Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Maths Differential Equations Quiz 3 - MCQExams.com

The solution of dydx=x2+4x9x+2 is:
  • y=(x+2)213log|x+2|+c
  • y=(x+2)25log|x+2|+c
  • y=x22+2x+13log|x+2|+c
  • y=x22+2x13log|x+2|+c
The solution of (x2y2x2)dydx+(y2+x2y2)=0 is:
  • x+y+1x+1y=c
  • 2(x+y)(1x+1y)=c
  • 2(xy)+(1x1y)=c
  • (xy)(1x+1y)=c
The solution of dydx=e3x2y+x2e2y
  • y=log(e3x+x2)+c
  • y=2log(e3x+x2)+c
  • 2e2x=3(e3y+y3)+c
  • 3e2y=2(e3x+x3)+c
The solution of xdydx=2y1 is:
  • ey1=cx
  • yx=ex
  • 1y1=cx
  • x(yx)=c
The solution of x2dydx=4y2 is:
  • sin1(y2)+1x=c
  • x33+sin1(y4)=c
  • sin1(y2)+2x=c
  • 4y2+2x=c
The solution of 

3excos2y dx+(1ex)coty dy=0
  • tany=c(ex1)
  • tan2y=(ex1)c
  • coty=c(ex1)2
  • tany=c(ex1)3
The solution of xcos2ydx=ycos2xdy is:
  • tanxtany=c
  • ytany=xtanx+c
  • tanxcosy=tanycosx+c
  • ytanyxtanx+log(cosycosx)=c
The solution of y(dx)+(1+x2)tan1x(dy)=0
  • ytan1x=c
  • xtan1x=0
  • y(1+x2)=c
  • y2(1+x2)=c
The solution of ey(1+x2)dydx=2x(1+ey) is:
  • 1+ey1+x2=c
  • ey(1+x2)=c
  • (1+ey)+(1+x2)=c
  • (ey+1)x2=c
Solution of (ex+1)ydy+(y+1)dx=0 is:
  • (y+1)(1+ex)=cey
  • (ex+1)y=c
  • (1+ex)(y+1)=c
  • (ex+1)x=c
The solution of x1+y2dx+y1+x2dy=0 is:
  • sinh1+sinh1y=c
  • 1+x2+1+y2=c
  • (1+x2)(1+y2)=c
  • 1+x21+y2=c
Equation of the curve whose polar sub tangent r2dθdr is constant
  • r(θ+c)+k=0
  • r2(θ+c)=2k
  • r(θc)=k2
  • rθ=c
The solution of ydx+xdy=dx+dy is:
  • xy=x+y+c
  • xyxy+c=0
  • xyx+y=c
  • x+yxy+c=0
The solution of dydx=1+x+y+xy is:
  • 1+y=1+x+c
  • 231+y=(1+x)12+c
  • 31+y=(1+x)32+c]
  • 1+x=1+y=c
The solution of:  ex1y2dx+yxdy=0
  • (x1)2ex=(1y2)+c
  • (x+1)ex=1y2+c
  • x. ex=1y2+c
  • (x1)ex=1y2+c
The solution of dydx=ax+hby+k represents a parabola when :
  • a0,b=0
  • a=1,b=2
  • a=0,b0
  • a=2,b=1
The solution of cosec2xdydx=1y is:
  • y2=xsinxcosx+c
  • y2=x22sin2x+c
  • 2y2=x+sin2x+c
  • y2=x22+sinx+c
The solution of dydx=xy+2x3y6 is:
  • (y+2)2=c.e(x3)2
  • log(y+2)=x23x+c
  • y+2=2(x3)+c
  • (y+2)(x3)=c
Solution of yxdydx=3[1x2dydx] is:
  • (y+3)(1+3x)=cx
  • (y3)(13x)=cx
  • (y3)(1+3x)=cx
  • (y+3)(13x)=cx

Solution of dydx+y2+y+1x2+x+1=0 is:
  • tan1(2x+13)+tan1(2y+13)=c
  • sin1(2x+13)+sin1(2y+13)=c
  • sinh1(2x+13)+sinh1(2y+13)=c
  • sin1(2x+13)=c
The solution of exydx+eyxdy=0 is:
  • ex+ey=c
  • e2x+e2y=c
  • ex+y+exy=c
  • exey=c
General solution of dydx=1logxe is given as y=
  • 1x+c
  • x22+c
  • xlogexx+c
  • x2+c
Solution of xex2+y.dx=y.dy is:
  • x.ex2+2y.ey=c
  • ex2+2(y+1)ey=c
  • x.ex2+y=2y+c
  • x.ex2y=c
If dydx=e2y and y=0 when x=5, then value of x for y=3 is
  • e5
  • e6+1
  • e6+92
  • loge6
The solution of cosxcosydx+sinxsinydy=0 is 
  • cosx=csiny
  • sinx=ccosy
  • secxsecy=c
  • tanx=c
Solution of dydx=4+4x3y3xy is:
  • 2log(43y)+3x2+6x=c
  • log(34y)+3y2+6y=c
  • (43y)(1+x)=c
  • log(43y)+x2+3x=c

