Explanation
$$\dfrac{dy}{dx} = \dfrac{log x}{log e}$$
$$\Rightarrow {dy} = \dfrac{log x}{log e} dx$$
$$\Rightarrow \int dy = \int log_{e} x + c$$
$$\Rightarrow y = x (log_{e} x-1) + c$$ $$ [\because\int logx=x(logx-1)]$$
$$xe^{x^{2}} dx = ye^{-y} dy$$
$$ \Rightarrow \dfrac{1}{2} \int 2xe^{x^{2}} dx = \int ye^{-y} dy$$
$$\Rightarrow \dfrac{e^{x^{2}}}{2} = -ye^{-y} + (e-y_{dy})$$
$$\dfrac{e^{x^{2}}}{2} = -ye^{-y} -e^{-y} + c$$
$$\Rightarrow e^{x^{2}} + e^{-y} (1+y)2= c$$
Given $$\sin^{-1}ydx+\displaystyle \dfrac{x}{\sqrt{1-y^{2}}}dy=0$$
$$-\dfrac{dx}{x} = \dfrac{dy}{sin^{-1}y \sqrt{1-y^{2}}}$$
$$let \sin ^{-1}y = t$$
$$\Rightarrow \dfrac{1}{\sqrt{1-y^{2}}}dy = dt$$
$$\Rightarrow -\int \dfrac{dx}{x} = \int \dfrac{dt}{t} - log c$$
$$ \Rightarrow log c = log xt$$
$$\Rightarrow c=xt$$
$$\Rightarrow t = \dfrac{c}{x}$$
$$sin ^{-1}y = \dfrac{c}{x}$$
$$\Rightarrow y = sin (\dfrac{c}{x})$$
Please disable the adBlock and continue. Thank you.