Explanation
dydx=logxloge
⇒dy=logxlogedx
⇒∫dy=∫logex+c
⇒y=x(logex−1)+c [\because\int logx=x(logx-1)]
xe^{x^{2}} dx = ye^{-y} dy
\Rightarrow \dfrac{1}{2} \int 2xe^{x^{2}} dx = \int ye^{-y} dy
\Rightarrow \dfrac{e^{x^{2}}}{2} = -ye^{-y} + (e-y_{dy})
\dfrac{e^{x^{2}}}{2} = -ye^{-y} -e^{-y} + c
\Rightarrow e^{x^{2}} + e^{-y} (1+y)2= c
Given \sin^{-1}ydx+\displaystyle \dfrac{x}{\sqrt{1-y^{2}}}dy=0
-\dfrac{dx}{x} = \dfrac{dy}{sin^{-1}y \sqrt{1-y^{2}}}
let \sin ^{-1}y = t
\Rightarrow \dfrac{1}{\sqrt{1-y^{2}}}dy = dt
\Rightarrow -\int \dfrac{dx}{x} = \int \dfrac{dt}{t} - log c
\Rightarrow log c = log xt
\Rightarrow c=xt
\Rightarrow t = \dfrac{c}{x}
sin ^{-1}y = \dfrac{c}{x}
\Rightarrow y = sin (\dfrac{c}{x})
Please disable the adBlock and continue. Thank you.