Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 7 - MCQExams.com

Evaluate 41xxdx
  • 12.8
  • 12.4
  • 7
  • None of these
Evaluate π/40tan2xdx
  • (1π4)
  • (1+π4)
  • (1π2)
  • (1+π2)
Evaluate : 10dx5x+3
  • 25(83)
  • 25(8+3)
  • 258
  • None of these
Evaluate : 206x+4dx
  • 649
  • 7
  • 569
  • 609
Evaluate 20dx4x2
  • 1
  • sin112
  • π4
  • None of these
Evaluate 10x3(1+x8)dx
  • π2
  • π4
  • π8
  • π16
Evaluate π/2π/3cosecxdx
  • 12log2
  • 12log3
  • log2
  • None of these
Evaluate π/2π/4cotxdx
  • log2
  • 2log2
  • 12log2
  • None of these
Evaluate π/20cosx(1+sin2x)dx
  • π2
  • π4
  • π
  • None of these
Evaluate 83x1+x2dx
  • 193
  • 196
  • 383
  • 94
Evaluate π/20cos3xdx
  • 1
  • 34
  • 23
  • None of these
Evaluate : 101x1+xdx
  • π2
  • (π21)
  • (π2+1)
  • None of these
Evaluate : 10dx(1+x+x2)
  • π3
  • π3
  • π33
  • None of these
Evaluate : aaaxa+xdx
  • aπ
  • aπ2
  • 2aπ
  • None of these
Evaluateπ/20ex(1+sinx1+cosx)dx
  • 0
  • π4
  • eπ/2
  • (eπ/21)
Evaluate π0dx(1+sinx)
  • 12
  • 1
  • 2
  • 0
Evaluate : 202x2dx
  • π
  • 2π
  • π2
  • None of these
Evaluate : 10(1x)(1+x)dx
  • (log2+1)
  • (log21)
  • (2log21)
  • (2log2+1)
Evaluate : 90dx(1+x)
  • (32log2)
  • (3+2log2)
  • (62log4)
  • (6+2log4)
Evaluate 10xex(1+x)2dx
  • (e21)
  • (e1)
  • e(e1)
  • None of these
Evaluate 10(1x)(1+x)dx
  • 12log2
  • (2log2+1)
  • (2log21)
  • (12log21)
The value of 199π/2π/2(1+cos2x)dx is?
  • 502
  • 1002
  • 1502
  • 2002
Evaluate : 21|x23x+2|dx
  • 16
  • 16
  • 13
  • 23
aax|x|dx=?
  • 0
  • 2a
  • 2a33
  • None of these
12|x|2dx=?
  • 3
  • 2.5
  • 1.5
  • None of these
Let x1/21x3dx=23gof(x)+c then
  • f(x)=x
  • f(x)=x3/2
  • f(x)=x2/3
  • g(x)=sin1x
Evaluate : 10|2x1|dx
  • 2
  • 12
  • 1
  • 0
Evaluate : 22|x|dx
  • 4
  • 3.5
  • 2
  • 0
The value of e11+x2lnxx+x2lnxdx is
  • e
  • ln(1+e)
  • e+ln(1+e)
  • eln(1+e)
I1=π20sinxcosx1+sinxcosxdx,I2=2π0cos6xdxI3=π2π2sin3xdx,I4=10ln(1x1)dx, then
  • I2=I3=I4=0,I10
  • I1=I2=I3=0,I40
  • I1=I3=I4=0,I20
  • I1=I2=I3=0,I40
Evaluate : 12|2x+1|dx
  • 52
  • 72
  • 92
  • 4
Let f:RR be a function as f(x)=(x1)(x+2)(x3)(x6)100. If g(x) is a polynomial of degree 3 such that g(x)f(x)dx does not contain any logarithm function and g(2)=10. Then

g(x)f(x)dx, equals
  • tan1(x22)+c
  • tan1(x11)+c
  • tan1(x)+c
  • None of these
The value of the definite integral π/20sinx sin2x sin3xdx is equal to  
  • 13
  • 23
  • 13
  • 16
If f(x)dx=F(x), then x3f(x2)dx is equal to
  • 12[x2 {F(x)}2 {F(x)}2dx]
  • 12[x2F(x2)F(x2)d(x2)]
  • 12[x2F(x2)12 {F(x)}2dx]
  • None of the above
Observe the following Lists
List-IList-II
A: 2214+x2dx1) π3
B: 211xx21dx2) 0
C: π0cos3x.cos2xdx3) π4
4) π2
  • A-3, B-1, C-4
  • A-3, B-1, C-2
  • A-1, B-3, C-2
  • A-4, B-1, C-2
log50exex1ex+3dx=
  • 3+2π
  • 4π
  • 2+π
  • π4
If  In=π40tannxsec2xdx, then  I1,I2,I3.. are  in
  • A.P.
  • G.P.
  • H.P.
  • A.G.P.
Evaluate the integral
π/40sinθ+cosθ9+16sin2θ dθ
  • 120log2 
  • 120log3 
  • log3
  • log2
Evaluate: \displaystyle \int_{0}^{\pi}\frac{dx}{5+4\cos x}
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{6}
  • \dfrac{\pi}{3}
  • -\pi

\displaystyle \int_{0}^{a}\frac{dx}{x+\sqrt{a^{2}-x^{2}}}=
  • \pi
  • \dfrac{\pi}{3}
  • -\pi
  • \dfrac{\pi}{4}

\displaystyle \int_{0}^{\pi/2}\sqrt{\cos x}\sin^{5}xdx=
  • \displaystyle \frac{34}{231}
  • \displaystyle \frac{64}{231}
  • \displaystyle \frac{30}{321}
  • \displaystyle \frac{128}{231}
\displaystyle \int_{0}^{\pi/2}\frac{1}{a+bcosx}dx=, where a>|b|
  • \displaystyle \frac{2}{\sqrt{a^{2}-b^{2}}}\tan^{{-1}}\sqrt{\frac{a+b}{a-b}}
  • \displaystyle \frac{2}{\sqrt{a^{2}-b^{2}}}cot^{-l} \sqrt{\frac{a-b}{a+b}}
  • \displaystyle \frac{2}{\sqrt{a^{2}-b^{2}}}\tan^{{-1}}\sqrt{\frac{a-b}{a+b}}
  • \displaystyle \frac{\pi}{\sqrt{a^{2}-b^{2}}}
\displaystyle \int_{1}^{2}\mathrm{x}^{2\mathrm{x}}[1+\log \mathrm{x}]\mathrm{d}\mathrm{x}=
  • \displaystyle \frac{9}{2}
  • \displaystyle \frac{11}{2}
  • \displaystyle \frac{13}{2}
  • \displaystyle \frac{15}{2}
lf \displaystyle \int_{0}^{\infty}e^{-\mathrm{x}^{2}}\mathrm{d}\mathrm{x}=\frac{\sqrt{\pi}}{2}, then \displaystyle \int_{0}^{\infty}e^{-ax^{2}}dx,\ \mathrm{a}>0 is
  • \displaystyle \frac{\sqrt{\pi}}{2}
  • \displaystyle \frac{\sqrt{\pi}}{2a}
  • 2 \displaystyle \frac{\sqrt{\pi}}{a}
  • \displaystyle \frac{1}{2}\sqrt{\frac{\pi}{a}}
If \displaystyle \int_{0}^{\pi/3}\frac{\cos x}{3+4\sin x}dx=k\log(\frac{3+2\sqrt{3}}{3}), then \mathrm{k} is equal to
  • \dfrac{1}{2}
  • \dfrac{1}{3}
  • \dfrac{1}{4}
  • \dfrac{1}{8}
The value of the integral 
\displaystyle \int_{0}^{3\alpha}\text{cosec}(x -\alpha)\text{cosec}(x-2\alpha) dx is
  • 2\displaystyle \sec\alpha\log(\frac{1}{2}\text{cosec}\alpha)
  • 2\displaystyle \sec\alpha\log(\frac{1}{2}\sec\alpha)
  • 2 \text{cosec}\alpha\log(\sec\alpha)
  • 2 \displaystyle \text{cosec}\alpha\log(\frac{1}{2}\sec\alpha)
If I_{n}=\displaystyle \int_{0}^{\frac{\pi}{4}}\tan^{n} dx, then \dfrac{1}{I_{2}+I_{4}},\dfrac{1}{I_{3}+I_{5}},\dfrac{1}{I_{4}+I_{6}}\cdots form
  • an A.P
  • a G.P
  • a H.P
  • an AGP
\displaystyle \int_{0}^{1}\frac{3^{x+1}-4^{x-1}}{12^{x}}dx=

  • \displaystyle \frac{9}{4}log_{4}\, e
  • \displaystyle \frac{9}{4}log_{4}\, e-\frac{1}{6}log_{3}e
  • \displaystyle log_{4}3
  • None of these
Let f be a function defined for every x, such that f'' = -f ,f(0)=0, f' (0) = 1, then f(x) is equal to
  • tanx
  • e^{x}-1
  • sinx
  • 2sinx
Let \displaystyle \frac{d}{dx}F(x)=\frac{e^{{s}{m}{x}}}{x} , x>0lf \displaystyle \int_{1}^{4}\frac{3}{x}e^{{s}{m}{x}^{3}}dx=F(k)-F(1)then one of the possible values of {k} is
  • 16
  • 62
  • 64
  • 15
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers