Explanation
Consider, $$I=\displaystyle \int_{0}^{1}\sin \left (2 tan^{-1}\sqrt{\dfrac{1-x}{1+x}} \right ) dx$$
let, $$x= \cos \theta$$ $$\Rightarrow$$ $$dx=-\sin \theta d \theta$$
$$\Rightarrow$$ $$x\rightarrow 0 \Rightarrow \cos \theta \rightarrow \dfrac{\pi}{2}$$ and $$x\rightarrow 1 \Rightarrow \cos \theta \rightarrow 0$$
$$\Rightarrow$$ $$I=\displaystyle \int_{\frac{\pi}{2}}^{0} \sin ( 2 tan^{-1}(tan(\dfrac{\theta}{2})) (-\sin \theta) d\theta$$
$$\Rightarrow$$ $$I=\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^2 \theta d \theta = \displaystyle \int_{0}^{\frac{\pi}{2}}\left [ \dfrac{1-\cos 2 \theta }{2} \right ] d\theta$$
$$\Rightarrow$$ $$I=\displaystyle \int_{0}^{\frac{\pi}{2}}\dfrac{1}{2}d \theta - \dfrac{1}{2}\displaystyle \int_{0}^{\frac{\pi}{2}}\cos 2 \theta d \theta$$
$$\Rightarrow$$ $$I=\left[\left ( \dfrac{\pi}{4}-0 \right )+\dfrac{1}{2} \sin 2 \theta \right]_{0}^{\frac{\pi}{2}}$$
$$\Rightarrow$$ $$I=\dfrac{\pi}{4}$$
$$\int_{0}^{\dfrac{\pi}{2}}\left ( 2 tan \dfrac{x}{2} + x sec^2 \dfrac{x}{2} \right ) dx$$ $$=2 \int_{0}^{\dfrac{\pi}{2}}\left ( tan \dfrac{x}{2} + \dfrac{1}{2} x sec^2 \dfrac{x}{2} \right ) dx$$ $$=2 \int_{0}^{\dfrac{\pi}{2}}d\left ( x tan \dfrac{x}{2} \right )$$ $$=2 \left ( x tan \dfrac{x}{2} \right ) \int_{0}^{\dfrac{\pi}{2}}$$ $$=2 \left [ \left ( \dfrac{\pi}{2} 1 \right ) - 0 \right ]$$ $$=\pi$$
Consider, $$\displaystyle I=\int_{-\pi/4}^{\pi /4}log (cos x + sin x)dx$$
$$I=\displaystyle \int_{-\dfrac{\pi}{4}}^{\dfrac{\pi}{4}}log \left [ \sqrt{2} sin \left ( \dfrac{\pi}{4}+ x \right ) \right ] dx$$
let, $$\dfrac{\pi}{4}+x=t$$ $$\Rightarrow$$ $$dx=dt$$
So, $$x \rightarrow \dfrac{-\pi}{4} \Rightarrow t \rightarrow 0$$ and $$x \rightarrow \dfrac{\pi}{4} \Rightarrow t \rightarrow \dfrac{\pi}{2}$$
$$\Rightarrow$$ $$\displaystyle I=\int_{0}^{\dfrac{\pi}{2}} \log (\sqrt{2} \sin t)dt$$
$$\Rightarrow$$ $$\displaystyle I=\int_{0}^{\dfrac{\pi}{2}} \log (\sqrt{2}) + \int_{0}^{\dfrac{\pi}{2}} \log (\sin t)dt$$
$$\Rightarrow$$ $$\displaystyle I=\dfrac{\pi}{2}\log (\sqrt{2})-\dfrac{\pi}{2} \log (2)$$
$$\Rightarrow$$ $$\displaystyle I=\dfrac{\pi}{4}\log 2 -\dfrac{\pi}{2} \log (2)$$
$$\Rightarrow$$ $$\displaystyle I=-\dfrac{\pi}{4} \log 2$$
$$\displaystyle \int_{0}^{a}\sqrt{\dfrac{a+x}{a-x}}dx$$
$$x=a cos \theta =dx -a sin \theta d \theta$$
$$=\displaystyle \int_{\dfrac{\pi}{2}}^{a}\sqrt{\dfrac{a+ a cos \theta}{a- a cos \theta}}(-a sin \theta)d \theta$$
$$=a\displaystyle \int_{0}^{\dfrac{\pi}{2}} \sqrt{\dfrac{1+ cos \theta}{1- cos \theta}}sin \theta d \theta$$
$$=a\displaystyle \int_{0}^{\dfrac{\pi}{2}}\dfrac{cos \dfrac{\theta}{2}}{sin \dfrac{\theta}{2}}\cdot 2 sin \dfrac{\theta}{2} d\theta$$
$$=a\displaystyle \int_{0}^{\dfrac{\pi}{2}}2 cos^2 \dfrac{\theta}{2} d \theta = a \displaystyle \int_{0}^{\dfrac{\pi}{2}}(cos \theta -1) d \theta$$
$$=a \left ( sin \theta\right )_{0}^{\frac{\pi}{2}} - (\theta)_{0}^{\frac{\pi}{2}}$$
$$=a[1-0]-\left (\dfrac{\pi}{2} \right)$$
$$=a\left (\dfrac{\pi}{2}+1 \right )$$
$$=\dfrac{a}{2}(\pi+2)$$
$$\int_{0}^{1} \dfrac{dx}{(x+\sqrt{x})}$$ $$x=t^2$$ $$\int_{0}^{1}\dfrac{2t dt}{t^2+ t}=2\int_{0}^{1}\dfrac{dt}{t+1}=2 log (t+1)\int_{0}^{1}$$ $$=2 log (2)-2log (1)$$ $$=2 log 2$$
$$\int_{0}^{k}\dfrac{dx}{2+ 8x^2}=\dfrac{\pi}{16}$$ $$\dfrac{1}{2}\int_{0}^{k}\dfrac{dx}{1+(2x)^2}=\dfrac{\pi}{16}$$ $$\dfrac{1}{2}(\dfrac{1}{2})tan^{-1}(2x)\int_{0}^{k}=\dfrac{\pi}{16}$$ $$\dfrac{1}{4}tan^{-1}(2k)=\dfrac{\pi}{16}$$ $$tan^{-1}(2k)=\dfrac{\pi}{4}$$ $$2k=1$$ $$k=\dfrac{1}{2}$$
$$I_{n}=\displaystyle \int_{^{\pi}/_{4}}^{^{\pi}/_{2}}(cot\ \theta)^{n}$$
$$I_{n}+I_{n+2}=\displaystyle \int_{^{\pi}/_{4}}^{^{\pi}/_{2}}[(cot\ \theta)^{n}+(cot\ \theta)^{n+2}]d\ \theta$$
$$=\displaystyle \int_{^{\pi}/_{4}}^{^{\pi}/_{2}}(cot\ \theta)^{n}cosec^{2}d\ \theta$$
$$=\displaystyle \int_{^{-\pi}/_{4}}^{^{\pi}/_{2}}(cot\ \theta)^{n}d(cot\ \theta)$$
$$-\dfrac{(cot\ \theta)^{n+1}}{n+1}|_{^{-\pi}/_{4}}^{^{\pi}/_{2}}$$
$$-\left [ 0-\dfrac{1}{n+1} \right ]$$
$$=\dfrac{1}{n+1}$$
$$\displaystyle \int_{1}^{\sqrt[7]{2}}\dfrac{1}{x(2x^{7}+1)}dx=\displaystyle \int_{1}^{\sqrt[7]{2}}\dfrac{1}{x^{8}(2+1/x^{7})dx}$$
$$1/x^{7}= 1\Rightarrow\dfrac{-7}{x^{8}}dx=dt$$
$$\Rightarrow \dfrac{dx}{x^{8}}-\dfrac{dx}{7}$$
$$\Rightarrow \dfrac{1}{-7}\displaystyle \int_{1}^{1/2}\dfrac{dt}{(2+t)}=\dfrac{1}{7}\displaystyle \int_{1/2}^{1}\left [ \log(2+t) \right ]_{1/2}^{1}$$
$$=\dfrac{1}{7} \left [ \log(3)-\log\dfrac{5}{2} \right ]$$
$$=\dfrac{1}{7} \log \dfrac{6}{5}$$
$$\displaystyle \dfrac{df(x)}{dx}=\displaystyle \dfrac{e^{sin x}}{x} , x > 0, \int_1^4 \dfrac{3e^{sin x^3}}{x}dx=f(k)-f(1)$$ substitute $$x^3=p$$ $$dp=3x^2 dx$$ limit of p will be rom $$1 \rightarrow 64$$ as of x was $$1 \rightarrow 4$$ So, $$\displaystyle \int_1^{64} \dfrac{3e^{sin p}}{x} \cdot \dfrac{dp}{3x^2}=\int_1^{64} \dfrac{e^{sin p}}{p}dp=\int_1^{64}df(p)=f(64)-f(1)$$
Please disable the adBlock and continue. Thank you.