Processing math: 100%

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 7 - MCQExams.com

If tan1x=π10 for some xR, then the value of cot1x is 
  • π5
  • 2π5
  • 3π5
  • 4π5
The value of sin1{cos(43π5)} is 
  • 3π5
  • 7π5
  • π10
  • π10
The value of cot(sin1x) is 
  • 1+x2x
  • x1+x2
  • 1x
  • 1x2x
The domain of y=cos1(x24) is 
  • [3,5]
  • [0,π]
  • [5,3][5,3]
  • [5,3][3,5]
The domain of the function y=sin1(x2) is 
  • [0,1]
  • (0,1)
  • [1,1]
  • ϕ
The value of sin(2sin1(0.6)) is 
  • 0.48
  • 0.96
  • 1.2
  • sin1.2
The value of the expression sin[cot1{cos(tan11)}] is 
  • 0
  • 1
  • 13
  • 23
The value of tan2(sec12)+cot2(csc13) is 
  • 5
  • 11
  • 13
  • 15
If α2sin1x+cos1xβ, then 
  • α=π2,β=π2
  • α=0,β=π
  • α=π2,β=3π2
  • α=0,β=2π
sin1(1x)2sin1x=π2, then x
  • 0,12
  • 1,12
  • 0
  • 12
Choose the correct answer 
cos1(cos7π6) is equal to
  • 7π6
  • 5π6
  • π3
  • π6
Choose the correct answer : 
sin(π3sin1(12)) is equal to
  • π
  • π2
  • 1
  • 23
If  sin1x=y , then
  • 0yπ
  • π2yπ2
  • 0<y<π
  • π2<y<π2
tan13sec1(2) is equal to
  • π
  • π3
  • π3
  • 2π3
Multiple choice Questions :
2sin(cos1(45))×coscos1(45)
  • 2425
  • 2425
  • 625
  • 625
Multiple choice Questions :
sin1(45)+cos1(45)=
  • π2
  • 0
  • π
  • π2
Multiple choice Questions :
cos1cos(4π3)= 
  • 4π3
  • 2π3
  • π3
  • π
Multiple choice Questions :
The value of tan1(tan5)
  • 2π
  • 52π
  • 5
  • 2π3
tan1(xy)tan1xyx+y is equal to
  • π2
  • π3
  • π4
  • 3π4
Multiple choice Questions :
If a > b > c ,
cot1(1+abab)+cot1(1+bcbc)+cot1(1+acca)
  • 0
  • π
  • 2π
  • π2
If sin1(12)=x, then general value x$ is:
  • 2nπ±π6
  • π6
  • nπ±π6
  • nπ+(1)nπ6
If tan1(1)+cos1(12)=sin1x, then value of x is
  • 1
  • 0
  • 1
  • 12
2tan(tan1x+tan1x3) is:

  • 2x1x2
  • 1+x2
  • 2x
  • none of these
Value of sin1(32)+2cos1(32) is:

  • π2
  • π3
  • 2π3
  • π
If cot1x+tan113=π2 then x is:
  • 1
  • 3
  • 13
  • none of these
If tan1(3x)+tan12x=π4, then x is:
  • 16
  • 13
  • 110
  • 12
lf the equation sin1(x2+x+1)+cos1(λx+1)=π2 has exactly two solutions, then λ can not have the integral value(s)
  • 1
  • 0
  • 1
  • 2
Assertion(A): cos1x and tan1x are positive for all positive real values of x in their domain.
Reason(R): The domain of f(x)=cos1x+tan1x is [1,1].
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true but R is not correct explanation of A
  • A is true but R is false
  • A is false but R is true

sin1|sinx|=sin1|sinx| then x=
  • nπ1
  • nπ
  • nπ+1
  • nπ2+1
The number of solutions of:
sin1(1+b+b2+.)+cos1(aa23+a39+)=π2
  • 1
  • 2
  • 3
If (tan1x)2+(cot1x)2=5π28, then x=
  • 1
  • 1
  • 0
  • 2
cos1(axab) =sin1(xbab) is possible if
  • a>x>b or a<x<b
  • a=x=b
  • a>b and x takes any value
  • a<b and x takes any value
The solution set of the equation tan1xcot1x=cos1(2x) is
  • (0,1)
  • (1,1)
  • [1,3)
  • (1,3)
If sin1α+sin1β+sin1γ=3π2, then αβ+αγ+βγ is equal to :
  • 1
  • 0
  • 3
  • 3
The number of positive integral solutions of the equation  tan1x+cot1y=tan13 is :
  • 0
  • 1
  • 2
  • 3
The domain of f(x)=cot1(xx2[x2]) is
( [.] denotes the greatest integer function)
  • (0,)
  • R{0}
  • R{x:xZ}
  • (,0)
If (tan1x)2+(cot1x)2=5π28, then x =
  • 1
  • 0
  • 1
  • 2
The number of integral solutions of sin14xx23+tan1x23x+2=π2 is


  • zero
  • infinite
  • four
  • None of these
The value of sin1(sin20100)+cos1(cos20100)+tan1(tan20100) is

  • π6
  • π3
  • 2π3
  • 5π6
The number of solutions of the equation 1+x2+2xsin(cos1y)=0 is 
  • 1
  • 2
  • 3
  • 4
The value of sec1(112x2)+4cos11+x2 is equal to
  • π
  • 2π
  • π2
  • None of these
The largest interval lying in (π2,π2) for which the function [f(x)=4x2+cos1(x21)+log(cosx)] is defined, is-
  • [0,π]
  • (π2,π2)
  • [π4,π2)
  • [0,π2)
The number of real solutions of tan1(x(x+1)+sin1(x2+x+1)=π2 is
  • 0
  • 1
  • 2
  • infinite
If x>0 and cos1(12x)+cos1(35x)=π2, then x is
  • 7
  • 39
  • 37
  • 37
The value of sin1{tan(cos12+34+cos1124cosec12)}, is
  • 0
  • π2
  • π2
  • π
If cosec1(cosec(x)) and cosec(cosec1(x)) are equal functions, then the maximum range of value of x is
  • [π2,1][1,π2]
  • (π2,1)(1,π2)
  • (,1][1,)
  • (,1)(1,)
If [sin1cos1sin1tan1θ]=1, where [.] denotes the greatest integer function, the θ lies in the interval  
  • [tansincos1,sintancossin1]
  • [sintancos1,tansincossin1]
  • [tansincos1,tansincossin1]
  • None of these
cos1x+cos1(x2+1233x2) is equal to
  • π3 for xϵ[12,1]
  • π3 for xϵ[0,12]
  • 2cos1xcos112 for xϵ[12,1]
  • 2cos1xcos112 for xϵ[0,12]
The range of values of p for which the equation sincos1(cos(tan1x))=p has a solution is
  • (12,22)
  • [0,1)
  • (121)
  • (1,1)
The solution set of the equation sin11x+cos1x=cot1(1x2x)sin1x
  • [1,1]{0}
  • (0,1]{1}
  • [1,0){1}
  • {1}
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers