Explanation
Consider, I=∫10sin(2tan−1√1−x1+x)dx
let, x=cosθ ⇒ dx=−sinθdθ
⇒ x→0⇒cosθ→π2 and x→1⇒cosθ→0
⇒ I=∫0π2sin(2tan−1(tan(θ2))(−sinθ)dθ
⇒ I=∫π20sin2θdθ=∫π20[1−cos2θ2]dθ
⇒ I=∫π2012dθ−12∫π20cos2θdθ
⇒ I=[(π4−0)+12sin2θ]π20
⇒ I=π4
∫π20(2tanx2+xsec2x2)dx =2∫π20(tanx2+12xsec2x2)dx =2∫π20d(xtanx2) =2(xtanx2)∫π20 =2[(π21)−0] =π
Consider, I=∫π/4−π/4log(cosx+sinx)dx
I=∫π4−π4log[√2sin(π4+x)]dx
let, π4+x=t ⇒ dx=dt
So, x→−π4⇒t→0 and x→π4⇒t→π2
⇒ I=∫π20log(√2sint)dt
⇒ I=∫π20log(√2)+∫π20log(sint)dt
⇒ I=π2log(√2)−π2log(2)
⇒ I=π4log2−π2log(2)
⇒ I=−π4log2
∫a0√a+xa−xdx
x=acosθ=dx−asinθdθ
=∫aπ2√a+acosθa−acosθ(−asinθ)dθ
=a∫π20√1+cosθ1−cosθsinθdθ
=a∫π20cosθ2sinθ2⋅2sinθ2dθ
=a∫π202cos2θ2dθ=a∫π20(cosθ−1)dθ
=a(sinθ)π20−(θ)π20
=a[1−0]−(π2)
=a(π2+1)
=a2(π+2)
∫10dx(x+√x) x=t2 ∫102tdtt2+t=2∫10dtt+1=2log(t+1)∫10 =2log(2)−2log(1) =2log2
∫k0dx2+8x2=π16 12∫k0dx1+(2x)2=π16 12(12)tan−1(2x)∫k0=π16 14tan−1(2k)=π16 tan−1(2k)=π4 2k=1 k=12
In=∫π/2π/4(cot θ)n
In+In+2=∫π/2π/4[(cot θ)n+(cot θ)n+2]d θ
=∫π/2π/4(cot θ)ncosec2d θ
=∫π/2−π/4(cot θ)nd(cot θ)
−(cot θ)n+1n+1|π/2−π/4
−[0−1n+1]
=1n+1
∫7√211x(2x7+1)dx=∫7√211x8(2+1/x7)dx
1/x7=1⇒−7x8dx=dt
⇒dxx8−dx7
⇒1−7∫1/21dt(2+t)=17∫11/2[log(2+t)]11/2
=17[log(3)−log52]
=17log65
\displaystyle \dfrac{df(x)}{dx}=\displaystyle \dfrac{e^{sin x}}{x} , x > 0, \int_1^4 \dfrac{3e^{sin x^3}}{x}dx=f(k)-f(1) substitute x^3=p dp=3x^2 dx limit of p will be rom 1 \rightarrow 64 as of x was 1 \rightarrow 4 So, \displaystyle \int_1^{64} \dfrac{3e^{sin p}}{x} \cdot \dfrac{dp}{3x^2}=\int_1^{64} \dfrac{e^{sin p}}{p}dp=\int_1^{64}df(p)=f(64)-f(1)
Please disable the adBlock and continue. Thank you.