CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 6 - MCQExams.com

The value of tan113+tan115+tan117+tan118 is ___________.
  • 11π5
  • π4
  • π
  • 3π4
tan[2tan115π4]= ?
  • 717
  • 717
  • 712
  • 712
sin(cos135)= ?
  • 34
  • 45
  • 35
  • none of these
cos(tan134)=?
  • 35
  • 45
  • 49
  • none of these
Evaluate : tan12(cos153) 
  • (35)2
  • (3+5)2
  • (53)2
  • (5+3)2
If x0 then cos(tan1x+cot1x)=?
  • 1
  • 1
  • 0
  • none of these
The value of sin(sin112+cos112)=?
  • 0
  • 1
  • 1
  • none of these
The value of sin(cos135) is
  • 25
  • 45
  • 25
  • none of these
sin[2tan158]
  • 2564
  • 8089
  • 75128
  • none of these
sin[2sin145]
  • 1225
  • 1625
  • 2425
  • none of these
sin{π3sin1(12)}= ?
  • 1
  • 0
  • 12
  • none of these
tan{cos145+tan123}= ?
  • 136
  • 176
  • 196
  • 236
Evaluate : cot(tan1x+cot1x) 
  • 1
  • 12
  • 0
  • none of these
Evaluate : cos(2tan112) 
  • 35
  • 45
  • 78
  • none of these
The value of 
sin1{(sinπ/3)xx2+k2kx}cos1{cosπ/6xx2+k2kx}
 (wherek2<x<2k,k>0) is 
  • tan1(2x2+xkk2x22xk+k2)
  • tan1(x2+2xkk2x22xk+k2)
  • tan1(x2+2xk2k22x22xk+2k2)
  • none of these
If sin15x+sin112x=π2, then x is equal to
  • 713
  • 43
  • 13
  • 137
tan1x+tan1y+tan1z=π2, then 
  • xy+yz+zxxyz=0
  • xy+yz+zx+xyz=0
  • xy+yz+zx+1=0
  • xy+yz+zx1=0

cos1(cos(5π4)) is given by

  • 5π4
  • 3π4
  • π4
  • none of these

The value of sin1(cot(sin1234+cos1124+sec12)) is

  • 0
  • π2
  • π3
  • none of these
If tan11x1+x=12tan1x, then x is equal to
  • 1
  • 3
  • 13
  • none of these
If  tan1x+2cot1x=2π3, then x is equal to 
  • 313+1
  • 3
  • 3
  • 2
If  3sin1(2x1+x2)4cos1(1x21+x2)+2tan1(2x1x2)=π3, where |x|<1. then x is equal to
  • 13
  • 13
  • 3
  • 34
  • 32
The principal value of sin1(sin10) is
  • 10
  • 103π
  • 3π10
  • none of these
If  3tan1(12+3)tan11x=13, then x is equal to
  • 1
  • 2
  • 3
  • 2
The value 2tan1[aba+btanθ2] is equal to
  • cos1[acosθ+bbcosθ+a]
  • cos1[bcosθ+aacosθ+b]
  • cos1[acosθbcosθ+a]
  • cos1[bcosθacosθ+b]
 If x=sec1(x+1x)+sec1(y+1y) where xy < 0, then the possible values of z is (are)
  • 8π10
  • 7π10
  • 9π10
  • 21π20
If tan1(sin2θ2sinθ+3)+cot1(5sec2y+1)=π2, then the value of cos2θsinθ is equal to
  • 0
  • 1
  • 1
  • none of these
If  f(x)=sin1(32x121x2),12x1, then f(x) is equal to
  • sin1(12)sin1x
  • sin1xπ6
  • sin1x+π6
  • none of these
If  cot1(cosa)tan1(cosa)=x, then sinx is  
  • tan2α2
  • cot2α2
  • tanα
  • cotα2
2tan1(2) is equal to
  • cos1(35)
  • π+cos1(35)
  • π2+tan1(34)
  • π+cot1(34)
The value of lim|x|cos(tan1(sin(tan1x)))  is equal to
  • 1
  • 2
  • 12
  • 12
If x(π2,π2), then the value tan1(tanx4)+tan1(3sin2x5+3cos2x)  is
  • x2
  • 2x
  • 3x
  • x
If α,βandγ are the roots of tan1(x1)+tan1x+tan1(x+1)=tan13x, then
  • α+β+γ=0
  • αβ+βγ+γα=14
  • αβγ=1
  • |αβ|max=1
If f(x) = (sin1x)2+(cos1x)2, then.
  • f(x) has the least value of π28
  • f(x) has the least value of 5π28
  • f(x) has the least value of π216
  • f(x) has the least value of 5π24
If sin1x+sin1y=π2 and sin2x=cos2y, then
  • x=π8+12π264
  • y=π12+12π264
  • x=π12+12π264
  • y=π8+12π264
cos1x+cos1[x2+1233x2] is equal to
  • π3 for x[12,1]
  • π3 for x[0,12]
  • 2cos1xcos112 for x[12,1]
  • 2cos1xcos112 for x[0,12]
The domain of the function cos1(2x1) is
  • [0,1]
  • [1,1]
  • (1,1)
  • [0,π]
If cos(sin125+cos1x)=0 then x is equal to
  • 15
  • 25
  • 0
  • 1
The domain of trigonometric function can be restricted to any one of their branch (not necessarily principle value) in order to obtain their inverse functions.
  • True
  • False
The minimum value of n for which tan1nπ>π4,n  N is valid is 5.
  • True
  • False
All trigonometric functions have inverse over their respective domains.
  • True
  • False
The value of cot[cos1(725)] is
  • 2524
  • 257
  • 2425
  • 724
If |x|1, then 2tan1x+sin1(2x1+x2) is equal to 
  • 4 tan1x
  • 0
  • π2
  • π
The value of the expression 2sec12+sin1(12) is
  • π6
  • 5π6
  • 7π6
  • 1
The value of sin[2tan1(.75)] is equal to
  • 0.75
  • 1.5
  • 0.96
  • sin1.5
The value of cos1(cos3π2) is equal to
  • π2
  • 3π2
  • 5π2
  • 7π2
The value of the expression (cos1x)2 is equal to sec2x.
  • True
  • False
If cos1α+cos1β+cos1γ=3π, then α(β+γ)+β(γ+α)+γ(α+β)
  • 0
  • 1
  • 6
  • 12
The domain of the function defined by f(x)=sin1x+cosx is 
  • [1,1]
  • [1,π+1]
  • (,)
  • ϕ
If sin1x+sin1y=π2, then the value of cos1x+cos1y is 
  • π2
  • π
  • 0
  • 2π3
0:0:3


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers