Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 6 - MCQExams.com

The value of the integral 101+2xdx is 
  • 2
  • 3
  • 4
  • 14
The value of the integral 10x31+x8dx is 
  • π16
  • π4
  • π8
  • none of these
Solve:
π/60cos2x(cosxsinx)2dx
  • log(312)
  • log(3+12)
  • log(3+12)
  • None of these
Solve π/20sin4xcos3xdx 
  • 635
  • 221
  • 215
  • 235
Evaluate :
9cosxsinx4sinx+5cosxdx
  • x+ln(4sinx+cosx)+c
  • x+ln(sinx5cosx)+c
  • x+ln(4sinx+5cosx)+c
  • None of these
If sinxsin(xα)dx=Ax+Blogsin(xα)+c, then the value of (A,B) is-
  • (sinα,cosα)
  • (cosα,sinα)
  • (sinα,cosα)
  • (cosα,sinα)
Evaluate: π/20sinxcosxcos2x+3cosx+2dx
  • ln(53)
  • ln(43)
  • ln(13)
  • None of these
20(4xxx4x)dx  is equal to:
  • 0
  • 8
  • 4
  • 16
If f(x)=(x2+sin2x1+x2)sec2xdx and f(0)=0,then  f (1) equals:
  • 1π4
  • π4
  • tan1π4
  • tan1+1
54e(x+5)2dx+32/31/3e9(x2/3)2dx is equal to-
  • e5
  • e4
  • 3e2
  • 0
The integrating factor of the differential equation dydx(xlogex)+y=2logex is given by

  • x
  • ex
  • logex
  • loge(logex)
If 2x14xdx=Ksin1(2x)+C, then K is equal to 
  • n2
  • 12n2
  • 12
  • 1n2
{1+2tanx(tanx+secx)}12dx=
  • log(secx+tanx)+c
  • log(secx+tanx)12+c
  • logsecx(secx+tanx)+c
  • None of these
The value of the defined integral π/20(sinx+cosx)exsinxdx equals
  • 2eπ/2
  • eπ/2
  • 2eπ/2.cos1
  • 12eπ/4
log10xdx=
  • xlog10x+c
  • x(log10x+log10e)+c
  • log10x+c
  • x(log10xlog10e)+c
If f(x)dx=f(x), then {f(x)}2 dx is equal to :
  • 12{f(x)}2
  • {f(x)}3
  • {f(x)}33
  • {f(x)}2
Evaluate: π/40sec7θsin3θdθ=
  • 112
  • 312
  • 512
  • 712
1x2(1+x2)1+x4dx is equal to 
  • 2sin1{2xx2+1}+c
  • 12sin1{2xx2+1}+c
  • 12sin1{2xx2+1}+c
  • 12sin1{x2+12x}+c
Integral of f(x)=1+x2 with respect to x2 is

  • 23(1+x2)3/2x+k
  • 23(1+x2)3/2+k
  • 23x(1+x2)3/2+k
  • None of these
ex3+x21(3x4+2x3+2x2x=h(x)+c then the value of h(1)h(1).
  • 1
  • -1
  • 2
  • -2
10dx(x2+1)(x2+2)=
  • π4+12tan112
  • π212tan112
  • π412tan112
  • π312tan112
The value of the integral π/2π/2(x2+logπxπ+x)cosxdx is 
  • 0
  • π224
  • π22+4
  • π22
The value of 11cot1xπdx
  • 1
  • 2
  • 3
  • 0
π20sinxxdx is equal to
  • 2
  • 1
  • 1/2
  • 4
The integral π/4π/128cos2x(tanx+cotx)3dx equals:
  • 15128
  • 13156
  • 1564
  • 1332
Solve:dx(x3)x+1
  • cosh1(1x3(1+x))+c
  • sinh1(1x3(1+x))+c
  • sinh1(1x3(1+x))+c
  • cosh1(1x3(1+x))+c
The integral a/22a/4(2cosecx)17 dx is equal to:
  • log(1+2)02(eu+eu)16du
  • log(1+2)0(eu+eu)17du
  • log(1+2)0(eueu)17du
  • log(1+2)02(eueu)16du
limn10nxn11+x2dx=
  • 0
  • 1
  • 2
  • 12
The value of the integral π/2π/2[x2+logπxπ+x] cos x dx is 
  • 0
  • π224
  • π22+4
  • π22
10dxx+1+xdx=
  • 43(2+1)
  • 43(21)
  • 34(21)
  • 34(22)
The value of the definite integral
a1dθ1+tanθa2=501πK where  a2=1003π2008 and  a1=π2008 The value of K equalls
  • 2007
  • 2006
  • 2009
  • 2008
For xR, f(x)=|log2sinx| and g(x)=f(f(x)), then 
  • g(0)=cos(log2)
  • g(0)=cos(log2)
  • g is differentible at x=0 and g(0)=sin(log2)
  • g is not differentiable at x=0
The integral (1+2x2+1x)ex21xdx is equal to
  • (2x1).ex21x+c
  • (2x+1).ex21x+c
  • xex21x+c
  • xex21x+c
1sin3xsin(x+a)dx is equal to
  • 2cosecαcosα+sinαtanx+c
  • 2cosecαcosα+sinαcotx+c
  • cosecαcosα+sinαtanx+c
  • cosecαcosα+sinαtanx+c
19x225dx=______+c.
  • 130log|3x+53x5|
  • log|x+3x5|
  • 130log|3x53x+5|
  • log|x3x5|
e3logex.(x4+1)1dx=_________+C.
  • log(x4+1)
  • 14log(x4+1)
  • log(x4+1)
  • 3(x4+1)3
1cosxdx=_______+C;2π<x<3π
  • 22cosx2
  • 2cosx2
  • 22cosx2
  • 122cosx2
400π01cos2x
  • 2002
  • 4002
  • 8002
  • none
If g(x)=xxloge(ex)dx then  g(π) equals
  • πlogeπ
  • ππloge(eπ)
  • ππloge(π)
  • ππ
If f(ax)=f(x), then a0f(x)dx=0.

  • True
  • False
10sin1xdx=π21
  • True
  • False
etan1x(1+x+x21+x2)dx is equal to
  • etan1x+c
  • etan1x+c
  • xetan1x+c
  • xetan1x+c
Integrate: xx+4dx
  • 23(x+4)328x+4
  • 23(x+4)32+8x+4
  • 23(x+4)32+4x+4
  • None of these
10x(x2+1)32dx=........
  • 13
  • 23
  • 32
  • 112
1/21ex(2x2)dx(1x)1x2 is equal to
  • e2(3+1)
  • 3e2
  • 3e
  • e3
If xlog2dxex1=π6,then x is equal to _________.
  • 4
  • in 8
  • in 4
  • None of these
If π20cotxcotx+cosecxdx=m(π+n), then mn is equal to?
  • 1
  • 1
  • 12
  • 12
What is dx2x22x+1 equal to ?
  • tan1(2x1)2+c
  • 2tan1(2x1)+=c
  • tan1(2x+1)2+c
  • tan1(2x1)+c
The value of 2π0xsin8xsin8x+cos8xdx is equal to?
  • 2π
  • π2
  • 2π2
  • 4π
Select and write the most appropriate answer from the given alternatives for question :
If k04x3dx=16, then the value of k is _____.
  • 1
  • 2
  • 3
  • 4
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers