Processing math: 43%

CBSE Questions for Class 12 Commerce Maths Differential Equations Quiz 3 - MCQExams.com

The solution of dydx=x2+4x9x+2 is:
  • y=(x+2)213log|x+2|+c
  • y=(x+2)25log|x+2|+c
  • y=x22+2x+13log|x+2|+c
  • y=x22+2x13log|x+2|+c
The solution of (x2y2x2)dydx+(y2+x2y2)=0 is:
  • x+y+1x+1y=c
  • 2(x+y)(1x+1y)=c
  • 2(xy)+(1x1y)=c
  • (xy)(1x+1y)=c
The solution of dydx=e3x2y+x2e2y
  • y=log(e3x+x2)+c
  • y=2log(e3x+x2)+c
  • 2e2x=3(e3y+y3)+c
  • 3e2y=2(e3x+x3)+c
The solution of xdydx=2y1 is:
  • ey1=cx
  • yx=ex
  • 1y1=cx
  • x(yx)=c
The solution of x2dydx=4y2 is:
  • sin1(y2)+1x=c
  • x33+sin1(y4)=c
  • sin1(y2)+2x=c
  • 4y2+2x=c
The solution of 

3excos2y dx+(1ex)coty dy=0
  • tany=c(ex1)
  • tan2y=(ex1)c
  • coty=c(ex1)2
  • tany=c(ex1)3
The solution of xcos2ydx=ycos2xdy is:
  • tanxtany=c
  • ytany=xtanx+c
  • tanxcosy=tanycosx+c
  • ytanyxtanx+log(cosycosx)=c
The solution of y(dx)+(1+x2)tan1x(dy)=0
  • ytan1x=c
  • xtan1x=0
  • y(1+x2)=c
  • y2(1+x2)=c
The solution of ey(1+x2)dydx=2x(1+ey) is:
  • 1+ey1+x2=c
  • ey(1+x2)=c
  • (1+ey)+(1+x2)=c
  • (ey+1)x2=c
Solution of (ex+1)ydy+(y+1)dx=0 is:
  • (y+1)(1+ex)=cey
  • (ex+1)y=c
  • (1+ex)(y+1)=c
  • (ex+1)x=c
The solution of x1+y2dx+y1+x2dy=0 is:
  • sinh1+sinh1y=c
  • 1+x2+1+y2=c
  • (1+x2)(1+y2)=c
  • 1+x21+y2=c
Equation of the curve whose polar sub tangent r2dθdr is constant
  • r(θ+c)+k=0
  • r2(θ+c)=2k
  • r(θc)=k2
  • rθ=c
The solution of ydx+xdy=dx+dy is:
  • xy=x+y+c
  • xyxy+c=0
  • xyx+y=c
  • x+yxy+c=0
The solution of dydx=1+x+y+xy is:
  • 1+y=1+x+c
  • 231+y=(1+x)12+c
  • 31+y=(1+x)32+c]
  • 1+x=1+y=c
The solution of:  ex1y2dx+yxdy=0
  • (x1)2ex=(1y2)+c
  • (x+1)ex=1y2+c
  • x. ex=1y2+c
  • (x1)ex=1y2+c
The solution of dydx=ax+hby+k represents a parabola when :
  • a0,b=0
  • a=1,b=2
  • a=0,b0
  • a=2,b=1
The solution of cosec2xdydx=1y is:
  • y2=xsinxcosx+c
  • y2=x22sin2x+c
  • 2y2=x+sin2x+c
  • y2=x22+sinx+c
The solution of dydx=xy+2x3y6 is:
  • (y+2)2=c.e(x3)2
  • log(y+2)=x23x+c
  • y+2=2(x3)+c
  • (y+2)(x3)=c
Solution of yxdydx=3[1x2dydx] is:
  • (y+3)(1+3x)=cx
  • (y3)(13x)=cx
  • (y3)(1+3x)=cx
  • (y+3)(13x)=cx

Solution of dydx+y2+y+1x2+x+1=0 is:
  • tan1(2x+13)+tan1(2y+13)=c
  • sin1(2x+13)+sin1(2y+13)=c
  • sinh1(2x+13)+sinh1(2y+13)=c
  • sin1(2x+13)=c
The solution of exydx+eyxdy=0 is:
  • ex+ey=c
  • e2x+e2y=c
  • ex+y+exy=c
  • exey=c
General solution of dydx=1logxe is given as y=
  • 1x+c
  • x22+c
  • xlogexx+c
  • x2+c
Solution of xe^{x^{2}+y}.dx=y.dy is:
  • x.e^{x^{2}}+2y.e^{y}=c
  • e^{x^{2}}+2(y+1)e^{-y}=c
  • x.e^{x^{2}}+y=2y+c
  • x.e^{x^{2}}y=c
If \frac{{dy}}{{dx}} = {e^{ - 2y}} and y = 0 when x = 5, then value of x for y = 3 is
  • e^5
  • e^6+1
  • \frac{{{e^6} + 9}}{2}
  • log_e6
The solution of \cos \mathrm{x}\cos \mathrm{y}\mathrm{d}\mathrm{x}+ \sin \mathrm{x} \sin \mathrm{y} d\mathrm{y} =0 is 
  • cosx=c\sin y
  • \sin x=c\cos y
  • \sec x-\sec y=c
  • \tan x=c
Solution of \displaystyle \frac{dy}{dx}=4+4x-3y-3xy is:
  • 2\log(4-3y)+3x^{2}+6x=c
  • \log(3-4y)+3y^{2}+6y=c
  • (4-3y)(1+x)=c
  • \log(4-3y)+x^{2}+3x=c

The solution of \displaystyle \frac{dy}{dx}=xy+x+y+1
  • y=\displaystyle \frac{x^{2}}{2}+xc
  • x=\displaystyle \frac{y^{2}}{2}+y+c
  • y+1=c.e(\displaystyle \frac{x^{2}+2x}{2})
  • y+1=x(x+1)
The solution of \sin^{-1}ydx+\displaystyle \dfrac{x}{\sqrt{1-y^{2}}}dy=0 is:
  • y\sin^{-1}x=c
  • y=c\sin^{-1}x
  • y=\displaystyle \sin(\frac{c}{x})
  • x=c\mathrm{s}in\mathrm{y}
lf the primitive of \displaystyle \frac{1}{f(x)} is equal to \log\{f(x)\}^{2}+c, then f(x) is:
  • x+d
  • \displaystyle \frac{x}{2}+d
  • \displaystyle \frac{x^{2}}{2}+d
  • x^{2}+d
Find the solution of \displaystyle \frac{dy}{dx}=e^{x-y}+x^{2}e^{-y}.
  • \displaystyle e^{y}=e^{x}-\frac{x^{3}}{3}+c
  • \displaystyle e^{y}=e^{x}+\frac{x^{3}}{4}+c
  • \displaystyle e^{y}=e^{x}-\frac{x^{3}}{4}+c
  • \displaystyle e^{y}=e^{x}+\frac{x^{3}}{3}+c
Find the solution of \displaystyle \left ( e^{y}+1 \right )\cos x dx+e^{y}\sin x dy=0
  • \displaystyle \sin x\left ( e^{y}+1 \right )=c.
  • \displaystyle \sin x\left ( e^{y}-1 \right )=c.
  • \displaystyle \sin x\left ( 2e^{y}+1 \right )=c.
  • \displaystyle \sin x\left ( 3e^{y}-1 \right )=c.
Let f be the differentiable for all x, If f(1)=-2 and {f}'\left ( x \right )\geq 2 for [1, 6], then:
  • f(6)< 8
  • f(6)\geq 8
  • f(6)=5
  • f(6)< 5
\displaystyle x\cos ^{2}ydx=y\cos ^{2}x dy
  • \displaystyle x\tan x+\log \sec x= y\tan y+\log \sec y+c.
  • \displaystyle x\tan x+\log \sec x= y\tan y-\log \sec y+c.
  • \displaystyle x\tan x-\log \sec x= y\tan y+\log \sec y+c.
  • \displaystyle x\tan x-\log \sec x= y\tan y-\log \sec y+c.
\displaystyle e^{x-y}dx+e^{^{y-x}}dy=0
Solve the differential equations.
  • \displaystyle e^{2x}+e^{2y}=k
  • \displaystyle e^{-2x}+e^{-2y}=k
  • \displaystyle e^{-2x}+e^{-2y}=-k
  • \displaystyle e^{2x}+e^{2y}=-k
Find the solution of \displaystyle \left ( e^{x}+1 \right )y dy=\left ( y+1 \right )e^{x}dx.
  • \displaystyle k\left ( y+1 \right )\left ( e^{x}+1 \right )=e^{y}
  • \displaystyle k\left ( y-1 \right )\left ( e^{x}+1 \right )=e^{y}
  • \displaystyle k\left ( y+1 \right )\left ( e^{x}-1 \right )=e^{y}
  • \displaystyle k\left ( y-1 \right )\left ( e^{x}-1 \right )=e^{y}
e^{\frac{dy}{dx}}=x+1 given that when x = 0, y = 3, if x=1, then y=\left ( 2 \right ).\ln \left (2 \right )+k, what is k?
  • 1
  • 2
  • 4
  • 5
The differential equation \displaystyle \frac{dy}{dx}=\frac{\sqrt{1-y^{2}}}{y}determines a family of circles with:
  • variable radii and a fixed centre at \displaystyle (1,1)
  • variable radii and a fixed centre at \displaystyle (0, -1)
  • fixed radius 1 and variable centres along the x-axis
  • fixed radius 1 and variable centres along the y-axis
Find the solution of \displaystyle \left ( 1-x \right )dy-\left ( 3+y \right )dx=0
  • \displaystyle \left ( 3+y \right )\left ( 1-x \right )=k
  • \displaystyle \left ( 3-y \right )\left ( 1-x \right )=k
  • \displaystyle \left ( 3+y \right )\left ( 1+x \right )=k
  • \displaystyle \left ( 3-y \right )\left ( 1+x \right )=k
The solution of the equation \displaystyle \frac{d^{2}y}{dx^{2}}=e^{-2x} is:
  • \displaystyle \frac{1}{4}e^{-2x}
  • \displaystyle \frac{1}{4}e^{-2x}+cx+d
  • \displaystyle \frac{1}{4}e^{-2x}+cx^{2}+d
  • \displaystyle \frac{1}{4}e^{-2x}+c+d
Find the solution of \displaystyle \left ( 1-x^{2} \right )\left ( 1-y \right )dx=xy\left ( 1+y \right )dy.
  • \displaystyle \log x-\frac{x^{2}}{2}=-\frac{y^{2}}{2}-2y-2\log \left ( 1-y \right )+k
  • \displaystyle \log x+\frac{x^{2}}{2}=-\frac{y^{2}}{2}-2y-2\log \left ( 1-y \right )+k
  • \displaystyle \log x-\frac{x^{2}}{2}=-\frac{y^{2}}{2}+2y-2\log \left ( 1-y \right )+k
  • \displaystyle \log x-\frac{x^{2}}{2}=-\frac{y^{2}}{2}+y+2\log \left ( 1-y \right )+k
\displaystyle ydx-x dy=xy\:dx
Then the solution is:
  • \displaystyle x=ky\:e^{x}.
  • \displaystyle y=kx\:e^{y}.
  • \displaystyle x=y\:e^{x}+k
  • \displaystyle y=x\:e^{y}+k
Solve the given differential equation  \displaystyle \left ( xy^{2}+x \right )dx+\left ( yx^{2}+y \right )dy=0.
  • \displaystyle \left ( x^{2}+1 \right )\left ( y^{2}+1 \right )=c
  • log\left( x^{ 2 }+1 \right) log\left( y^{ 2 }+1 \right) =c
  • \displaystyle \left ( x^{2}+1 \right )+\left ( y^{2}+1 \right )=c
  • none of these
Find the solution of  \displaystyle \frac{dy}{dx}=\frac{xy+y}{xy+x}
  • \displaystyle y-x=\log \frac{kx}{y}
  • \displaystyle y+x=\log \frac{ky}{x}
  • \displaystyle y+x=\log \frac{y}{kx}
  • \displaystyle y-x=\log \frac{ky}{x}
Solve the diffrential equation:  \displaystyle \log \frac{dy}{dx}=ax+by
  • \displaystyle -\frac{1}{b}e^{-by}=\frac{1}{a}e^{ax}+c
  • \displaystyle \frac{1}{b}e^{-by}=\frac{1}{a}e^{ax}+c
  • \displaystyle -\frac{1}{b}e^{by}=\frac{1}{a}e^{ax}+c
  • \displaystyle \frac{1}{b}e^{by}=\frac{1}{a}e^{ax}+c
Find the solution of  \displaystyle xy\frac{dy}{dx}=\frac{1+y^{2}}{1+x^{2}}\left ( 1+x+x^{2} \right ).
  • \displaystyle \frac{1}{2}\log \left ( 1+y^{2} \right )=\log x+\tan ^{-1}x+c
  • \displaystyle \frac{1}{4}\log \left ( 1+y^{2} \right )=\log x+\tan ^{-1}x+c
  • \displaystyle \frac{1}{2}\log \left ( 1-y^{2} \right )=\log x+\tan ^{-1}x+c
  • \displaystyle \frac{1}{4}\log \left ( 1-y^{2} \right )=\log x+\tan ^{-1}x+c
Find the solution of  \displaystyle a\left ( x\frac{dy}{dx}+2y \right )=xy\frac{dy}{dx}.
  • \displaystyle yx^{2}=ke^{y/a}
  • \displaystyle xy^{2}=ke^{y/a}
  • \displaystyle yx^{3}=ke^{y/a}
  • \displaystyle xy^{3}=ke^{y/a}
Find the solution of  \displaystyle\frac{dy}{dx}+\sin\left ( \frac{x+y}{2} \right ) =\sin \left ( \frac{x-y}{2} \right ).
  • \displaystyle \log \tan \frac{y}{4}=c-2\sin \frac{x}{2}
  • \displaystyle \log \tan \frac{y}{2}=c+2\sin \frac{x}{2}
  • \displaystyle \log \tan \frac{y}{2}=c-2\sin \frac{x}{2}
  • \displaystyle \log \tan \frac{y}{4}=c+2\sin \frac{x}{2}
Find the solution of  \displaystyle \left ( x^{2}-yx^{2} \right )\frac{dy}{dx}+\left ( y^{2}+xy^{2} \right )=0
  • \displaystyle \log \frac{x}{ky}=\frac{x+y}{xy}
  • \displaystyle \log \frac{x}{ky}=\frac{x-y}{xy}
  • \displaystyle \log \frac{x}{ky}=\frac{x-y}{y}
  • \displaystyle \log \frac{x}{ky}=\frac{x+y}{y}
\displaystyle \frac{dy}{dx}+\sqrt{\left ( \frac{1-y^{2}}{1-x^{2}} \right )}=0.
Solve the equation.
  • \displaystyle \sin ^{-1}y+\sin ^{-1}x=c
  • \displaystyle \sin ^{-1}y+\sin ^{-1}x=-c
  • \displaystyle -\sin ^{-1}y+\sin ^{-1}x=c
  • \displaystyle \sin ^{-1}y-\sin ^{-1}x=c
y=ae^{-1/x}+b is a solution of \displaystyle\frac{dy}{dx}=\frac{y}{x^{2}} when

  • a=1,b=0
  • a=3,b=1
  • a=1,b=1
  • a=2,b=2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers