Explanation
Consider the given integral.
I=\int{\dfrac{x}{\sqrt{{{x}^{2}}+2}}dx}
Let t={{x}^{2}}+2
\dfrac{dt}{dx}=2x+0
\dfrac{dt}{2}=xdx
Therefore,
I=\dfrac{1}{2}\int{\dfrac{dt}{\sqrt{t}}}
I=\dfrac{1}{2}\left( 2\sqrt{t} \right)+C
I=\sqrt{t}+C
On putting the value of t, we get
I=\sqrt{{{x}^{2}}+2}+C
Hence, this is the answer.
I=\int{\sqrt{\dfrac{a+x}{a-x}}dx}
I=\int{\sqrt{\dfrac{a+x}{a-x}}\times \sqrt{\dfrac{a+x}{a+x}}dx}
I=\int{\dfrac{a+x}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx}
I=a\int{\dfrac{1}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx}-\dfrac{1}{2}\int{\dfrac{-2x}{\sqrt{{{a}^{2}}-{{x}^{2}}}}dx}
I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)-\dfrac{1}{2}\int{\left\{ \dfrac{d}{dx}\left( {{a}^{2}}-{{x}^{2}} \right){{\left( {{a}^{2}}-{{x}^{2}} \right)}^{-1/2}} \right\}dx}
I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)-\dfrac{1}{2}\dfrac{{{\left( {{a}^{2}}-{{x}^{2}} \right)}^{1/2}}}{\left( 1/2 \right)}+C
I=a{{\sin }^{-1}}\left( \dfrac{x}{a} \right)-\sqrt{{{a}^{2}}-{{x}^{2}}}+C
Hence, this is the correct answer.
Consider the following integral.
\int\limits_{{}}^{{}}{\dfrac{{{2}^{x}}}{\sqrt{1-{{4}^{x}}}}}dx
Solution:
Let and differentiate w.r.t “x” we get.
t={{2}^{x}}
\dfrac{dt}{dx}={{2}^{x}}\ln 2
\int\limits_{{}}^{{}}{\dfrac{{{2}^{x}}}{\sqrt{1-{{4}^{x}}}}}dx\,\,\,\,\,\,\,\,......\left( 1 \right)\
Put the value dx\,\, of in eq . (1) we get.
=\int\limits_{{}}^{{}}{\dfrac{{{2}^{x}}}{\sqrt{1-{{4}^{x}}}}}dx\,\,\,\,\,\,\,\,......\left( 1 \right)
=\int\limits_{{}}^{{}}{\dfrac{{{2}^{x}}}{{{2}^{x}}\ln 2\sqrt{1-{{\left( {{t}^{2}} \right)}^{x}}}}}dx
=\int\limits_{{}}^{{}}{\dfrac{1}{\ln 2\sqrt{1-{{\left( {{t}^{2}} \right)}^{x}}}}}dx\,
=\dfrac{1}{\ln 2}{{\sin }^{-1}}x+C
Hence, the value of [K=\dfrac{1}{\ln 2}]
Hence, this is the correct answer .
I=\int_{1}^{e}{\dfrac{dx}{\ln \left( {{x}^{x}}\cdot {{e}^{x}} \right)}}
I=\int_{1}^{e}{\dfrac{dx}{\ln {{x}^{x}}+\ln {{e}^{x}}}}
I=\int_{1}^{e}{\dfrac{dx}{x\ln x+x\ln e}}
I=\int_{1}^{e}{\dfrac{dx}{x\ln x+x}}
I=\int_{1}^{e}{\dfrac{dx}{x\left( \ln x+1 \right)}}
Let t=\ln x+1
\dfrac{dt}{dx}=\dfrac{1}{x}+0
dt=\dfrac{dx}{x}
I=\int_{1}^{2}{\dfrac{dt}{t}}
I=\left[ \ln \left( t \right) \right]_{1}^{2}
I=\ln \left( 2 \right)-\ln \left( 1 \right)
I=\ln 2
Please disable the adBlock and continue. Thank you.