Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 5 - MCQExams.com

y=1+sin2xdx;y is equal to-
  • sinxcosx+c
  • sinx+cosx+c
  • cosxsinx+c
  • None of these
The value of π/20sinxcosxdx

  • 12
  • 34
  • 2
  • None of these
π0xln(sinx)dx=
  • π2ln2
  • π22ln2
  • π2ln2
  • 2p ln2
π/40sec4xdx.
  • 34
  • 34
  • 43
  • 54
2π0ln(1+cosx)dx=
  • πln2
  • πln2
  • 2πln2
  • 2πln2
Evaluate π2π4(tanx+cotx)dx=
  • π22
  • π2
  • π2
  • π3
The value of π20log(4+3sinx4+3cosx)dx is
  • 2
  • 34
  • 0
  • 2
π/40tan2xdx=
  • 1π4
  • 1+π4
  • π41
  • π41
The value of x0(t|t|)2(1+t2)dt is equal to 
  • 4(xtan1x), ifx<0
  • 0ifx>0
  • ln(1+x3) ifx>0
  • 4(x+tan1x)ifx<0
402x+3x2+3x+2dx
  • log3
  • log5
  • log15
  • log2
Evaluate xx2+2dx
  • I=x22+C
  • I=x2+2+C
  • I=x3+2+C
  • I=x32+C
a+xaxdx is equal to-
  • asin1(x/a)a2x2+c
  • acos1(x/a)a2x2+c
  • asin1(x/a)a2+x2+c
  • acos1(x/a)a2+x2+c
(1+3x+3x2+4x3+........)dx(|x|<1)-
  • (1+x)1+c
  • (1x)1+c
  • (1+x)2+c
  • None of these
The angle between the tangent lines to the graph of the function f(x)=x2(2t5)dt at the point where the graph cuts the x-axis is
  • π6
  • π4
  • π3
  • π2
P(x)ekxdx=Q(x)e4x+C, where P(x) is polynomial of degree n and Q(x) is polynomial of degree 7. Then the value of n+7+k+limxP(x)Q(x) is:
  • 18
  • 19
  • 20
  • 22
For x>0, let f(x)=x1logt1+t dt  then, the value of  f(x)+f(1/x) will be
  • 14logx2
  • logx
  • 14(logx)2
  • 12(logx)2
Evaluate using limit of sum:
31(x+1)2dx
  • 26
  • 28
  • 30
  • 32
2x14xdx=Ksin1(2x)+C, then the value of K is equal to
  • n2
  • 122
  • 12
  • 1n2
Solve eldxln(xxex) 
  • ln2
  • 2ln2
  • ln2
  • None of these
lnπlnπln2ex1cos(23ex)dx is equal to
  • 3
  • 3
  • 13
  • 13
If a0dxx+a+x=π/802tanθsin2θdθ, then value of a is equal to (a>0)
  • 34
  • π4
  • 3π4
  • 916
ex[tanxlog(cosx)]dx=
  • exlog(secx)+c
  • exlog(cosecx)+c
  • exlog(cosx)+c
  • exlog(sinx)+c
If dxsin3xcos5x=acotx+btan3x+c where c is an arbitrary constant of integration then the values of a and b are respectively :
  • 2 & 23
  • 2 & 23
  • 2 & 23
  • None of these
(1+2x+3x2+4x3+...)dx=
  • (1+x)1+c
  • (1x)1+c
  • (1x)11+c
  • None of these
Evaluate:
π/20sinxcosx1+sinxcosxdx 
  • 0
  • 1
  • π2
  • π4
Evaluate π0x1+sinxdx.
  • xtanxln|cosx|xsecxln|secxtanx|+C
  • xtanx+ln|cosx|xsecxln|secxtanx|+C
  • tanx+ln|cosx|xsecxln|secxtanx|+C
  • None of these
Evaluate π/3π/6dx1+tanx.
  • π12
  • 7π12
  • 5π12
  • None of these
(x2x+5)dx
  • x33x22+5x+c
  • x33+x22+5x+c
  • x22x2+5x+c
  • x44x43+5
x3ex2dx=
  • 12(x2+1)ex2+c
  • (x2+1)ex2+c
  • 12(x21)ex2+c
  • (x21)ex2+c
1+sinxdx=
  • 12(sinx2+cosx2)+c
  • 12(sinx2cosx2)+c
  • 21+sinx+c
  • 21sinx+c
x2ex3cos(ex3)dx is equal to?
  • sin(ex3)+C
  • 3sin(ex3)+C
  • 13sin(ex3)+C
  • exsin(ex3)+C
π0xdx1+sinx=
  • π6
  • π
  • π3
  • none of these
The integral of esinx(xcosxsecxtanx)dx is?
  • sesinxesinxsecx+c
  • (x+secx)esinx+c
  • esinxcosx+c
  • esinx(cosxsecx)+c
ex+ex+(exex)sinx1+cosxdx=
  • (ex+ex)tan(x/2)+C
  • (exex)cot(x/2)+C
  • (exex)tan(x/2)+C
  • (exex)cosec(x/2)+C
What is the value of a0xax+a dx?
  • a+2alog2
  • a2alog2
  • 2alog2a
  • 2alog2
dx(x2+4x+5)2 is equal to
  • 12[tan1(x+1)+x+2x2+4x+5]+c
  • 12[tan1(x+2)x+2x2+4x+5]+c
  • 12[tan1(x+1)x+2x2+4x+5]+c
  • 12[tan1(x+2)+x+2x2+4x+5]+c
ln(1+x)1+xdxequals
  • (ln(1+x))22
  • πln(1+x)
  • π2ln(1+x)
  • π2ln(1+x)
The value of π/20xsinxcosxsin4x+cos4xdxis is 
  • π24
  • π28
  • π216
  • 3π216
Find the value: 
I=21xdx(x+1)(x+2)
  • log3227
  • log2720
  • log2716
  • log329
e1/e|lnx|dx equals
  • e11
  • 2(11e)
  • 11e
  • e1
If y=(x+x2a2)n then (x2a2)(dydx)2=
  • n2y
  • n2y
  • ny2
  • n2y2
π/40x.sec2xdx=?
  • π4+log2
  • π4log2
  • 1+log2
  • 112log2
π0x2cos4xsinx2πxπ2dx=
  • 25
  • 15
  • 2π5
  • π5
π20x1x2dx=
  • π4
  • π3
  • π6
  • π8
π40sinx.sec3xdx
  • 12
  • 2
  • 2
  • 13
sin1xcos1xsin1x+cos1xdx=
  • 4π[xsin1+1x2]x+c
  • log[sin1+1x2]x+c
  • 4π[xsin1+1x2]+c
  • 2π[xsin1xxcos1x+21x2]+c
x+sin1+cosxdx=
  • x tanx2+c
  • x cotx2
  • x sinx2+c
  • x cosx2
Solve xsin2xdx 
  • (x1)2(xcos2x2)+C 
  • (x1)2(xsin2x2)+C 
  • (x+1)2(xsin2x2)+C 
  • None of these
Solve 32xx21dx
  • 12ln(53)
  • 12ln(83)
  • 12ln(43)
  • None of these
π/60sinxcos3xdx=
  • 2/3
  • 1/3
  • 2
  • 1/6
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers