Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 10 - MCQExams.com

If for x<1, cos1(x21x2+1)+sin1(2x1+x2)tan1(2xx21)=π3, then x=
  • 3
  • 2
  • 2
  • 23
The value of a for which 
ax+sec12x2x4+cose12x2x4=0
  • π2
  • π2
  • 2π
  • 2π
The sum of the solution of the equation 2sin1x2+x+1+cos1x2+x3π2 is
  • 0
  • 1
  • 3
  • 2
If tan1(3a2x3a33ax2)=ktan1(xa), then k=
  • 2
  • 3
  • 2
  • 4
If cos1p+cos11p+cos11q=3π4 then the value of q is equal to:
  • 1
  • 12
  • 13
  • 12
The value of sin1[cot(sin1(234)+cos1124)+sec12]
  • 0
  • π4
  • π6
  • π2
If tan1(sin2θ+2sin+2)+cot1(4sec2+1)=π2 has solution for some θ and ϕ then
  • sinθ=1
  • cosϕ=1
  • cosϕ=1
  • sinθ=1
The sum of roots of the equation tan111+2x+tan111+4x=tan12x2 is 
  • 73
  • 3
  • 4
  • 5
If sin1x+sin1y=π3 then the value of cos1x+cos1y is equal to which of the following :
  • π6
  • π3
  • 2π3
  • π
tan1(xy)tan1(xyx+y)=
  • π2
  • π3
  • π2
  • π4 or 3π4
If sin1x+cos1y=2π5, then cos1x+sin1y is 
  • 2π5
  • 3π5
  • 4π5
  • 3π10
The value of x satisfying sin1x+sin1(1x)=cos1x are
  • 0
  • 1/2
  • 1
  • 2
Solve tan1(cosx1+sinx).
  • π4+x2
  • π4x2
  • π4+x
  • π4x
If x=sin1(sin10)andy=cos1(cos10),thenyx is equal to:

  • π
  • 0
  • 7π
  • 10
If x=sin1(sin10)andy=cos1(cos10)
  • 0
  • 10
  • 7π
  • π
If θϵ[4π,5π], then cos1(cosθ) equals 
  • 4π+θ
  • 5πθ
  • 4πθ
  • θ5π
The solution set of the equation sin11x2+cos1x=cot1(1x2x)sin1x is 
  • [-1,1] - {0}
  • (0,1] U {-1]
  • [-1,0) U {1}
  • [-1,1]
If [sin1(cos1(sin1(tan1x)))]=1, where [] denotes the greatest integer function, then x
  • [tansincos1,tansincossin1]
  • (tansincos1,tansincossin1)
  • [-1, 1]
  • None of these
Number of solutions of the equation
tan1(1a1)=tan1(1x)+tan1(1a2x+1)
  • one
  • Two
  • Three
  • Zero
Solution of tan12x1x2+cot11x22x=2π3 are
  • 13
  • 3
  • 3+2
  • 32
cos1(cosx)=[x],[.]denotesthegreatestintegerfunction,is
  • 2π+3
  • π+3
  • π3
  • 2π3
If α is the only real root of the equation x3+bx2+c=0 (b < c) then the value of Tan1α+Tan1(1α)
  • π2
  • π2
  • 0
  • π
The number of solution for the equation cos1(1x)+m cos1x=nπ2 where m>0,n0 is
  • 0
  • 1
  • 2
  • infinite
The value of sin1[cot(sin1(234)+cos1(124)+sec12)] is :
  • 0
  • π4
  • π6
  • π2
If x = Tan1(1) + Cos1(12) + Sin1(12) and y = cos[12Cos1(1/8)] then 
  • x = 2πy
  • y = 3πx
  • x = πy
  • y = πx
Solve the equation : 4tan115tan11239=?
  • π
  • π/2
  • π/3
  • π/4
Let f(x)=sin1x+cos1x Then π2 is equal to:
  • f(-2)
  • f(k22k+3),kR
  • f(11+k2),kR
  • none
If sin1x+sin1y=2π3, then cos1x+cos1y=
  • 2π3
  • π3
  • π6
  • π
If tan12x+tan13x=π4 then x =
  • 1
  • 16
  • 1,16
  • None of these
If A=tan1(x32kx) and B=tan1(2xkk3), then the value of A-B is
  • 0o
  • 45o
  • 60o
  • 30o
If Sin1(xx22+x34.......)+Cos1(x2x42+x64......)=π2 for 0 < |x| < 2 then x
  • 1/2
  • 1
  • 1/2
  • 1
sincot1tancos1x is always equal to
  • x
  • 1x2
  • 1x
  • None of these
3tan1x=tan1{3xx313x2},thenxbelongto
  • [-1,1]
  • (-1,1)
  • {13,13}
  • None of these
If A=tan1(x32kx) and B=tan1(2xkk3), then the value of AB is
  • 0o
  • 45o
  • 60o
  • 30o
Value of sin1313+cos111146+cot13 is 
  • π
  • π/2
  • 5π/12
  • π/3
If A=2tan1(221) and B=3sin1(1/3)+sin1(3/5), then 
  • A=B
  • A<B
  • A>B
  • none\of\these
The least positive integer n for which (1+i1i)n=2π(sec11x+sin1x)(where,x0,1x1andi=1), is 
  • 2
  • 4
  • 6
  • 8
If 2sin1(35)cos1(513)=cos1(λ), then λ is eual to
  • 323/225
  • 223/325
  • 323/325
  • 123/125
the number o real soluttion of tan1x(x+1)+sin1x2+x+1=π2is
  • zero
  • one
  • two
  • infinit
The numerical value of cot(2sin135+cos135) is
  • 43
  • 34
  • 34
  • 43
The value of sin1(sin12)+sin1(cos12)=
  • 0
  • 242π
  • 4π24
  • 8π
cot13+cot17+cot113+nterms=
  • tan1(nn+2)
  • tan1(n+2n)
  • tan1(3n4n+1)
  • tan1(4n+13n)
If θ=cot1cosxtan1cosx, then sinθ=
  • tan12x
  • tan2(x2)
  • 12tan1(x2)
  • none of these
If sin1(2a1+a2)+cos1(1a21+a2)=tan1(2x1x2) where, a,xϵ(0,1) then the value of x is
  • 0
  • a2
  • a
  • 2a1a2
If tan1(1+x21x21+x2+1x2)=α,(α[0,π4)] yhen x2 is equal to
  • cos2α
  • tan2α
  • sin2α
  • None of these
If If x2+y2+z2=r2, then tan1(xyzr)+tan1(yzxr)+tan1(xzyr) =
  • π
  • π2
  • 0
  • none of these.
If cos1xcos1y2=α , then 4x24xycosα+y2 is equal to -
  • 2sin2α
  • 4
  • 4sin2α
  • 4sin2α
If a is a real of the equation x3+3xtan2=0 then cot1a+cot11ax2 can be equal to
  • 0
  • π2
  • π
  • 3π2
If  cos1(x/a)+cos1(y/b)=α,  Then  x2/a2+y2/b2  is equal to:
  • (2xy/ab)cosα+sin2α
  • (2xy/ab)sinα+cos2α
  • (2xy/ab)cos2α+sinα
  • (2xy/ab)sin2α+cosα
If sin1(x2)+sin1(1x4)+tan1y=2π3 then
  • maximum value of x2+y2 is 493
  • maximum value of x2+y2 is 4
  • maximum value of x2+y2 is 12
  • maximum value of x2+y2 is 3
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers