Explanation
Consider the given integral.
I=∫x√x2+2dx
Let t=x2+2
dtdx=2x+0
dt2=xdx
Therefore,
I=12∫dt√t
I=12(2√t)+C
I=√t+C
On putting the value of t, we get
I=√x2+2+C
Hence, this is the answer.
I=∫√a+xa−xdx
I=∫√a+xa−x×√a+xa+xdx
I=∫a+x√a2−x2dx
I=a∫1√a2−x2dx−12∫−2x√a2−x2dx
I=asin−1(xa)−12∫{ddx(a2−x2)(a2−x2)−1/2}dx
I=asin−1(xa)−12(a2−x2)1/2(1/2)+C
I=asin−1(xa)−√a2−x2+C
Hence, this is the correct answer.
Consider the following integral.
∫2x√1−4xdx
Solution:
Let and differentiate w.r.t “x” we get.
t=2x
dtdx=2xln2
∫2x√1−4xdx......(1)
Put the value dx of in eq . (1) we get.
=∫2x√1−4xdx......(1)
=∫2x2xln2√1−(t2)xdx
=∫1ln2√1−(t2)xdx
=1ln2sin−1x+C
Hence, the value of [K=1ln2]
Hence, this is the correct answer .
I=∫e1dxln(xx⋅ex)
I=∫e1dxlnxx+lnex
I=∫e1dxxlnx+xlne
I=∫e1dxxlnx+x
I=∫e1dxx(lnx+1)
Let t=lnx+1
dtdx=1x+0
dt=dxx
I=∫21dtt
I=[ln(t)]21
I=ln(2)−ln(1)
I=ln2
Please disable the adBlock and continue. Thank you.