Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 5 - MCQExams.com

y=1+sin2xdx;y is equal to-
  • sinxcosx+c
  • sinx+cosx+c
  • cosxsinx+c
  • None of these
The value of π/20sinxcosxdx

  • 12
  • 34
  • 2
  • None of these
π0xln(sinx)dx=
  • π2ln2
  • π22ln2
  • π2ln2
  • 2p ln2
π/40sec4xdx.
  • 34
  • 34
  • 43
  • 54
2π0ln(1+cosx)dx=
  • πln2
  • πln2
  • 2πln2
  • 2πln2
Evaluate π2π4(tanx+cotx)dx=
  • π22
  • π2
  • π2
  • π3
The value of π20log(4+3sinx4+3cosx)dx is
  • 2
  • 34
  • 0
  • 2
π/40tan2xdx=
  • 1π4
  • 1+π4
  • π41
  • π41
The value of x0(t|t|)2(1+t2)dt is equal to 
  • 4(xtan1x), ifx<0
  • 0ifx>0
  • ln(1+x3) ifx>0
  • 4(x+tan1x)ifx<0
402x+3x2+3x+2dx
  • log3
  • log5
  • log15
  • log2
Evaluate xx2+2dx
  • I=x22+C
  • I=x2+2+C
  • I=x3+2+C
  • I=x32+C
a+xaxdx is equal to-
  • asin1(x/a)a2x2+c
  • acos1(x/a)a2x2+c
  • asin1(x/a)a2+x2+c
  • acos1(x/a)a2+x2+c
(1+3x+3x2+4x3+........)dx(|x|<1)-
  • (1+x)1+c
  • (1x)1+c
  • (1+x)2+c
  • None of these
The angle between the tangent lines to the graph of the function f(x)=x2(2t5)dt at the point where the graph cuts the x-axis is
  • π6
  • π4
  • π3
  • π2
P(x)ekxdx=Q(x)e4x+C, where P(x) is polynomial of degree n and Q(x) is polynomial of degree 7. Then the value of n+7+k+lim is:
  • 18
  • 19
  • 20
  • 22
For x > 0, let f(x)=\displaystyle \int_{1}^{x}\dfrac {\log t}{1+t} \ dt  then, the value of  f(x)+f(1/x) will be
  • \dfrac {1}{4}\log x^{2}
  • \log x
  • \dfrac {1}{4}(\log x)^{2}
  • \dfrac {1}{2}(\log x)^{2}
Evaluate using limit of sum:
\displaystyle \int_{1}^{3} {(x+1)^2}dx
  • 26
  • 28
  • 30
  • 32
\displaystyle \int { \dfrac { { 2 }^{ x } }{ \sqrt { 1-{ 4 }^{ x } }  } dx=K\sin ^{ -1 }{ \left( { 2 }^{ x } \right) +C }  }, then the value of K is equal to
  • \ell n 2
  • \dfrac{1}{2}\ell 2
  • \dfrac{1}{2}
  • \dfrac{1}{\ell n 2}
Solve \int\limits_l^e {\dfrac{{dx}}{{\ln \left( {{x^x} \cdot {e^x}} \right)}}}  
  • \ln 2
  • 2\ln 2
  • -\ln 2
  • None of these
\displaystyle \overset{\ln \pi}{\underset{\ln\pi - \ln2}{\int}} \dfrac{e^x}{1 - \cos \left(\tfrac{2}{3}e^x\right)}dx is equal to
  • \sqrt{3}
  • -\sqrt{3}
  • \dfrac{1}{\sqrt{3}}
  • -\dfrac{1}{\sqrt{3}}
If \displaystyle \int_{0}^{a} \dfrac{dx}{\sqrt{x+a}+\sqrt{x}}=\displaystyle \int_{0}^{\pi/8} \dfrac{2 \tan \theta}{\sin 2 \theta} d\theta, then value of a is equal to (a > 0)
  • \dfrac{3}{4}
  • \dfrac{\pi}{4}
  • \dfrac{3\pi}{4}
  • \dfrac{9}{16}
\int {{e^x}\left[ {{\mathop{\rm tanx}\nolimits}  - log\left( {\cos x} \right)} \right]} dx =
  • {e^x}\log \left( {\sec x} \right) + c
  • {e^x}\log \left( {co\sec x} \right) + c
  • {e^x}\log \left( {\cos x} \right) + c
  • {e^x}\log \left( {\sin x} \right) + c
If \displaystyle \int \dfrac{dx}{\sqrt{\sin^3 x \cos^5 x}} = a \sqrt{\cot x } + b \sqrt {\tan^3x} + c where c is an arbitrary constant of integration then the values of 'a' and 'b' are respectively :
  • -2 & \dfrac{2}{3}
  • 2 & -\dfrac{2}{3}
  • 2 & \dfrac{2}{3}
  • None of these
\int (1 + 2x + 3x^2 + 4x^3 + ...)dx =
  • (1 + x)^{-1} + c
  • (1 - x)^{-1} + c
  • (1 - x)^{-1} - 1 + c
  • None of these
Evaluate:
\displaystyle\int_{0}^{\pi/2}\dfrac {\sin x-\cos x}{1+\sin x\cos x}dx 
  • 0
  • 1
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{4}
Evaluate \displaystyle\int^{\pi}_0\dfrac{x}{1+\sin x}dx.
  • x\tan x - ln|\cos x| - x\sec x -ln|\sec x - \tan x| + C
  • x\tan x + ln|\cos x| - x\sec x -ln|\sec x - \tan x| + C
  • \tan x + ln|\cos x| - x\sec x -ln|\sec x - \tan x| + C
  • None of these
Evaluate \displaystyle\int^{\pi/3}_{\pi/6}\dfrac{dx}{1+\sqrt{\tan x}}.
  • \cfrac{\pi}{12}
  • \cfrac{7\pi}{12}
  • \cfrac{5\pi}{12}
  • None of these
\displaystyle \int (x^2-x+5)\, dx
  • \dfrac {x^3}3-\dfrac{x^2}2+5x+c
  • \dfrac {x^3}3+\dfrac{x^2}2+5x+c
  • \dfrac {x^2}2-\dfrac{x}2+5x+c
  • \dfrac {x^4}4-\dfrac{x^4}3+5
\displaystyle \int {{x^3}{e^{{x^2}}}dx = }
  • \dfrac{1}{2}\left( {{x^2} + 1} \right){e^{{x^2}}} + c
  • \left( {{x^2} + 1} \right){e^{{x^2}}} + c
  • \dfrac{1}{2}\left( {{x^2} - 1} \right){e^{{x^2}}} + c
  • \left( {{x^2} - 1} \right){e^{{x^2}}} + c
\int \sqrt {1 + \sin x}dx =
  • \dfrac {1}{2}\left (\sin \dfrac {x}{2} + \cos \dfrac {x}{2}\right ) + c
  • \dfrac {1}{2}\left (\sin \dfrac {x}{2} - \cos \dfrac {x}{2}\right ) + c
  • 2\sqrt {1 + \sin x} + c
  • -2\sqrt {1 - \sin x} + c
\displaystyle\int x^2e^{x^3}\cos \left(e^{x^3}\right)dx is equal to?
  • \sin\left(e^{x^3}\right)+C
  • 3\sin \left(e^{x^3}\right)+C
  • \dfrac{1}{3}\sin\left(e^{x^3}\right)+C
  • e^x\sin\left(e^{x^3}\right)+C
\displaystyle \underset{0}{\overset{\pi}{\int}} \dfrac{x \, dx}{1 + \sin \, x} =
  • \dfrac{\pi}{6}
  • \pi
  • \dfrac{\pi}{3}
  • none of these
The integral of \displaystyle\int e^{\sin x}(x\cos x-\sec x\tan x)dx is?
  • se^{\sin x}-e^{\sin x}\sec x+c
  • (x+\sec x)e^{\sin x}+c
  • e^{\sin x}\cos x+c
  • e^{\sin x}(\cos x-\sec x)+c
\int\dfrac{e^x+e^{-x}+(e^x-e^{-x})sin x}{1+cos x}dx=
  • (e^x+e^{-x}) tan (x/2)+C
  • (e^x-e^{-x}) cot (x/2)+C
  • (e^x-e^{-x}) tan (x/2)+C
  • (e^x-e^{-x}) cosec (x/2)+C
What is the value of \int_{0}^{a}\dfrac{x-a}{x+a}\ dx?
  • a+2a\log 2
  • a-2a\log 2
  • 2a\log 2-a
  • 2a\log 2
\int \dfrac {dx}{(x^{2} + 4x + 5)^{2}} is equal to
  • \dfrac {1}{2}\left [\tan^{-1}(x + 1) + \dfrac {x + 2}{x^{2} + 4x + 5}\right ] + c
  • \dfrac {1}{2}\left [\tan^{-1}(x + 2) - \dfrac {x + 2}{x^{2} + 4x + 5}\right ] + c
  • \dfrac {1}{2}\left [\tan^{-1}(x + 1) - \dfrac {x + 2}{x^{2} + 4x + 5}\right ] + c
  • \dfrac {1}{2}\left [\tan^{-1}(x + 2) + \dfrac {x + 2}{x^{2} + 4x + 5}\right ] + c
\displaystyle\int  {\dfrac{{\ln \left( {1 + {x}} \right)}}{{1 + {x}}}} dx\,equals
  • \dfrac {(\ln (1+x))^2}2
  • - \pi \ln (1+x)
  • \frac{\pi }{2}\ln (1+x)
  • - \frac{\pi }{2}\ln (1+x)
The value of \int\limits_0^{\pi /2} {\dfrac{{x\sin x\cos x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx\,is} is 
  • \dfrac{{{\pi ^2}}}{4}
  • \dfrac{{{\pi ^2}}}{8}
  • \dfrac{{{\pi ^2}}}{{16}}
  • \dfrac{{3{\pi ^2}}}{{16}}
Find the value: 
I=\int_{1}^{2}{\frac{xdx}{(x+1)(x+2)}}
  • \log \dfrac{32}{27}
  • \log \dfrac{27}{20}
  • \log \dfrac{27}{16}
  • \log \dfrac{32}{9}
\displaystyle \int_{1/e}^{e}{|\ln x|dx} equals
  • e^{-1}-1
  • 2\left (1-\dfrac {1}{e}\right)
  • 1-\dfrac {1}{e}
  • e-1
If y=(x+\sqrt{x^{2}-a^{2}})^{n} then (x^{2}-a^{2})(\dfrac{dy}{dx})^{2}=
  • n^{2}y
  • -n^{2}y
  • ny^{2}
  • n^{2}y^{2}
\int _{ 0 }^{ \pi /4 }{ x.\sec ^{ 2 }{ x } dx=? }
  • \frac {\pi}{4}+\log {\sqrt {2}}
  • \frac {\pi}{4}-\log {\sqrt {2}}
  • 1+\log {\sqrt {2}}
  • 1-\frac{1}{2}\log {2}
\int\limits_0^\pi  {\frac{{{x^2}{{\cos }^4}x\sin x}}{{2\pi x - {\pi ^2}}}dx}  =
  • \frac{2}{5}
  • \frac{1}{5}
  • \frac{{2\pi }}{5}
  • \frac{\pi }{5}
\displaystyle \int\limits_0^\frac \pi 2 x\sqrt {1-x^2} dx =
  • \dfrac{\pi }{4}
  • \dfrac{\pi }{3}
  • \dfrac{\pi }{6}
  • \dfrac{\pi}{8}
\int\limits_0^{\dfrac{ \pi }{4}} {\sin x.{{\sec }^3}xdx}
  • \dfrac{1}{2}
  • \sqrt 2
  • 2
  • \dfrac{1}{3}
\int \dfrac {\sin^{-1}x-\cos^{-1}x}{\sin^{-1}x+\cos^{-1}x}dx=
  • \dfrac {4}{\pi}[x \sin^{-1}+\sqrt {1-x^{2}}]-x+c
  • \log [\sin^{-1}+\sqrt {1-x^{2}}]-x+c
  • \dfrac {4}{\pi}[x \sin^{-1}+\sqrt {1-x^{2}}]+c
  • \dfrac {2}{\pi}[x \sin^{-1}x-x \cos^{-1}x+2\sqrt {1-x^{2}}]+c
\int \dfrac {x+\sin }{1+\cos x}dx=
  • x\ \tan \dfrac {x}{2}+c
  • x\ \cot \dfrac {x}{2}
  • x\ \sin\dfrac {x}{2}+c
  • x\ \cos \dfrac {x}{2}
Solve \displaystyle \int { x\sin ^{ 2 }{ x }  } dx 
  • \dfrac{(x-1)}{2}(x-\dfrac{cos2x}{2})+C 
  • \dfrac{(x-1)}{2}(x-\dfrac{sin2x}{2})+C 
  • \dfrac{(x+1)}{2}(x-\dfrac{sin2x}{2})+C 
  • None\ of\ these
Solve \int^{3}_{2}\dfrac {x}{x^{2}-1}dx
  • \dfrac{1}{2}ln(\dfrac{5}{3})
  • \dfrac{1}{2}ln(\dfrac{8}{3})
  • \dfrac{1}{2}ln(\dfrac{4}{3})
  • None of these
\int _{ 0 }^{ \pi /6 }{ \dfrac { \sin { x }  }{ \cos ^{ 3 }{ x }  } dx } =
  • 2/3
  • 1/3
  • 2
  • 1/6
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers