y = \phi ( x ) + x + c
$$
An equation containing an independent variable, dependent variable, and differential coefficients of the dependent variable with respect to the independent variable is called a/an _______
Report Question
0%
Differential equation
0%
Continuous function
0%
Discontinuous function
0%
Integral equation
The integrating factor of the equation $$siny\dfrac{dy}{dx}=cosy\left(1-xcosy\right)$$ is
Report Question
0%
$$e^{-x}$$
0%
$$e^{x}$$
0%
$$e^{secy}$$
0%
$$None\ of\ these$$
Solution of differential equation $$\cfrac{dy}{dx}+x\sin^2{y}=\sin{y}\cos{y}$$ is-
Report Question
0%
$$\tan{y}=(x-1)+Ce-x$$
0%
$$\cot{y}=(x-1)+Ce-x$$
0%
$$\tan{y}=(x-1)ex+c$$
0%
$$\cot{y}=(x-1)ex+c$$
Consider the differential equation $$y^{ 2 }dx + \left(x - \dfrac { 1 }{ y }\right) dy = 0$$
If $$y \left( 1 \right) = 1$$, then $$x$$ is given by:
Report Question
0%
$$4 - \dfrac { 2 }{ y } - \dfrac {e^{\dfrac { 1 }{ y }}}e$$
0%
$$3 - \dfrac { 1 }{ y } + \dfrac {e^{\dfrac { 1 }{ y }}}e$$
0%
$$1 + \dfrac { 1 }{ y } - \dfrac {e^{\dfrac { 1 }{ y }}}e$$
0%
$$1 - \dfrac { 1 }{ y } + \dfrac {e^{\dfrac { 1 }{ y }}}e$$
Solution of differential equation $$ \frac{d y}{d x}+x \sin ^{2} y=\sin y \cos y $$ is-
Report Question
0%
$$
\tan y=(x-1)+ce^{-x}
$$
0%
$$
\cot y=(x-1)+ ce^{-x}
$$
0%
$$\tan y = (x-1) e^x +C$$
0%
$$\cot y=(x-1) e^x+C$$
(where C is an arbitrary constant)
Solve the differential equation:
$$(e^ {y}+1)\cos x\ dx+e^ {y}\sin x\ dy=0$$
Report Question
0%
$$\sin x(e^{-y}+1)=c$$
0%
$$\sin x(e^{y}+1)=c$$
0%
$$\sin x(e^{2y}+1)=c$$
0%
$$\cos x(e^{y}+1)=c$$
Let the population of rabbits surviving at a time t be governed by the differential equation $$\dfrac{dp(t)}{dt}=\dfrac{1}{2}p(t)-200.$$ If $$p(0)=100$$ , then p(t) equals:
Report Question
0%
$$600-500e^{t/2}$$
0%
$$400-300e^{-t/2}$$
0%
$$400-300e^{t/2}$$
0%
$$300-200e^{-t/2}$$
The solution of $$y^5x+y-x\dfrac{dy}{dx}=0$$ is
Report Question
0%
$$\dfrac{x^4}{4}+\dfrac{1}{5}\left(\dfrac{x}{y}\right)^5=C$$
0%
$$\dfrac{x^5}{4}+\dfrac{1}{5}\left(\dfrac{x}{y}\right)^4=C$$
0%
$$\left(\dfrac{x}{y}\right)^5+\dfrac{x^4}{4}=C$$
0%
$$(xy)^4+\dfrac{x^5}{5}=C$$
Suppose y=y(x) satisfies the differential equation $$ydx+y^{2}dy=xdy.$$ If $$y(x) > 0 \forall x\epsilon R$$ and y(1)=1, then y(-3) equals
Report Question
0%
1
0%
2
0%
3
0%
5
$$y = (c_{1} + c_{2}x + x^{2}) e^{x}$$ is a solution of
Report Question
0%
$$\dfrac {d^{2}y}{dx^{2}} + y = 0$$
0%
$$\dfrac {d^{2}y}{dx^{2}} + xy = 0$$
0%
$$\dfrac {d^{2}y}{dx^{2}} = x$$
0%
$$\dfrac {d^{2}y}{dx^{2}} - 2\dfrac {dy}{dx} + y = 2e^{x}$$
An integrating factor of the differential equation $$x\frac{dy}{dx}-y=x^{3};x>0$$ is ________
Report Question
0%
$$\frac{1}{x}$$
0%
-x
0%
$$-\frac{1}{x}$$
0%
x
The solution of the differential equation $$ \frac { d y } { d x } - k y = 0 , y ( 0 ) = 1 $$, approaches zero when $$ x \rightarrow \infty , $$ if
Report Question
0%
k = 0
0%
k > 0
0%
k < 0
0%
k may be any real value
Solution of the differential equation
$$x=1+\left(xy\dfrac{dy}{dx}\right)+\dfrac{(x^2y^2)}{2!}\left(\dfrac{dy}{dx}\right)^3+.........$$ is
Report Question
0%
$$y=in(x)+C$$
0%
$$y=(in\,x)^2+C$$
0%
$$y=\pm\sqrt{(in\,x)^2+C}$$
0%
$$x^y=xy+K$$
Solution of differential equation $$2xy \dfrac {dy}{dx} = x^{2} + 3y^{2}$$.
Report Question
0%
$$x^{3} + y^{2} = px^{2}$$
0%
$$\dfrac {x^{2}}{2} + \dfrac {y^{3}}{x} =y^{2} + p$$
0%
$$x^{2} + y^{3} = px$$
0%
$$x^{2} + y^{2} = px^{3}$$
$$y=3\sqrt{2x}$$ Find $$\frac{dy}{dx}$$
Report Question
0%
$$\frac{3}{\sqrt{2x}}$$
0%
$$\frac{2}{\sqrt{2x}}$$
0%
$$\frac{2}{\sqrt{3x}}$$
0%
$$\frac{2}{\sqrt{4x}}$$
Let $$y = y(x)$$ be a solution of the differential equation, $$\sqrt{1-x^2}\dfrac{dy}{dx} + \sqrt{1-y^2} = 0, |x| < 1$$.
If $$y\left(\dfrac{1}{2}\right) = \dfrac{\sqrt{3}}{2}$$, then $$y \left(\dfrac{-1}{\sqrt{2}}\right)$$ is equal to:
Report Question
0%
$$\dfrac{\sqrt{3}}{2}$$
0%
$$\dfrac{1}{\sqrt{2}}$$
0%
$$-\dfrac{\sqrt{3}}{2}$$
0%
$$-\dfrac{1}{\sqrt{2}}$$
Explanation
$$\sqrt{1 - x^2} \dfrac{dy}{dx} + \sqrt{1-y^2} = 0$$
$$\Rightarrow \dfrac{dy}{\sqrt{1-y^2}} + \dfrac{dx}{\sqrt{1-x62}} = 0$$
Taking integration
$$\displaystyle\Rightarrow \int\dfrac{dy}{\sqrt{1-y^2}} + \int\dfrac{dx}{\sqrt{1-x^2}} = 0$$
$$\Rightarrow \sin^{-1}y + \sin^{-1} x = c$$ ....(1)
At $$x = \dfrac{1}{2}$$, $$y = \dfrac{\sqrt{3}}{2}$$
$$\Rightarrow\sin^{-1} \left(\dfrac{\sqrt{3}}{2} \right) + \sin^{-1}\left(\dfrac{1}{2}\right) = c$$
$$\Rightarrow\dfrac{\pi}3+\dfrac{\pi}6=c$$
$$\Rightarrow c = \dfrac{\pi}{2}$$
Put in equation (1)
$$\sin^{-1} y = \cos^{-1}x$$
$$y\left(\dfrac{-1}{\sqrt{2}}\right) = \sin\left(\cos^{-1}\left(\dfrac{-1}{\sqrt{2}}\right)\right) = \dfrac{1}{\sqrt{2}}$$
$$\therefore$$ $$\boxed{y\left(\dfrac{-1}{\sqrt{2}}\right) = \dfrac{1}{\sqrt{2}}}.....Answer$$
Hence option $$'B'$$ is the answer.
Equation of the curve in which the subnormal is twice the square of the ordinate is given by
Report Question
0%
$$ log y = 2x +log c $$
0%
$$ y = ce^{2x} $$
0%
$$ log y = 2x - log c $$
0%
None of these
The solution of $$\dfrac{dy}{dx}+\dfrac{x}{1-x^{2}}y=x\sqrt{y}$$, is given by
Report Question
0%
$$3\sqrt{y}+(1-x^{2})=C(1-x^{2})^{1/4}$$
0%
$$\dfrac{3}{2}\sqrt{y}+1(1-x^{2})=C(1-x^{2})^{3/2}$$
0%
$$3\sqrt{y}-(1-x^{2})=C(1-x^{2})^{3/2}$$
0%
$$None\ of\ these$$
State true or false.
$$\dfrac {dy}{dx}+y=5$$ is a differential equation of the type $$\dfrac {dy}{dx}+PY=Q$$ but it can be solved using the variable separable method also.
Report Question
0%
True
0%
False
The solution of $$\dfrac {dy}{dx}=\dfrac {(x+y)^2}{(x+2)(y-2)}$$ is given by
Report Question
0%
$$(x-2)^4 \left(1+\dfrac {2y}{x}\right)=ke^{2y/x}$$
0%
$$(x-2)^4 \left(1+\dfrac {2(y-2)}{(x+2)}\right)=ke^{\dfrac {2(y-2)}{(x+2)}}$$
0%
$$(x-2)^3 \left(1+2\dfrac {(y-2)}{x+2}\right)=ke^{\dfrac {2(y-2)}{(x+2)}}$$
0%
$$none\ of\ these$$
If $$(y^2 -2x^2 y)dx+(2ky^2-x^3)dy=0$$ then the value of $$xy\sqrt {y^2 -x^2}$$ is
Report Question
0%
$$y^2 +x$$
0%
$$xy^2$$
0%
any constant
0%
None of these
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page