The solution of dydx=xy+x+y+1
  • y=x22+xc
  • x=y22+y+c
  • y+1=c.e(x2+2x2)
  • y+1=x(x+1)
The solution of sin1ydx+x1y2dy=0 is:
  • ysin1x=c
  • y=csin1x
  • y=sin(cx)
  • x=csiny
lf the primitive of 1f(x) is equal to log{f(x)}2+c, then f(x) is:
  • x+d
  • x2+d
  • x22+d
  • x2+d
Find the solution of dydx=exy+x2ey.
  • ey=exx33+c
  • ey=ex+x34+c
  • ey=exx34+c
  • ey=ex+x33+c
Find the solution of (ey+1)cosxdx+eysinxdy=0
  • sinx(ey+1)=c.
  • sinx(ey1)=c.
  • sinx(2ey+1)=c.
  • sinx(3ey1)=c.
Let f be the differentiable for all x, If f(1)=2 and f(x)2 for [1,6], then:
  • f(6)<8
  • f(6)8
  • f(6)=5
  • f(6)<5
xcos2ydx=ycos2xdy
  • xtanx+logsecx=ytany+logsecy+c.
  • xtanx+logsecx=ytanylogsecy+c.
  • xtanxlogsecx=ytany+logsecy+c.
  • xtanxlogsecx=ytanylogsecy+c.
exydx+eyxdy=0
Solve the differential equations.
  • e2x+e2y=k
  • e2x+e2y=k
  • e2x+e2y=k
  • e2x+e2y=k
Find the solution of (ex+1)ydy=(y+1)exdx.
  • k(y+1)(ex+1)=ey
  • k(y1)(ex+1)=ey
  • k(y+1)(ex1)=ey
  • k(y1)(ex1)=ey
edydx=x+1 given that when x = 0, y = 3, if x=1, then y=(2).ln(2)+k, what is k?
  • 1
  • 2
  • 4
  • 5
The differential equation dydx=1y2ydetermines a family of circles with:
  • variable radii and a fixed centre at (1,1)
  • variable radii and a fixed centre at (0,1)
  • fixed radius 1 and variable centres along the x-axis
  • fixed radius 1 and variable centres along the y-axis
Find the solution of (1x)dy(3+y)dx=0
  • (3+y)(1x)=k
  • (3y)(1x)=k
  • (3+y)(1+x)=k
  • (3y)(1+x)=k
The solution of the equation d2ydx2=e2x is:
  • 14e2x
  • 14e2x+cx+d
  • 14e2x+cx2+d
  • 14e2x+c+d
Find the solution of (1x2)(1y)dx=xy(1+y)dy.
  • logxx22=y222y2log(1y)+k
  • logx+x22=y222y2log(1y)+k
  • logxx22=y22+2y2log(1y)+k
  • logxx22=y22+y+2log(1y)+k
ydxxdy=xydx
Then the solution is:
  • x=kyex.
  • y=kxey.
  • x=yex+k
  • y=xey+k
Solve the given differential equation  (xy2+x)dx+(yx2+y)dy=0.
  • (x2+1)(y2+1)=c
  • log(x2+1)log(y2+1)=c
  • (x2+1)+(y2+1)=c
  • none of these
Find the solution of  dydx=xy+yxy+x
  • yx=logkxy
  • y+x=logkyx
  • y+x=logykx
  • yx=logkyx
Solve the diffrential equation:  logdydx=ax+by
  • 1beby=1aeax+c
  • 1beby=1aeax+c
  • 1beby=1aeax+c
  • 1beby=1aeax+c
Find the solution of  xydydx=1+y21+x2(1+x+x2).
  • 12log(1+y2)=logx+tan1x+c
  • 14log(1+y2)=logx+tan1x+c
  • 12log(1y2)=logx+tan1x+c
  • 14log(1y2)=logx+tan1x+c
Find the solution of  a(xdydx+2y)=xydydx.
  • yx2=key/a
  • xy2=key/a
  • yx3=key/a
  • xy3=key/a
Find the solution of  dydx+sin(x+y2)=sin(xy2).
  • logtany4=c2sinx2
  • logtany2=c+2sinx2
  • logtany2=c2sinx2
  • logtany4=c+2sinx2
Find the solution of  (x2yx2)dydx+(y2+xy2)=0
  • logxky=x+yxy
  • logxky=xyxy
  • logxky=xyy
  • logxky=x+yy
dydx+(1y21x2)=0.
Solve the equation.
  • sin1y+sin1x=c
  • sin1y+sin1x=c
  • sin1y+sin1x=c
  • sin1ysin1x=c
y=ae1/x+b is a solution of dydx=yx2 when

  • a=1,b=0
  • a=3,b=1
  • a=1,b=1
  • a=2,b=2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers