Explanation
dydx=logxloge
⇒dy=logxlogedx
⇒∫dy=∫logex+c
⇒y=x(logex−1)+c [∵∫logx=x(logx−1)]
xex2dx=ye−ydy
⇒12∫2xex2dx=∫ye−ydy
⇒ex22=−ye−y+(e−ydy)
ex22=−ye−y−e−y+c
⇒ex2+e−y(1+y)2=c
Given sin−1ydx+x√1−y2dy=0
−dxx=dysin−1y√1−y2
letsin−1y=t
⇒1√1−y2dy=dt
⇒−∫dxx=∫dtt−logc
⇒logc=logxt
⇒c=xt
⇒t=cx
sin−1y=cx
⇒y=sin(cx)
Please disable the adBlock and continue. Thank you.