Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Integrals Quiz 9 - MCQExams.com

If π4<α<π2, value of π/2π/2sin2x1+sin2αsinx is
  • 43tanαsecα
  • 43cotαcosecα
  • 43tanαcosecα
  • 43cotαsecα
eeeeeeedxxlnxln(lnx)ln(ln(lnx)) equals
  • 1
  • 1/e
  • e-1
  • 1+e
Value of π/20sin4ΘsinΘdΘ is
  • 1/3
  • 2/3
  • 1
  • 4/3
Evaluate 10(tx+1x)ndx, where n is a positive integer and t is a parameter independent of x. Hence 10xk(1x)nkdx=P[nCk(n+1)]fork=0,1,......n, then P=
  • 2
  • 1
  • 3
  • None of these
Let u=0dxx4+7x2+1&v=0x2dxx4+7x2+1 then:
  • v > u
  • 6v = π
  • 3u+2v=5π/6
  • u+v=π/3
x21x4+x2+1dx is equal to
  • log(x4+x2+1)+c
  • logx2x+1x2+x+1+c
  • 12logx2x+1x2+x+1+c
  • 12logx2+x+1x2x+1+c
Evaluate π/40cosxsinx10+sin2xdx
  • 13(tan123+tan113)
  • 13(tan113cot123)
  • 13(tan123tan113)
  • 13(tan113cot113)
Let f(x) be a positive function. Let
I1=k1kxf{x(1x)}dx,
I2=k1kf{x(1x)}dx,
where 2k1>0, then I1I2 is
  • 2
  • k
  • 12
  • 1
The value of 43(4x)(x3)dx is
  • π16
  • π8
  • π4
  • π2
The value of the integral 113(xx3)13x4dx
  • 6
  • 0
  • 3
  • 4
π/30cosθ54sinθdθ equal to.
  • 14log(55+23)
  • 14log(5523)
  • 14log(5+235)
  • 14log(5235)
Consider I=π0xdx1+sinxWhat is I equal to?
  • π
  • 0
  • π
  • 2π
x4e2xdx=
  • e2x4(2x44x3+6x26x+3)+C
  • e2x2(2x44x3+6x26x+3)+C
  • e2x8(2x4+4x3+6x2+6x+3)+C
  • e2x4(2x4+4x3+6x2+6x+3)+C
The value of 31/3tan(x2+1x2)sin(x+1x)dxx is 
  • 0
  • 3/2
  • 1/2
  • 4/3
Let I1=10exdx1+x and I2=10x2dxex3(2x3), then I1I2 is
  • 3/e
  • e/3
  • 3e
  • 1/3e
The value of 31/3tan(x21x2)sin(x+1x)dxx is 
  • 0
  • 32
  • 12
  • 43
The value of the integral 10xα1logxdx is
  • log(α+1)
  • 2log(α+1)
  • 3logα
  • none of these
The value of the definite integral π/20(cos10xsin12x)dx, is equal to.
  • 110
  • 111
  • 112
  • 122
If I=π0xsinx1+cos2xdx, then the value of sinI, is
  • 12
  • 0
  • 22
  • 1
If I=π/6π/6π+4x51sin(|x|+π6)dx, then I equals to
  • 4π
  • 2π+13
  • 2π13
  • 4π+313
If, π20sin2x(1+cosx2)dx=0
  • 4π2
  • π42
  • $$4 - frac{\pi}{2}$
  • 4+π2
In=e1(logx)ndx and In=A+BIn1 then
A=........., B=............
  • e,n
  • 1/e,n
  • e,n
  • en
x0sinx1+cos2xdx=πcosα1sin2α
  • for no value of α
  • for exactly two values of α in (0,π)
  • for atleast one α in (π/2,π)
  • for exactly one α in (0,π/2)
π/20sin8xcos2xdx is equal to
  • π512
  • 3π512
  • 5π512
  • 7π512
Let y=y(x),y(1)=1 and y(e)=e2 . Consider
J=x+yxydyI=x+yx2dxJI=g(x) and g(1) = 1, then the value of g(e) is
  • 2e+1
  • e+1
  • e2-e+1
  • e2+e-1
If I1=102x3dx,I2=102x2dx,I3=212x2dx and I4=212x3dx, then
  • I1>I2
  • I2>I1
  • I3>I4
  • I1>I3
Value of the definite integral 10cot1(1x+x2)dx is:
  • πlog2
  • π2log2
  • π+log2
  • π2+log2
ifln=10xm(lnx)ndx,andln=1m+1ln1 then k is equal to
  • n
  • -n
  • m-1
  • None of these
Evaluate the integral, 10cos(2cot11x1+x)dx=
  • 1/2
  • 1/2
  • 0
  • 1
10x(1x)dx=.
  • π8
  • 3π8
  • 5π4
  • π2
Solve 1/20xsin1x1x2dx=
  • 12+3π12
  • 123π12
  • 122π12
  • None of these
One of the roots of the equation 2000x6+100x5+10x3+x2=0 is of the form m+nr. When 'm' is non zero integer and n and r relatively prime natural numbers. Then m+n+r100=?
  • 100
  • 2
  • 3
  • 0
π/4π/4ln1+sin2xdx has the value equal to:
  • π4l n2
  • π2l n2
  • π8l n2
  • π16l n2
The value of the integer I=1(x2x)x3(x21)dx is
  • 0
  • 2/3
  • 4/3
  • none of these
2π01+sinx2dx=
  • 0
  • 2
  • 8
  • 4
The integral π4π128cos2x(tanx+cotx)3dx equals:
  • 15128
  • 564
  • 1332
  • 13256
Solve 0xtan1x(1+x2)2dx
  • π/2
  • π/6
  • π/4
  • π/8
100π01cos2xdx is
  • 2002
  • 1002
  • 0
  • none of these
π/20dxa2cos2x+b2sin2x equals-
  • π/ab
  • 2π/ab
  • ab/π
  • π/2ab
The value of 11dx(2x)1x2 is
  • 0
  • π3
  • 2π3
  • cannot be evaluated
π/2π/2cosxcos3xdx=
  • 1
  • 4/3
  • 1/3
  • 0
If f(x)=x1tan1ttdtR, then the value of f(e2)f(1e2)is 
  • 0
  • π2
  • π
  • 2π
Let f:RR+ and II=k1kxf(x(1x))dx,I2=k1kf(x(1x))dx where 2k1>0. Then III2 is 
  • 2
  • k
  • 1/2
  • 1
x(lnaax23a5x2b3x+lnbbx22a2xb4x)dx(wherea,bR) is equal to
  • 16lna2b3a2xb3xlna2xb3xe+k
  • 16lna2b3a2xb3xln1ea2xb3x+k
  • 16lna2b31a2xb3xln(ea2xb3x)+k
  • 16lna2b31a2xb3xln(ea2xb3x)+k
11cot1(x+x31+x4)dx is equal to 
  • 2π
  • π2
  • 0
  • π
I={loge(logex)+1(logex)2}dx is equal to 
  • xloge(logex)+c
  • xloge(logex)x(logex)+c
  • xlogexlogex+x(logex)+c
  • none of these
(1+xx1)ex+x1dx=
  • (x+1)ex+x1+c
  • (x1)ex+x1+c
  • xex+x1+c
  • xex+x1+c
Solve: sin32xcos52xdx
  • tan42x8+C
  • cos42x8+C
  • sin42x8+C
  • sec42x8+C
π/40sin2xcos2x(sin3x+cos3x)2dx is
  • 1/3
  • 1/2
  • 1/6
  • 1/4
21/21xcsc101(x1x)dx is equal to 
  • 1/4
  • 1
  • 0
  • 1012
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers