CBSE Questions for Class 12 Commerce Maths Integrals Quiz 3 - MCQExams.com

Evaluate the following definite integral:
$$\displaystyle \int_{0}^{1}$$ $$\sin \left(2 {t} {a} {n}^{-1}\sqrt{\dfrac{1- {x}}{1+ {x}}}\right) {d} {x}$$
  • $$\pi$$
  • $$\displaystyle \frac{\pi}{2}$$
  • $$\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{4}$$
The value of $$\displaystyle \int_{0}^{\pi /4}\displaystyle \frac{\sin^{ \frac{1}{2}}x}{\cos^{ \frac{5}{2}}x} dx$$ is
  • $$0$$
  • $$\displaystyle \frac{\pi}{4}$$
  • $$1$$
  • $$\dfrac{2}{3}$$

$$\displaystyle \int_{0}^{\pi/2}(2\tan\frac{x}{2}+x\sec^{2}\frac{x}{2})dx=$$
  • $$\pi$$
  • $$\pi/2$$
  • 2$$\pi/3$$
  • $$\pi/6$$
$$\int_{2}^{3}\dfrac{2-x}{\sqrt{5x-6-x^{2}}} dx =$$
  • $$\pi /2$$
  • $$-\pi /2$$
  • $$-\pi /3$$
  • $$\pi $$

Evaluate the following definite integral:
$$\displaystyle \int^{\pi /4}_{-\pi /4}\log(\cos x+\sin x)dx$$
  • $$\pi$$ log2
  • $$-\pi$$ log2
  • $$-\displaystyle \frac{\pi}{4} \log 2$$
  • $$\pi^{2}\log 2$$
Evaluate the integral
$$\displaystyle \int_{0}^{a}\sqrt{\frac{a+x}{a-x}}dx$$
  • $$\displaystyle \frac{a}{2}(\pi+2)$$
  • $$\displaystyle \frac{a}{2}(\pi-2)$$
  • $$\displaystyle \frac{a}{3}(\pi+2)$$
  • $$\displaystyle \frac{a}{2}(\pi+3)$$

$$\displaystyle \int_{0}^{1}\sqrt{\frac{\mathrm{x}}{1-\mathrm{x}^{3}}}\mathrm{d}\mathrm{x}=$$
  • $$\displaystyle \frac{\pi}{4}$$
  • $$\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{6}$$
  • $$\displaystyle \frac{\pi}{2}$$

$$\displaystyle \int_{0}^{3}x\sqrt{1+x}dx=$$
  • 9/2
  • 27/4
  • 116/15
  • 112/15

$$\displaystyle \int_{\pi^{2}/16}^{\pi^{2}/4}\frac{\sin\sqrt{x}}{\sqrt{x}}dx=$$
  • $$\sqrt{2}$$
  • $$1/\sqrt{2}$$
  • 2 $$\sqrt{2}$$
  • $${\pi}/2$$

$$\displaystyle \int_{0}^{1}\frac{dx}{x+\sqrt{x}}=$$
  • log 2
  • 2 log 2
  • 3 log 3
  • $$\displaystyle \frac{1}{2}$$ log2

lf $$\displaystyle \int_{0}^{k}\frac{dx}{2+8x^{2}}=\frac{\pi}{16}$$ then $$\mathrm{k}=$$
  • 1
  • 1/2
  • $$\pi/2$$
  • 2
If $$ \displaystyle    {I}_{ {n}}=\int^{\pi/2 }_{\pi/4}( {T} {a} {n}\theta)^{- {n}}. {d}\theta $$ for $$( {n}>1)$$ 
then $$I_{n}+I_{n+2} = ?$$
  • $$\displaystyle \frac{1}{\mathrm{n}+1}$$
  • $$\displaystyle \frac{-1}{\mathrm{n}+1}$$
  • $$\displaystyle \frac{1}{\mathrm{n}-1}$$
  • $$\displaystyle \frac{-1}{\mathrm{n}-1}$$
Evaluate the integral
$$\displaystyle \int_{1}^{\sqrt[7]{2}}\frac{1}{x(2x^{7}+1)} dx$$
  • $$\log \dfrac{6}{5}$$
  • $$6 \log \dfrac{6}{5}$$
  • $$\dfrac{1}{7} \log \dfrac{6}{5}$$
  • $$\dfrac{1}{5} \log \dfrac{6}{5}$$
Evaluate: $$\displaystyle \int_{0}^{\pi /4}\tan^{5}xdx$$
  • $$\displaystyle \log 2-\frac{1}{4}$$
  • $$\displaystyle \frac{1}{2}\log 2-\frac{1}{4}$$
  • $$0$$
  • $$\displaystyle \log 2+\frac{1}{4}$$
If $$\displaystyle \mathrm{U}_{\mathrm{n}}=\int^{\pi /4}_{0} \mathrm{t}\mathrm{a}\mathrm{n}^{\mathrm{n}}\theta \mathrm{d}\theta$$, then $$\mathrm{u}_{10}+\mathrm{u}_{12}$$ is equal to:
  • $$\displaystyle \frac{1}{10}$$
  • $$\displaystyle \frac{1}{12}$$
  • $$\displaystyle \frac{1}{11}$$
  • $$\displaystyle \frac{1}{22}$$
Evaluate: $$\displaystyle \int_{0}^{1}\frac{x^{3}}{1+x^{8}} dx$$ 
  • $$\displaystyle \frac{\pi}{4}$$
  • $$\displaystyle \frac{\pi}{8}$$
  • $$\displaystyle \frac{\pi}{16}$$
  • $$\displaystyle \frac{\pi}{2}$$
Evaluate: $$\int _{ 0 }^{ \tfrac { \pi  }{ 4 }  }{ ({ \tan }^{ 4 }x+{ \tan }^{ 2 }x)dx }$$
  • $$1$$
  • $$1/2$$
  • $$1/3$$
  • $$1/4$$
Evaluate: $$\displaystyle \int_{1/2}^{1}\frac{1}{\sqrt{x-x^{2}}}dx$$
  • $$\pi/8$$
  • $$\pi/4$$
  • $$\pi/2$$
  • $$\pi$$
If $$f(x)=\begin{vmatrix}\sin x+\sin2x+\sin3x & \sin2x & \sin3x\\ 3+4\sin x & 3 & 4\sin x\\ 1+\sin x & \sin x & 1\end{vmatrix} $$, then the value of $$\displaystyle \int_{0}^{\frac{\pi}2}f(x)dx$$, is
  • $$3$$
  • $$\dfrac23$$
  • $$\dfrac13$$
  • $$0$$
Evaluate: $$\displaystyle \int_{0}^{\pi /4}\tan^{6}xdx$$
  • $$\displaystyle \frac{13}{15}-\frac{\pi}{4}$$
  • $$\displaystyle \frac{13}{15}+\frac{\pi}{4}$$
  • $$\displaystyle \frac{\pi}{4}-\frac{2}{3}$$
  • $$\displaystyle \frac{13}{15}-4\pi$$
lf $$I_{\mathrm{n}}=\displaystyle \int_{0}^{\dfrac{\pi}{4}}$$ $$\tan^{n} xdx$$, then $$\displaystyle \lim_{n\rightarrow\infty}n[I_{n}+I_{n+2}]=$$
  • $$\displaystyle \dfrac{1}{2}$$
  • $$1$$
  • $$\infty$$
  • $$0$$
The value of $$\displaystyle \int_{3}^{5}\frac{x^{2}}{x^{2}-4} dx$$ is
  • $$2(1-\displaystyle \mathrm{l} \mathrm{o}\mathrm{g}_{\mathrm{e}}(\frac{15}{7}))$$
  • $$2(1+\displaystyle \mathrm{l}\mathrm{o}\mathrm{g}_{\mathrm{e}}(\frac{15}{7}))$$
  • $$2(1+4\log_{\mathrm{e}}3-4\log_{\mathrm{e}}7+4\log_{\mathrm{e}}5)$$
  • $$2(1-\displaystyle \tan^{-1}(\frac{15}{7}))$$

lf $$\displaystyle \int_{0}^{1}\frac{\tan^{-1}x}{x}dx=k\int_{0}^{\pi/2}\frac{x}{\sin x}dx$$, then the value of $$k$$ is
  • $$1$$
  • $$\displaystyle \frac{1}{4}$$
  • $$4$$
  • $${2}$$

The value of the integral $$\displaystyle \int_{0}^{\infty}\frac{1}{1+x^{4}} dx$$ is
  • $$\displaystyle \frac{\pi}{2}$$
  • $$\displaystyle \frac{\pi}{\sqrt{2}}$$
  • $$\displaystyle \frac{\pi}{2\sqrt{2}}$$
  • $$\pi/4$$
The value of $$x$$ such that  $$\displaystyle \int_{\sqrt{2}}^{\mathrm{x}}\frac{1}{x\sqrt{x^{2}-1}}dx=\frac{\pi}{12}$$ is
  • $$\mathrm{x}=3$$
  • $$\mathrm{x}=4$$
  • $$\mathrm{x}=1$$
  • $$\mathrm{x}=2$$
$$\displaystyle \int e^{tan^{-1}x}\left[\frac{1+x+x^{2}}{1+x^{2}}\right]dx=$$
  • $$\displaystyle x^{2}e^{\tan^{-1}x}+c$$
  • $$\displaystyle x e^{\tan^{-1}x}+c$$
  • $$\displaystyle e^{\tan^{-1}x}+c$$
  • $$\displaystyle \frac{1}{2}e^{\tan^{-1}x}+c$$
lf $$f(x)=\left\{\begin{array}{l}e^{\cos x}\sin x, for |x|\leq 2\\2    ;       otherwise\end{array}\right.$$, then $$\displaystyle \int_{-2}^{3}f(x)dx$$ is
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$

The value of the integral $$\displaystyle \int_{0}^{1}\frac{1}{(x^{2}+1)^{3/2}} dx$$ is
  • $$\displaystyle \frac{3}{\sqrt {2}}$$
  • $$\displaystyle \frac { 1 }{ \sqrt { 2 } } $$
  • $$1$$
  • $${\sqrt{2}}$$

Area bounded by $$\mathrm{y}=\{\mathrm{x}\},\{.\}$$ is fractional part of function and $$\mathrm{x}=\pm 1$$ is in sq. units
  • 1
  • 2
  • 3
  • 4
If $$\displaystyle \int^{x}_{\log 2} \dfrac{1}{\sqrt{e^{x}-1}}dx = \dfrac{\pi}{6}$$

then $$x $$ is equal to?
  • $$e^{2}$$
  • $$1/e$$
  • $$\log 4$$
  • $$\log 2$$
Let $$\displaystyle \frac{d}{dx}F\left ( x \right )=\frac{e^{\sin x}}{x},x> 0.$$ If $$\displaystyle \int_{1}^{4}\frac{2e^{\sin x^{2}}}{x}dx=F\left ( k \right )-F\left ( 1 \right )$$ then one of the possible values of $$\displaystyle k$$ is
  • $$4$$
  • $$\displaystyle -4$$
  • $$16$$
  • none of these
The value of $$\displaystyle \int_{1}^{2}\left [ f\left \{ g\left ( x \right ) \right \} \right ]^{-1}.{f}'\left \{ g\left ( x \right ) \right \}.{g}'\left ( x \right )dx,$$ where $$\displaystyle g\left ( 1 \right )=g\left ( 2 \right ),$$ is equal to?
  • $$1$$
  • $$2$$
  • $$0$$
  • none of these
The value of integral  $$\displaystyle \int_{0}^{\infty }\frac{x\log x}{(1+x^2)^2}  \: dx$$ is
  • $$0$$
  • $$\log 7$$
  • $$ 5\log 13$$
  • $$none\ of\ these$$
Let $$\displaystyle \frac{{df(x)}}{{dx}} = \frac{{{e^{\sin x}}}}{x}, x>0$$. If $$\displaystyle \int_1^4 {\frac{{3{e^{\sin {x^3}}}}}{x}dx = f(k) - f(1)} $$ then one of the possible values of k is
  • $$16$$
  • $$63$$
  • $$64$$
  • $$15$$
Let $$f(0) = 0$$ and $$\displaystyle \int_{0}^{2}{f}'(2t)e^{f(2t)} \:dt=5$$.
Then the value of $$f (4)$$ is?
  • $$\log 2$$
  • $$\log 7$$
  • $$\log 11$$
  • $$\log 13$$
$$ \displaystyle \int_{\sin \theta }^{\cos \theta }f(x \tan \theta )dx\left ( where \theta \neq \frac{n\pi}{2} ,n\epsilon I\right )$$ is equal to
  • $$\displaystyle -\int_{1}^{\tan }f(x\sin \theta )dx$$
  • $$\displaystyle -\tan \theta \int_{\sin \theta }^{\cos \theta }f(x)dx$$
  • $$\displaystyle \sin \theta \int_{1}^{\tan }f(x\cos \theta )dx$$
  • $$\displaystyle \frac{1}{\tan \theta }\int_{\sin \theta }^{\sin \theta \tan \theta}f(x)dx$$
The possible negative values of real number 'a' such that $$\overset { 0 }{ \underset { a }{ \int }  } (9^{-2t}-2.9^{-t})dt\geq 0$$ is
  • -2013
  • $$-\frac{2013}{2}$$
  • -2
  • -1
If $$I_1 = \displaystyle \int_x^1 \frac{1}{1 + t^2} dt$$ and $$I_2 \displaystyle = \int_1^{1 / x}\frac{1}{1+ t^2}dt$$ for $$x > 0$$, then
  • $$I_1 = I_2$$
  • $$I_1 > I_2$$
  • $$I_2 > I_1$$
  • none of these
Suppose that F(x) is an anti-derivative of $$\displaystyle f(x)=\frac{\sin x}{x}$$, where $$x>0$$.
Then $$\displaystyle \int_{1}^{3}\dfrac{\sin2x}{x} \:dx$$ can be expressed as?
  • $$F(6)-F(2)$$
  • $$\dfrac{1}{2}(F(6)-F(2))$$
  • $$\dfrac{1}{2}(F(3)-F(1))$$
  • $$2(F(6)-F(2))$$
If $$\displaystyle f\left ( x \right )=\int_{-1}^{1}\frac{\sin x}{1+t^{2}}dt$$ then $$\displaystyle {f}'\left ( \frac{\pi }{3} \right )$$ is
  • nonexistent
  • $$\displaystyle \pi /4$$
  • $$\displaystyle \pi \sqrt{3/4}$$
  • none of these
The value of  $$\displaystyle \int_{0}^{\pi /4}\frac{\sec x}{\left ( \sec x+\tan x \right )^{2}}dx$$ is 
  • $$\displaystyle 1+\sqrt{2}$$
  • $$\displaystyle -\left ( 1+\sqrt{2} \right )$$
  • $$\displaystyle -\sqrt{2}$$
  • none of these
$$\displaystyle \int_{\pi /4}^{3\pi /4}\frac{dx}{1+\cos x}$$ is equal to
  • $$2$$
  • $$\displaystyle -2$$
  • $$1 / 2$$
  • $$\displaystyle -1/2$$
The solution for x of the equation $$\displaystyle \int_{\sqrt{2}}^{x}\frac{dt}{t\sqrt{t^{2}-1}}=\frac{\pi }{2}$$ is
  • $$\displaystyle \frac{\sqrt{3}}{2}$$
  • $$-\sqrt{2}$$
  • $$2$$
  • $$\pi $$
$$\displaystyle \int_{0}^{1}\frac{2^{x+1}-3^{x-1}}{6^{x}}dx$$
  • $$\displaystyle \frac{4}{3}\log _{3}e-\frac{1}{6}\log _{2}e.$$
  • $$\displaystyle -\frac{4}{3}\log _{3}e+\frac{1}{6}\log _{2}e.$$
  • $$\displaystyle \frac{4}{3}\log _{3}e-\frac{1}{3}\log _{2}e.$$
  • $$\displaystyle -\frac{2}{3}\log _{3}e+\frac{1}{6}\log _{2}e.$$
$$\displaystyle \int_{1}^{2}\left ( x+\frac{1}{x} \right )^{3/2}\frac{x^{2}-1}{x^{2}}dx$$
  • $$\displaystyle \frac{5}{2}\sqrt{\left ( \frac{5}{2} \right )}+\frac{8}{5}\sqrt{2}$$
  • $$\displaystyle \frac{5}{2}\sqrt{\left ( \frac{5}{2} \right )}-\frac{8}{5}\sqrt{2}$$
  • $$\displaystyle \sqrt{\left ( \frac{5}{2} \right )}-\frac{8}{5}\sqrt{2}$$
  • $$\displaystyle \frac{3}{2}\sqrt{\left ( \frac{3}{2} \right )}-\frac{8}{5}\sqrt{2}$$
The value of$$\displaystyle \int_{1}^{2}\frac{\cos \left ( \log x \right )}{x}dx$$  is equal to
  • $$2\sin \left ( \log 2 \right ) $$
  • $$ \sin \left ( \log 2 \right )$$
  • $$\displaystyle\sin \log \left ( \frac{1}{2} \right )$$
  • None of these
If $$\displaystyle f\left ( \frac{1}{x} \right )+x^{2}f\left ( x \right )=0$$ for $$x> 0,$$ 
and $$\displaystyle I=\int_{1/x}^{x}f\left ( z \right )dz, \frac{1}{2}\leq x\leq 2$$ 
then $$\displaystyle I$$ is?
  • $$\displaystyle f\left ( 2 \right )-f\left ( 1/2 \right )$$
  • $$\displaystyle f\left ( 1/2 \right )-f\left ( 2 \right )$$
  • $$0$$
  • None of these
If $$\displaystyle I_{1}= \int_{-4}^{-5}e^{\left ( x +5 \right )^{2}}dx$$ and $$\displaystyle I_{2}= 3\int_{{1}/{3}}^{{2}/{3}}e^{\left ( 3x -2 \right )^{2}}dx$$ 

then $$I_{1}+I_{2}$$ equals?
  • $$\displaystyle \frac{1}{3}$$
  • $$\displaystyle -\frac{1}{3}$$
  • $$0$$
  • None of these
If $$f\left ( a+x \right )= f\left ( x \right )$$ , then $$\forall$$ $$ a> 0,  n\epsilon  N$$ the value of $$\displaystyle \int_{0}^{n a}f\left ( x \right )dx$$  equals ?
  • $$\displaystyle \left ( n-1 \right )\int_{0}^{a}f\left ( x \right )dx$$
  • $$\displaystyle \left ( 1-n \right )\int_{0}^{a}f\left ( x \right )dx$$
  • $$\displaystyle n\int_{0}^{a}f\left ( x \right )dx$$
  • None of the above
If $$f\left ( x \right )= A\sin \left ( \dfrac {\pi x}{2} \right )\: +\: B,f{}'\left ( \dfrac 12  \right )= \sqrt{2}$$ and $$\displaystyle \int_{0}^{1}f\left ( x \right )dx= \displaystyle \frac{2A}{\pi }$$, 
then the constants $$A$$ and $$B$$ are
  • $$A=\dfrac {\pi}{2}, B=\dfrac {\pi}{2}$$
  • $$A=\dfrac {2}{\pi}, B=3\pi $$
  • $$A=0, B=-4\pi $$
  • $$A=\dfrac {4}{\pi}, B=0$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers