Processing math: 4%

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 6 - MCQExams.com

The value of tan113+tan115+tan117+tan118 is ___________.
  • 11π5
  • π4
  • π
  • 3π4
tan[2tan115π4]= ?
  • 717
  • 717
  • 712
  • 712
\sin \left (\cos^{-1}\dfrac {3}{5}\right)= ?
  • \dfrac {3}{4}
  • \dfrac {4}{5}
  • \dfrac {3}{5}
  • none\ of\ these
\cos \left(\tan^{-1} \dfrac {3}{4}\right)=?
  • \dfrac {3}{5}
  • \dfrac {4}{5}
  • \dfrac {4}{9}
  • none\ of\ these
Evaluate : \tan \dfrac {1}{2}\left (\cos^{-1}\dfrac {\sqrt 5}{3}\right) 
  • \dfrac {(3-\sqrt 5)}{2}
  • \dfrac {(3+\sqrt 5)}{2}
  • \dfrac {(5-\sqrt 3)}{2}
  • \dfrac {(5+\sqrt 3)}{2}
If x\neq 0 then \cos (\tan^{-1}x+\cot^{-1}x)=?
  • -1
  • 1
  • 0
  • none\ of\ these
The value of \sin \left (\sin^{-1}\dfrac {1}{2}+\cos^{-1}\dfrac {1}{2}\right)=?
  • 0
  • 1
  • -1
  • none\ of\ these
The value of \sin \left(\cos^{-1}\dfrac {3}{5}\right) is
  • \dfrac {2}{5}
  • \dfrac {4}{5}
  • \dfrac {-2}{5}
  • none\ of\ these
\sin \left [2\tan^{-1}\dfrac {5}{8}\right]
  • \dfrac {25}{64}
  • \dfrac {80}{89}
  • \dfrac {75}{128}
  • none\ of\ these
\sin \left [2\sin^{-1}\dfrac{4}{5}\right]
  • \dfrac {12}{25}
  • \dfrac {16}{25}
  • \dfrac {24}{25}
  • none\ of\ these
\sin \left\{\dfrac {\pi}{3}-\sin^{-1}\left (\dfrac {-1}{2}\right) \right\}= ?
  • 1
  • 0
  • \dfrac {-1}{2}
  • none\ of\ these
\tan \left\{\cos^{-1}\dfrac {4}{5}+\tan^{-1}\dfrac {2}{3}\right\}= ?
  • \dfrac {13}{6}
  • \dfrac {17}{6}
  • \dfrac {19}{6}
  • \dfrac {23}{6}
Evaluate : \cot (\tan^{-1}x+\cot^{-1}x) 
  • 1
  • \dfrac {1}{2}
  • 0
  • none\ of\ these
Evaluate : \cos \left(2\tan^{-1}\dfrac {1}{2}\right) 
  • \dfrac {3}{5}
  • \dfrac {4}{5}
  • \dfrac {7}{8}
  • none\ of\ these
The value of 
\displaystyle sin^{-1} \left \{ (sin\,\pi/3) \dfrac{x}{\sqrt{x^2 + k^2 - kx}} \right \} - cos^{-1} \left \{ cos\pi /6 \,\dfrac{x}{\sqrt{x^2 + k^2 - kx}} \right \}
  \left (where \,\dfrac{k}{2} < x < 2k , \,k > 0 \right ) is 
  • tan^{-1} \left ( \dfrac{2x^2 + xk - k^2}{x^2 - 2xk + k^2} \right )
  • tan^{-1} \left ( \dfrac{x^2 + 2xk - k^2}{x^2 - 2xk + k^2} \right )
  • tan^{-1} \left ( \dfrac{x^2 + 2xk - 2k^2}{2x^2 - 2xk + 2k^2} \right )
  • none of these
If sin^{-1}\dfrac{5}{x}+sin^{-1}\dfrac{12}{x}=\dfrac{\pi}{2}, then x is equal to
  • \dfrac{7}{13}
  • \dfrac{4}{3}
  • 13
  • \dfrac{13}{7}
\tan^{1}x + \tan^{1}y + \tan^{1}z = \dfrac {\pi}{2}, then 
  • xy+yz+zx-xyz=0
  • xy+yz+zx+xyz=0
  • xy+yz+zx+1=0
  • xy+yz+zx-1=0

cos^{-1}(cos(\dfrac{5\pi}{4})) is given by

  • \dfrac{5\pi}{4}
  • \dfrac{3\pi}{4}
  • \dfrac{-\pi}{4}
  • none of these

The value of sin^{-1}\Bigg(cot\bigg(sin^{-1}\sqrt{\dfrac{2-\sqrt{3}}{4}}+cos^{-1}\dfrac{\sqrt{12}}{4}+\sec^{-1}\sqrt{2}\bigg)\Bigg) is

  • 0
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{3}
  • none of these
If \tan^{-1}\dfrac{1-x}{1+x}=\dfrac{1}{2}\tan^{-1}x, then x is equal to
  • 1
  • \sqrt{3}
  • \dfrac{1}{\sqrt{3}}
  • none of these
If  tan^{-1}x+2 cot^{-1}x=\dfrac{2\pi}{3}, then x is equal to 
  • \dfrac{\sqrt{3}-1}{\sqrt{3}+1}
  • 3
  • \sqrt{3}
  • \sqrt{2}
If  3\sin^{-1}\bigg(\dfrac{2x}{1+x^2}\bigg)-4\cos^{-1}\bigg(\dfrac{1-x^2}{1+x^2}\bigg)+2tan^{-1}\bigg(\dfrac{2x}{1-x^2}\bigg)=\dfrac{\pi}{3}, where |x|<1. then x is equal to
  • \dfrac{1}{\sqrt{3}}
  • -\dfrac{1}{\sqrt{3}}
  • {\sqrt{3}}
  • -\dfrac{\sqrt{3}}{4}
  • \dfrac{\sqrt{3}}{2}
The principal value of \sin^{-1}(\sin 10) is
  • 10
  • 10-3\pi
  • 3\pi-10
  • none of these
If  3\tan^{-1}(\dfrac{1}{2+\sqrt{3}})-\tan^{-1}\dfrac{1}{x}=\dfrac{1}{3}, then x is equal to
  • 1
  • 2
  • 3
  • \sqrt{2}
The value 2tan^{-1}\Bigg[\sqrt{\dfrac{a-b}{a+b}}\tan\dfrac{\theta}{2}\Bigg] is equal to
  • \cos^{-1}\Bigg[\dfrac{a\cos\theta+b}{b\cos\theta+a}\Bigg]
  • \cos^{-1}\Bigg[\dfrac{b\cos\theta+a}{a\cos\theta+b}\Bigg]
  • \cos^{-1}\Bigg[\dfrac{a\cos\theta}{b\cos\theta+a}\Bigg]
  • \cos^{-1}\Bigg[\dfrac{b\cos\theta}{a\cos\theta+b}\Bigg]
 If x=\sec^{-1}\Bigg(x+\dfrac{1}{x}\Bigg)+\sec^{-1}\Bigg(y+\dfrac{1}{y}\Bigg) where xy < 0, then the possible values of z is (are)
  • \dfrac{8\pi}{10}
  • \dfrac{7\pi}{10}
  • \dfrac{9\pi}{10}
  • \dfrac{21\pi}{20}
If tan^{-1}(\sin^2\theta-2sin\theta+3)+\cot^{-1}(5^{\sec^2y}+1)=\dfrac{\pi}{2}, then the value of cos^2\theta-\sin\theta is equal to
  • 0
  • -1
  • 1
  • none of these
If  f(x)=sin^{-1}\Bigg(\dfrac{\sqrt{3}}{2}x-\dfrac{1}{2}\sqrt{1-x^2}\Bigg),-\dfrac{1}{2}\leq x\leq1, then f(x) is equal to
  • \sin^{-1}\bigg(\dfrac{1}{2}\bigg)-sin^{-1}x
  • \sin^{-1}x-\dfrac{\pi}{6}
  • \sin^{-1}x+\dfrac{\pi}{6}
  • none of these
If  cot^{-1}(\sqrt{\cos a})- tan^{-1}(\sqrt{\cos a})=x, then \sin x is  
  • tan^2\dfrac{\alpha}{2}
  • cot^2\dfrac{\alpha}{2}
  • \tan \alpha
  • cot\dfrac{\alpha}{2}
2tan^{-1}(-2) is equal to
  • -\cos^{-1}\bigg(\dfrac{-3}{5}\bigg)
  • -\pi+\cos^{-1}\bigg(\dfrac{3}{5}\bigg)
  • -\dfrac{\pi}{2}+\tan^{-1}\bigg(\dfrac{-3}{4}\bigg)
  • -\pi+\cot^{-1}\bigg(\dfrac{-3}{4}\bigg)
The value of \underset{|x|\rightarrow\infty}{lim}cos(tan^{-1}(sin(tan^{-1}x)))  is equal to
  • -1
  • \sqrt{2}
  • -\dfrac{1}{\sqrt{2}}
  • \dfrac{1}{\sqrt{2}}
If x\in\bigg(\dfrac{-\pi}{2},\dfrac{\pi}{2}\bigg), then the value \tan^{-1}\Bigg(\dfrac{\tan x}{4}\Bigg)+\tan^{-1}\Bigg(\dfrac{3\sin 2x}{5+3\cos 2x}\Bigg)  is
  • \dfrac{x}{2}
  • 2x
  • 3x
  • x
If \alpha,\beta \,\,and\,\, \gamma are the roots of \displaystyle \tan^{-1} \left ( x-1 \right ) +\tan^{-1} x + \tan^{-1} \left ( x+1 \right ) = \tan^{-1} 3x, then
  • \alpha+\beta+ \gamma=0
  • \alpha\beta+\beta\gamma+\gamma\alpha=\dfrac{-1}{4}
