Explanation
Consider the given integral.
I=∫x√x2+2dx
Let t=x2+2
dtdx=2x+0
dt2=xdx
Therefore,
I=12∫dt√t
I=12(2√t)+C
I=√t+C
On putting the value of t, we get
I=√x2+2+C
Hence, this is the answer.
I=∫√a+xa−xdx
I=∫√a+xa−x×√a+xa+xdx
I=∫a+x√a2−x2dx
I=a∫1√a2−x2dx−12∫−2x√a2−x2dx
I=asin−1(xa)−12∫{ddx(a2−x2)(a2−x2)−1/2}dx
I=asin−1(xa)−12(a2−x2)1/2(1/2)+C
I=asin−1(xa)−√a2−x2+C
Hence, this is the correct answer.
Consider the following integral.
\int\limits_{{}}^{{}}{\dfrac{{{2}^{x}}}{\sqrt{1-{{4}^{x}}}}}dx
Solution:
Let and differentiate w.r.t “x” we get.
t={{2}^{x}}
\dfrac{dt}{dx}={{2}^{x}}\ln 2
\int\limits_{{}}^{{}}{\dfrac{{{2}^{x}}}{\sqrt{1-{{4}^{x}}}}}dx\,\,\,\,\,\,\,\,......\left( 1 \right)\
Put the value dx\,\, of in eq . (1) we get.
=\int\limits_{{}}^{{}}{\dfrac{{{2}^{x}}}{\sqrt{1-{{4}^{x}}}}}dx\,\,\,\,\,\,\,\,......\left( 1 \right)
=\int\limits_{{}}^{{}}{\dfrac{{{2}^{x}}}{{{2}^{x}}\ln 2\sqrt{1-{{\left( {{t}^{2}} \right)}^{x}}}}}dx
=\int\limits_{{}}^{{}}{\dfrac{1}{\ln 2\sqrt{1-{{\left( {{t}^{2}} \right)}^{x}}}}}dx\,
=\dfrac{1}{\ln 2}{{\sin }^{-1}}x+C
Hence, the value of [K=\dfrac{1}{\ln 2}]
Hence, this is the correct answer .
I=\int_{1}^{e}{\dfrac{dx}{\ln \left( {{x}^{x}}\cdot {{e}^{x}} \right)}}
I=\int_{1}^{e}{\dfrac{dx}{\ln {{x}^{x}}+\ln {{e}^{x}}}}
I=\int_{1}^{e}{\dfrac{dx}{x\ln x+x\ln e}}
I=\int_{1}^{e}{\dfrac{dx}{x\ln x+x}}
I=\int_{1}^{e}{\dfrac{dx}{x\left( \ln x+1 \right)}}
Let t=\ln x+1
\dfrac{dt}{dx}=\dfrac{1}{x}+0
dt=\dfrac{dx}{x}
I=\int_{1}^{2}{\dfrac{dt}{t}}
I=\left[ \ln \left( t \right) \right]_{1}^{2}
I=\ln \left( 2 \right)-\ln \left( 1 \right)
I=\ln 2
Please disable the adBlock and continue. Thank you.