Explanation
\dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } +3y=-2x.......(i)
This is second order non homogeneous differential equation.
Its solution is given as CF+PI
For CF part
\dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } +3y=0....(ii)\\ y={ { { c }_{ 1 } }e }^{ mx }\\ \dfrac { dy }{ dx } ={ c }_{ 1 }m{ e }^{ mx }\\ \dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } ={ c }_{ 1 }{ m }^{ 2 }{ e }^{ mx }
Substituting in (ii), we get { m }^{ 2 }{ e }^{ mx }+3{ e }^{ mx }=0\\ { e }^{ mx }({ m }^{ 2 }+3)=0\\ { m }^{ 2 }+3=0\\ \Rightarrow m=\sqrt { -3 } \\ m=i\sqrt { 3 } \\ y=c_{1}{ e }^{ i\sqrt { 3 } x }={ c }_{ 1 }(\cos { \sqrt { 3 } x } +i\sin { \sqrt { 3 } x } )\\ y={ c }_{ 1 }\cos { \sqrt { 3 } x } +{ c }_{ 2 }\sin { \sqrt { 3 } x } \quad \quad
For PI part
Let y=cx+d
\dfrac { dy }{ dx } =c\\ \dfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } =0
Substituting in (i)
0+3(cx+d)=-2x\\ 3cx+3d=-2x
Comparing both sides
c=-\dfrac { 2 }{ 3 } ,d=0
So solution for PI part is
y=-\dfrac { 2 }{ 3 } x
General solution is CF+PI
{ c }_{ 1 }\cos { \sqrt { 3 } x } +{ c }_{ 2 }\sin { \sqrt { 3 } x } -\dfrac { 2 }{ 3 } x\quad
Given: y\dfrac { dy }{ dx } =a-x
Integrating on both sides
\int { ydx } =\int { adx } -\int { xdx }
\dfrac { { y }^{ 2 } }{ 2 } =ax-\dfrac { { x }^{ 2 } }{ 2 } +c
{ x }^{ 2 }+{ y }^{ 2 }-2ax+c=0
{ (x-a) }^{ 2 }+{ y }^{ 2 }=r^{ 2 }
Hence family of circles with centre on x axis
A particle, initially at origin moves along x axis according to the rule \dfrac{dx}{dt}=x+4. The time taken by the particle to traverse a distance of 96 units is
The equation of the curves, satisfying the differential equation \dfrac{d^2y}{dx^2}(x^2+1)=2x\dfrac{dy}{dx} passing through the point (0,1) and having the slope of tangent at x=0 as 6 is
{ e }^{ 2x-3y }dx + { e }^{ 2x-3y }dy=0\\ \Rightarrow \cfrac { { e }^{ 2x } }{ { e }^{ 3y } } dx+\cfrac { { e }^{ 2y } }{ { e }^{ 3x } } dy=0 \\ \Rightarrow \cfrac { { e }^{ 5x }dx + { e }^{ 5y }dy }{ { e }^{ 3y }{ e }^{ 3x } } =0\\ \Rightarrow { e }^{ 5x }dx + { e }^{ 5y }dy=0
Integrating n both sides.
\cfrac { { e }^{ 5x } }{ 5 } +\cfrac { { e }^{ 5y } }{ 5 } =k\\ \Rightarrow { e }^{ 5x }+{ e }^{ 5y }=k
Given,
{ x }^{ 2 }\dfrac { dy }{ dx } .cos{ \dfrac { 1 }{ x } }=-1
\Rightarrow dy=\dfrac { 1 }{ cos{ \dfrac { 1 }{ x } } } .\dfrac { -1 }{ { x }^{ 2 } } dx
Let us assume \dfrac { 1 }{ x } =t.
Therefore, \dfrac { -1 }{ { x }^{ 2 } } dx=dt.
\Rightarrow dy=\dfrac { 1 }{ cos{ t } } dt
\Rightarrow dy=\sec { t } dt
Integrating both sides, we get,
\Rightarrow \int { dy } =\int { \sec { t } } dt
\Rightarrow y=log_{ e }{ \left| \sec { t } +tan{ t } \right| }+C
\Rightarrow y=log_{ e }{ \left| \sec { \dfrac { 1 }{ x } } +tan{ \dfrac { 1 }{ x } } \right| }+C
Now, given that y\rightarrow -1\quad as\quad x\rightarrow \infty
{ \Rightarrow lim }_{ x\rightarrow \infty }y=-1
{ \Rightarrow lim }_{ x\rightarrow \infty }\left( log_{ e }{ \left| \sec { \dfrac { 1 }{ x } } +tan{ \dfrac { 1 }{ x } } \right| }+C \right) =-1
{ \Rightarrow }\left( log_{ e }{ \left| \sec { 0 } +tan{ 0 } \right| }+C \right) =-1
\Rightarrow C=-1.
Therefore, the solution of given differential equation is:
y=log_{ e }{ \left| \sec { \dfrac { 1 }{ x } } +tan{ \dfrac { 1 }{ x } } \right| }-1.
Please disable the adBlock and continue. Thank you.