  • \alpha\beta\gamma=1
  • |\alpha-\beta|_{max}=1
If f(x) = (\sin^{-1}x)^2 +(\cos^{-1}x)^2, then.
  • f(x) has the least value of \dfrac{\pi^2}{8}
  • f(x) has the least value of \dfrac{5\pi^2}{8}
  • f(x) has the least value of \dfrac{\pi^2}{16}
  • f(x) has the least value of \dfrac{5\pi^2}{4}
If sin^{-1}x+sin^{-1}y=\dfrac{\pi}{2} and \sin 2x=\cos 2y, then
  • x=\dfrac{\pi}{8}+\sqrt{\dfrac{1}{2}-\dfrac{\pi^2}{64}}
  • y=-\dfrac{\pi}{12}+\sqrt{\dfrac{1}{2}-\dfrac{\pi^2}{64}}
  • x=\dfrac{\pi}{12}+\sqrt{\dfrac{1}{2}-\dfrac{\pi^2}{64}}
  • y=-\dfrac{\pi}{8}+\sqrt{\dfrac{1}{2}-\dfrac{\pi^2}{64}}
cos^{-1}x+cos^{-1}\Bigg[\dfrac{x}{2}+\dfrac{1}{2}\sqrt{3-3x^2}\Bigg] is equal to
  • \dfrac{\pi}{3} for x\in\Bigg[\dfrac{1}{2},1\Bigg]
  • \dfrac{\pi}{3} for x\in\Bigg[0,\dfrac{1}{2}\Bigg]
  • 2cos^{-1}x-cos^{-1}\dfrac{1}{2} for x\in\Bigg[\dfrac{1}{2},1\Bigg]
  • 2cos^{-1}x-cos^{-1}\dfrac{1}{2} for x\in\Bigg[0,\dfrac{1}{2}\Bigg]
The domain of the function \cos ^{-1}(2x-1) is
  • [0,1]
  • [-1,1]
  • (-1,1)
  • [0,\pi]
If \cos \left(\sin ^{-1}\dfrac{2}{5} + \cos ^{-1} x\right)=0 then x is equal to
  • \dfrac{1}{5}
  • \dfrac{2}{5}
  • 0
  • 1
The domain of trigonometric function can be restricted to any one of their branch (not necessarily principle value) in order to obtain their inverse functions.
  • True
  • False
The minimum value of n for which \tan^{-1}\dfrac {n}{\pi} > \dfrac {\pi}{4}, n\ \in \ N is valid is 5.
  • True
  • False
All trigonometric functions have inverse over their respective domains.
  • True
  • False
The value of \cot \left[cos^{-1}\left(\dfrac{7}{25}\right)\right] is
  • \dfrac{25}{24}
  • \dfrac{25}{7}
  • \dfrac {24} {25}
  • \dfrac {7} {24}
If |x| \le 1, then 2 \tan ^{-1}x +\sin ^{-1} \left(\dfrac{2x}{1+x^2} \right) is equal to 
  • 4\ \tan^{-1}x
  • 0
  • \dfrac{\pi}{2}
  • \pi
The value of the expression 2 \sec ^{-1}2+ \sin^{-1}\left(\dfrac{1}{2}\right) is
  • \dfrac{\pi}{6}
  • \dfrac{5\pi}{6}
  • \dfrac{7\pi}{6}
  • 1
The value of \sin [2 \tan ^{-1} (.75)] is equal to
  • 0.75
  • 1.5
  • 0.96
  • \sin 1.5
The value of \cos ^{-1} \left(\cos \dfrac{3 \pi}{2}\right) is equal to
  • \dfrac{\pi}{2}
  • \dfrac{3\pi}{2}
  • \dfrac{5\pi}{2}
  • \dfrac{7\pi}{2}
The value of the expression (\cos^{-1}x)^2 is equal to \sec^2 x.
  • True
  • False
If \cos ^{-1} \alpha +\cos ^{-1} \beta +\cos ^{-1} \gamma = 3 \pi, then \alpha (\beta + \gamma) + \beta (\gamma + \alpha) + \gamma (\alpha + \beta)
  • 0
  • 1
  • 6
  • 12
The domain of the function defined by f(x)=\sin^{-1}x+\cos x is 
  • [-1, 1]
  • [-1, \pi +1]
  • ( -\infty, \infty)
  • \phi
If \sin^{-1}x+\sin^{-1}y=\dfrac{\pi}{2}, then the value of \cos^{-1}x+\cos^{-1}y is 
  • \dfrac{\pi}{2}
  • \pi
  • 0
  • \dfrac{2\pi}{3}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers