MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Integrals Quiz 10 - MCQExams.com
CBSE
Class 12 Commerce Maths
Integrals
Quiz 10
The value of $$\int_{a}^{b}{(x-a)^{3}(b-x)^{4}dx}$$ is
Report Question
0%
$$\dfrac{(b-a)^{4}}{6^{4}}$$
0%
$$\dfrac{(b-a)^{8}}{280}$$
0%
$$\dfrac{(b-a)^{7}}{7^{3}}$$
0%
$$none\ of\ these$$
The value of $$\int_{-1}^{3}[tan^{-1}(\frac{x}{x^{2}+1})+tan^{-1}(\frac{x^{2}+1}{x})]dx$$
Report Question
0%
2$$\pi $$
0%
$$\pi $$
0%
$$\frac{\pi }{2}$$
0%
$$\frac{\pi }{4}$$
Evaluate : $$\int { \cfrac { dx }{ x\cos { x } } } $$
Report Question
0%
$$\ln { x } +\cfrac { { x }^{ 2 } }{ 2 } +\cfrac { { 3x }^{ 3 } }{ 3 } +...$$
0%
$$\ln { x } -\cfrac { { x }^{ 2 } }{ 4 } +\cfrac { { 4x }^{ 4 } }{ 16 } +...$$
0%
$$\ln { x } +\cfrac { { x }^{ 2 } }{ 4 } +\cfrac { { 5x }^{ 4 } }{ 96 } +...$$
0%
$$\ln { x } -\cfrac { { x }^{ 2 } }{ 3 } +\cfrac { { x }^{ 4 } }{ 9 } +...$$
The value of the integral $$\underset{0}{\overset{\pi / 4}{\int}} \dfrac{\sin \, x + \cos \, x}{3 + \sin \, 2x} dx$$, is
Report Question
0%
$$\log 2$$
0%
$$\log 3$$
0%
$$\dfrac{1}{4} \log \, 3$$
0%
$$\dfrac{1}{8} \log \, 3$$
Explanation
$$\int_{0}^{\frac{\pi}{4}}\dfrac{\sin x+\cos x}{3+\sin 2x}dx$$
$$=\int_{0}^{\frac{\pi}{4}}\dfrac{\sin x+\cos x}{4-(\sin x-\cos x)^2}dx$$
substitute $$u=\sin x-\cos x\Rightarrow (\sin x+\cos x)dx=dt$$
$$x(0,\dfrac{\pi}{4})\rightarrow t(-1,0)$$
$$=\int_{-1}^{0}\dfrac{dt}{4-t^2}$$
$$=\int_{-1}^{0}\dfrac{dt}{2^2-t^2}$$
$$=\dfrac{1}{2\times 2}\left [ \ln \dfrac{2+t}{2-t} \right ]_{-1}^0$$
$$=\dfrac{1}{4}\left \{ \ln 1 -\ln \dfrac{1}{3} \right \}$$
$$=\dfrac{1}{4}\ln 3$$
$$\int_{}^{} {\frac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}dx} $$ would be equal to
Report Question
0%
$$\frac{{\sin x + x\cos x}}{{x\sin x + \cos x}} + c$$
0%
$$\frac{{\sin x - x\cos x}}{{x\sin x + \cos x}} + c$$
0%
$$\frac{{\sin x - x\cos x}}{{x\sin x - \cos x}} + c$$
0%
none of these
$$\displaystyle \int_{}^{} {{e^x}\left( {\frac{{1 - \sin x}}{{1 - \cos x}}} \right)dx} $$ is equal to :
Report Question
0%
$$ - {e^x}\tan \frac{x}{2} + c$$
0%
$$ - {e^x}\cot \frac{x}{2} + c$$
0%
$$ - \frac{1}{2}{e^x}\tan \frac{x}{2} + c$$
0%
$$ - \frac{1}{2}{e^x}\cot \frac{x}{2} + c$$
Explanation
Let $$I=\displaystyle\int{{e}^{x}\dfrac{1-\sin{x}}{1-\cos{x}}dx}$$
$$=\displaystyle\int{{e}^{x}\dfrac{1-2\sin{\dfrac{x}{2}}\cos{\dfrac{x}{2}}}{1-1+2{\sin}^{2}{\dfrac{x}{2}}}dx}$$
$$=\displaystyle\int{{e}^{x}\dfrac{1-2\sin{\dfrac{x}{2}}\cos{\dfrac{x}{2}}}{2{\sin}^{2}{\dfrac{x}{2}}}dx}$$
$$=\displaystyle\int{{e}^{x}\left(\dfrac{{\csc}^{2}{\dfrac{x}{2}}}{2}-\cot{\dfrac{x}{2}}\right)dx}$$
Let $$f\left(x\right)=-\cot{\dfrac{x}{2}}$$
$$\Rightarrow\,{f}^{\prime}{\left(x\right)}=\dfrac{1}{2}{\csc}^{2}{\dfrac{x}{2}}$$
$$\Rightarrow\,I=\displaystyle\int{{e}^{x}\left(\dfrac{{\csc}^{2}{\dfrac{x}{2}}}{2}-\cot{\dfrac{x}{2}}\right)dx}$$
Using $$\displaystyle\int{{e}^{x}\left(f\left(x\right)+{f}^{\prime}{\left(x\right)}\right)dx}={e}^{x}f\left(x\right)+C$$
$$\Rightarrow\,I=-{e}^{x}\cot{\dfrac{x}{2}}+c$$
The value of $$\displaystyle \int _{0}^{\pi/2} \log{\sin{x}}dx$$ is
Report Question
0%
$$-\pi \log{2}$$
0%
$$\dfrac{-\pi}{2} \log{2}$$
0%
$$\pi \log{2}$$
0%
0
The value of $$\cfrac { \int _{ 0 }^{ \pi /2 }{ { \left( \sin { x } \right) }^{ \sqrt { 3 } +1 } } dx }{ \int _{ 0 }^{ \pi /2 }{ { \left( \sin { x } \right) }^{ \sqrt { 3 } -1 } } } $$ is
Report Question
0%
$$\cfrac { \sqrt { 3 } +1 }{ \sqrt { 3 } -1 } $$
0%
$$\cfrac { \sqrt { 3 } -1 }{ \sqrt { 3 } +1 } $$
0%
$$\cfrac { \sqrt { 3 } +1 }{ \sqrt { 3 } } $$
0%
none of these
The value of $$\displaystyle \int _{-1}^{1} \log{\left(\dfrac{2-x}{2+x}\right)}\sin^{2}{x}dx$$
Report Question
0%
$$1$$
0%
$$-1$$
0%
$$2$$
0%
$$0$$
$$\displaystyle\int _{ -1 }^{ 1 }{ x\ell n\left( 1+{ e }^{ x } \right) dx } =$$
Report Question
0%
$$0$$
0%
$$\ell n(1+e)$$
0%
$$\ell n(1+e)-1$$
0%
$$1/3$$
$$\displaystyle\int^{2+\sqrt{3}}_{2-\sqrt{3}}\dfrac{xdx}{(1+x)(1+x^2)}=?$$
Report Question
0%
$$\dfrac{\pi}{4}$$
0%
$$\dfrac{\pi}{6}$$
0%
$$\dfrac{\pi}{12}$$
0%
$$\dfrac{\pi}{24}$$
The value of the integral $$\displaystyle \int _ { 0 } ^ { 1 } \dfrac { d x } { x ^ { 2 } + 2 x \cos \alpha + 1 }$$ , where $$0 < \alpha < \dfrac { \pi } { 2 } ,$$ is equal to
Report Question
0%
$$\sin{\alpha}$$
0%
$$\alpha \sin {\alpha}$$
0%
$$\dfrac { \alpha } { 2 \sin{\alpha} }$$
0%
$$\dfrac { \alpha } { 2 } \sin {\alpha}$$
Explanation
$$ \int_{0}^{1}\frac{dx}{x^{2}+2x\, cos\, \alpha +1} = \int_{0}^{1}\frac{dx}{x^{2}+2x\, cos\, \alpha +cos^{2} \alpha +sin^{2}\alpha }$$
$$ = \int_{0}^{1}\frac{dx}{(x+cos\,\alpha )^{2}+sin^{2}\alpha } $$
$$ = \frac{1}{sin\,\alpha } \left [ tan^{-1} \left ( \frac{x+cos\,\alpha }{sin\,\alpha } \right ) \right ]_{0}^{1}$$
$$ = \frac{1}{sin\,\alpha } \left [ tan^{-1}\left ( \frac{1+cos\alpha }{sin\,\alpha } \right )- tan^{-1}\left ( \frac{cos\, \alpha }{sin\,\alpha } \right ) \right ]$$
$$ = \frac{1}{sin\, \alpha } \left [ tan^{-1}\left ( \frac{2\, cos^{2}\alpha /2}{2\, sin\, \alpha /2 \, cos\,\alpha /2} \right ) - tan^{-1}\left ( cot\alpha \right )\right ]$$
$$ = \frac{1}{sin \, \alpha} \left [ tan^{-1}\left ( cot+\,\alpha/2 \right ) - tan^{-1}\left ( cot\alpha \right ) \right ]$$
$$ = \frac{1}{sin\, \alpha}\left [ tan^{-1}\left ( tan\left ( \pi /2 - \alpha/2 \right ) \right ) - tan^{-1}\left ( tan\left ( \pi /2 - \alpha \right ) \right ) \right ]$$
$$ = \frac{1}{sin \alpha} \left [ \pi/2 - \alpha/2 - \pi/2 + \alpha \right ]$$
$$ = \frac{\alpha}{2 sin\, \alpha}$$
If $$\displaystyle \int _{0}^{1}\cot^{-1}(1+x^{2}-x)dx=k\left(\dfrac {\pi}{4}-\log_{e}\sqrt {2}\right)$$, then the value of $$k$$ is equal to
Report Question
0%
$$0$$
0%
$$1$$
0%
$$-1$$
0%
$$2$$
$$\int _{ \pi /4 }^{ 3\pi /4 }{ \dfrac { dx }{ 1+\cos { x } } }$$ is equal to
Report Question
0%
$$-2$$
0%
$$2$$
0%
$$4$$
0%
$$-1$$
$$\int_{0}^{\frac{1}{2}}\frac{xsin^{-1}x}{\sqrt{1-x^{2}}}dx$$ is equal to
Report Question
0%
$$\frac{1}{2}+\frac{\pi }{2\sqrt{3}}$$
0%
$$\frac{1}{2}-\frac{\pi }{2\sqrt{3}}$$
0%
$$\frac{1}{2}+\frac{\pi }{4\sqrt{3}}$$
0%
$$\frac{1}{2}-\frac{\pi }{4\sqrt{3}}$$
The integral $$\int { \dfrac { { sin }^{ 2 }\times { cos }^{ 2 }\times }{ { (sin }^{ 5 }\times +{ cos }^{ 3 }\times { sin }^{ 2 }\times +{ sin }^{ 3 }\times { cos }^{ 2 }\times +{ cos }^{ 5 }{ \times ) }^{ 2 } } } $$dx is equal to:
Report Question
0%
$$\dfrac { 1 }{ { 1+cos }^{ 3 }x } +c$$
0%
$$\dfrac { -1 }{ { 1+cos }^{ 3 }x } +c$$
0%
$$\dfrac { 1 }{ 3\left( 1+{ tan }^{ 3 }x \right) } +c$$
0%
$$\dfrac { -1 }{ 3\left( 1+{ tan }^{ 3 }x \right) } +c$$
The value of $$\int_{0}^{[x]} (x-[x])dx$$, where $$[x]$$ is the greatest integer $$|le x$$ is equal to
Report Question
0%
$$4[x]$$
0%
$$2[x]$$
0%
$$\dfrac{1}{2} [x]$$
0%
$$\dfrac{1}{5} [x]$$
The value of the definite integral $$\int _{ 2 }^{ 3 }{ \left[ \sqrt { 2x-\sqrt { 5\left( 4x-5 \right) } } +\sqrt { 2x+\sqrt { 5\left( 4x-5 \right) } } \right] } dx=$$
Report Question
0%
$$\dfrac {7\sqrt {3}+3\sqrt {5}}{3\sqrt {2}}$$
0%
$$4\sqrt {2}$$
0%
$$4\sqrt {3}+\dfrac {4}{3}$$
0%
$$\dfrac {7\sqrt {7}-2\sqrt {5}}{3\sqrt {2}}$$
The value of the integral $$\displaystyle \int _{ { e }^{ -1 } }^{ { e }^{ 2 } }{ \left| \frac { \log _{ e }{ x } }{ x } \right| dx } $$ is
Report Question
0%
$$\dfrac {3}{2}$$
0%
$$\dfrac {5}{2}$$
0%
$$3$$
0%
$$5$$
The integral $$\displaystyle \int_{\dfrac{\pi}{12}}^{\dfrac{\pi}{4}}{\dfrac{8\cos 2x}{(\tan x+\cot x)^{3}}dx}$$ equals :
Report Question
0%
$$\dfrac{15}{128}$$
0%
$$\dfrac{15}{64}$$
0%
$$\dfrac{13}{32}$$
0%
$$\dfrac{13}{256}$$
Let $$f:R\longrightarrow R,g : R\longrightarrow R$$ be continuous functions. then the value of integeral.
$$\int _{ \ell n\lambda }^{ \ell n/\lambda }{ \frac { f\left( \dfrac { { x }^{ 2 } }{ 4 } \right) \left[ f\left( x \right) -f\left( -x \right) \right] }{ g\left( \dfrac { { x }^{ 2 } }{ 4 } \right) \left[ g\left( x \right) +g\left( -x \right) \right] } } dx$$ is:
Report Question
0%
depend on $$\lambda$$
0%
a non-zero constant
0%
zero
0%
1
If $$P=\displaystyle \lim _{ n\rightarrow \infty }{ \frac { { \left( \prod _{ r=1 }^{ n }{ \left( { n }^{ 3 }+{ r }^{ 3 } \right) } \right) }^{ 1/n } }{ { n }^{ 3 } } }$$ and $$\lambda =\displaystyle \int _{ 0 }^{ 1 }{ \frac { dx }{ 1+{ x }^{ 3 } } } $$ then $$In P$$ is equal to
Report Question
0%
$$In 2-1+\lambda$$
0%
$$In 2-3+3\lambda$$
0%
$$2In 2-\lambda$$
0%
$$In 4-3+3\lambda$$
The value of $$\displaystyle \int _{0}^{\infty}\dfrac{\sqrt{x^2+1}}{(x+\sqrt{x^{2}+1})^{n+1}} .dx \ \forall \ n\ \in \ N- \{ \pm 1 \}$$ is
Report Question
0%
$$0$$
0%
$$n(n^{2}-1)$$
0%
$$\dfrac{n}{(n^{2}-1)}$$
0%
$$n^{2}$$
$$\displaystyle \int_{-3\pi}^{3\pi}{\sin^{2}\theta\sin^{2} 2\theta d \theta}$$ is equal to-
Report Question
0%
$$\pi$$
0%
$$\dfrac{3\pi}{2}$$
0%
$$\dfrac{5\pi}{2}$$
0%
$$6\pi$$
$$\displaystyle \int _ { 0 } ^ { \pi / 4 } \frac { x \cdot \sin x } { \cos ^ { 3 } x } d x$$ equals to :
Report Question
0%
$$\displaystyle \frac { \pi } { 4 } + \frac { 1 } { 2 }$$
0%
$$\displaystyle \frac { \pi } { 4 } - \frac { 1 } { 2 }$$
0%
$$\dfrac { \pi } { 4 }$$
0%
$$\dfrac { \pi } { 4 } + 1$$
Explanation
Let $$I=\displaystyle\int_{0}^{\pi/4}\dfrac{x.\sin x}{\cos^3 x}dx$$
Applying by-parts formula, we get
$$=\displaystyle\left[\dfrac{x}{2\cos^2 x}\right]_0^{\pi/4}-\int_{0}^{\pi/4}\dfrac{1}{2\cos^2 x}dx$$
$$=\displaystyle\dfrac{\dfrac{\pi}{4}}{2\left(\dfrac{1}{\sqrt{2}}\right)^2}-0-\int_{0}^{\pi/4}\dfrac{\sec^2 x}{2}dx$$
$$=\dfrac{\pi}{4}-\dfrac{1}{2}\left[\tan x\right]_0^{\pi/4}$$
$$=\dfrac{\pi}{4}-\dfrac{1}{2}\left[\tan \dfrac{\pi}{4}-\tan 0\right ]$$
$$=\dfrac{\pi}{4}-\dfrac{1}{2}[1-0]$$
$$=\dfrac{\pi}{4}-\dfrac{1}{2}$$
Value of the definite integral $$\displaystyle \int_{-1}^{1}\dfrac {dx}{(1+x^{3}+\sqrt {1+x^{6}})}$$
Report Question
0%
$$is\dfrac {1}{2}$$
0%
$$is\ 1$$
0%
$$is\ 2$$
0%
$$is\ zero$$
The value of
$$\displaystyle\int _{ 5 }^{ 10 }{ \left( \sqrt { x+\sqrt { 20x-100 } } +\sqrt { x-\sqrt { 20x-100 } } \right) } dx$$ is
Report Question
0%
$$10\sqrt{5}$$
0%
$$5\sqrt{5}$$
0%
$$10\sqrt{2}$$
0%
$$8\sqrt{2}$$
Let $$f(x)= \left| \begin{matrix} \sec { x } & \cos { x } & \sec { ^{ 2 }x+\cot { x\csc { x } } } \\ \cos { ^{ 2 }x } & \cos { ^{ 2 }x } & \csc { ^{ 2 }x } \\ 1 & \cos { ^{ 2 }x } & \cos { ^{ 2 }x } \end{matrix} \right|$$. Then $${\int}_{0}^{\pi/2}f(x)dx$$ is equal to
Report Question
0%
$$\dfrac{15\pi}{60}$$
0%
$$\dfrac{15\pi+32}{60}$$
0%
$$\dfrac{15\pi-32}{60}$$
0%
$$none\ of\ these$$
$$\displaystyle \int_{0}^{\pi/2}{(\sin x-\cos x).\log(\sin x+\cos x)dx}$$=
Report Question
0%
$$\dfrac{\pi}{4}$$
0%
$$\dfrac{\pi}{2}$$
0%
$$0$$
0%
$$2$$
Let $$f\left(x\right)+f\left(\dfrac{1}{x}\right)=F\left(x\right)$$ where $$f\left(x\right)=\displaystyle\int_{1}^{x}{\dfrac{\ln{t}}{1+t}dx}$$.Then $$F\left(e\right)=$$
Report Question
0%
$$\dfrac{-1}{2}$$
0%
$$\dfrac{1}{2}$$
0%
$$1$$
0%
$$-1$$
Evaluate:
$$\displaystyle\int_{-2}^{3}{\left|1-{x}^{2}\right|dx}$$
Report Question
0%
$$\dfrac{28}{3}$$
0%
$$\dfrac{2}{3}$$
0%
$$\dfrac{8}{3}$$
0%
$$\dfrac{5}{3}$$
If $${ I }_{ 1 }=\int _{ 0 }^{ \pi /2 }{ \cos(\sin x)dx, { I }_{ 2 }= } \int _{ 0 }^{ \pi /2 }{ \sin(\cos x)dx } $$ and $${ I }_{ 3 }=\int _{ 0 }^{ \pi /2 }{ \cos xdx } $$, then
Report Question
0%
$${ I }_{ 1 }>{ I }_{ 2 }>{ I }_{ 3 }$$
0%
$${ I }_{ 3 }>{ I }_{ 2 }>{ I }_{ 1 }$$
0%
$${ I }_{ 3 }>{ I }_{ 1 }>{ I }_{ 2 }$$
0%
$${ I }_{ 1 }>{ I }_{ 3 }>{ I }_{ 2 }$$
$$\displaystyle \int_{2}^{8}\dfrac {\sqrt {10-x}}{\sqrt {x}+\sqrt {10-x}}dx$$ is
Report Question
0%
$$1$$
0%
$$2$$
0%
$$3$$
0%
$$4$$
$${\int}_{0}^{\pi}\dfrac{\sqrt{1-x}}{1+x}dx=$$
Report Question
0%
$$\dfrac{\pi}{2}$$
0%
$$\dfrac{\pi}{2}-1$$
0%
$$\dfrac{\pi}{2}+1$$
0%
$$\pi+1$$
$$\int _ { 0 } ^ { \pi / 4 } \tan ^ { 2 } x d x$$ equals -
Report Question
0%
$$\pi / 4$$
0%
$$1 + ( \pi / 4 )$$
0%
$$1 - ( \pi / 4 )$$
0%
$$1 - ( \pi / 2 )$$
Evaluate
$$\int \dfrac{dx}{\sqrt{1-x}}$$
Report Question
0%
$$\sin^{-1} \sqrt{x}$$
0%
$$-\sin^{-1} \sqrt{x}+c$$
0%
$$2\sqrt{1-x}+c$$
0%
$$-2\sqrt{1-x}+c$$
$$\displaystyle \overset{2\pi}{\underset{0}{\int}} x \,log \left(\dfrac{3 + \cos x}{3 - \cos x}\right)dx$$
Report Question
0%
$$\dfrac{\pi}{2} \,log \,3$$
0%
$$\dfrac{\pi}{12} \,log \,3$$
0%
$$\dfrac{\pi}{3} \,log \,3$$
0%
$$0$$
The smallest interval in which value of $$\int_{0}^{1} \dfrac{xdx}{x^{3}+3}$$ lies
Report Question
0%
$$[0,1]$$
0%
$$[0,\dfrac{1}{2}]$$
0%
$$[0,\dfrac{1}{4}]$$
0%
$$[0,\dfrac{1}{8}]$$
$$\displaystyle \overset{3}{\underset{0}{\int}} \dfrac{dx}{\sqrt{5 - x^2}}$$
Report Question
0%
$$\dfrac{\pi}{6}$$
0%
$$\dfrac{\pi}{2}$$
0%
$$-\dfrac{\pi}{2}$$
0%
$$-\dfrac{\pi}{6}$$
$$\displaystyle\int _{ 0 }^{ \infty }{ \dfrac { dx }{ \left( x+\sqrt { { x }^{ 2 }+1 } \right) ^{ 3 } } } =$$
Report Question
0%
$$\dfrac{3}{8}$$
0%
$$\dfrac{1}{8}$$
0%
$$-\dfrac{3}{8}$$
0%
$$None\ of\ these$$
If I =$$\overset { 2 }{ \underset { -3 }{ \int } } (|x + 1| + |x + 2| +|x -1|) dx$$, then i equals
Report Question
0%
$$\dfrac{31}{2}$$
0%
$$\dfrac{35}{2}$$
0%
$$\dfrac{47}{2}$$
0%
$$\dfrac{39}{2}$$
If $$I=\displaystyle\int _{ 8 }^{ 15 }{ \dfrac { dx }{ \left( x-3 \right) \sqrt { x+1 } } } $$, then $$I$$ equals
Report Question
0%
$$\dfrac{1}{2}\log\dfrac{5}{3}$$
0%
$$2\log\dfrac{1}{3}$$
0%
$$\dfrac{1}{2}\log\dfrac{1}{5}$$
0%
$$2\log\dfrac{5}{3}$$
The floor value of integral $$\displaystyle \int_\dfrac{\pi }{4}^{3\pi }\dfrac{x}{1+4x}dx$$ is
Report Question
0%
$$1$$
0%
$$2$$
0%
$$3$$
0%
$$4$$
Solve :-
$$\int_0^1 {\frac{{dx}}{{{{({x^2} + 1)}^{3/2}}}} = } $$
Report Question
0%
$$1$$
0%
$$\frac{1}{{\sqrt 2 }}$$
0%
$$\frac{1}{2}$$
0%
$$\sqrt 2 $$
Value of $$ \displaystyle \int_{1}^{5} \left(\sqrt {x+2\sqrt {x-1}}+\sqrt {x-2(x-1)}\right)dx$$ is
Report Question
0%
$$\dfrac {8}{3}$$
0%
$$\dfrac {16}{3}$$
0%
$$\dfrac {32}{3}$$
0%
$$\dfrac {34}{3}$$
Let $$[\cdot]$$ denote the greatest integer function then the value of $$\displaystyle\int^{1.5}_0x[x^2]dx$$ is?
Report Question
0%
$$0$$
0%
$$\dfrac{3}{2}$$
0%
$$\dfrac{7}{4}$$
0%
$$\dfrac{5}{4}$$
$$\int _ { 0 } ^ { 2 } \cfrac { \sqrt { x } } { \sqrt { x } + \sqrt { 2 - x } }$$ is equal to
Report Question
0%
$$-1$$
0%
$$0$$
0%
$$2$$
0%
$$1$$
$$\int _{ 0 }^{ \infty }{ \frac { { x }^{ 2 }+1 }{ { x }^{ 4 }+{ 7x }^{ 2 }+1 } } $$ dx=
Report Question
0%
$$\pi $$
0%
$$\frac { \pi }{ 2 } $$
0%
$$\frac { \pi }{ 3 } $$
0%
$$\frac { \pi }{ 6 } 4$$
The solution of $$x$$ of the equation $$\displaystyle \int_{\sqrt{2}}^{x}{\dfrac{dt}{t\sqrt{t^{2}-1}}}=\dfrac{\pi}{2}$$ is
Report Question
0%
$$2\sqrt{2}$$
0%
$$2$$
0%
$$\pi$$
0%
$$-\sqrt{2}$$
If the value of the definite integral $$\int _{ \dfrac { \pi }{ 6 } }^{ \dfrac { \pi }{ 4 } }{ \dfrac { 1+\cot { x } }{ { e }^{ x }sin{ x } } dx } $$, is equal to $${ ae }^{ -\pi /6 }+{ be }^{ -\pi /4 }$$ then $$(a+b)$$ equals
Report Question
0%
$$2-\sqrt { 2 } $$
0%
$$2+\sqrt { 2 } $$
0%
$$2\sqrt { 2 } -2$$
0%
$$2\sqrt { 3 } -\sqrt { 2 } $$
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page