Processing math: 6%

CBSE Questions for Class 12 Commerce Maths Inverse Trigonometric Functions Quiz 7 - MCQExams.com

If tan1x=π10 for some xR, then the value of cot1x is 
  • π5
  • 2π5
  • 3π5
  • 4π5
The value of sin1{cos(43π5)} is 
  • 3π5
  • 7π5
  • π10
  • π10
The value of cot(sin1x) is 
  • 1+x2x
  • x1+x2
  • 1x
  • 1x2x
The domain of y=cos1(x24) is 
  • [3,5]
  • [0,π]
  • [5,3][5,3]
  • [5,3][3,5]
The domain of the function y=\sin^{-1}(-x^2) is 
  • [0, 1]
  • (0, 1)
  • [-1, 1]
  • \phi
The value of \sin (2\sin^{-1}(0.6)) is 
  • 0.48
  • 0.96
  • 1.2
  • \sin 1.2
The value of the expression \sin [ \cot^{-1}\{ \cos (\tan^{-1}1)\}] is 
  • 0
  • 1
  • \dfrac{1}{\sqrt 3}
  • \sqrt{\dfrac{2}{3}}
The value of \tan^2 ( \sec^{-1}2)+\cot^2 (\csc^{-1}3) is 
  • 5
  • 11
  • 13
  • 15
If \alpha \le 2\sin^{-1}x+\cos^{-1}x \le \beta, then 
  • \alpha =\dfrac{-\pi}{2}, \beta =\dfrac{\pi}{2}
  • \alpha =0, \beta =\pi
  • \alpha =\dfrac{-\pi}{2}, \beta =\dfrac{3\pi}{2}
  • \alpha =0, \beta =2\pi
\sin^{-1} (1 -x) - 2 \sin ^{-1} x = \dfrac{\pi }{2} , then x
  • 0 , \dfrac{1 }{2}
  • 1, \dfrac{1}{2}
  • 0
  • \dfrac{1 }{2}
Choose the correct answer 
\cos ^{-1} ( \cos \dfrac{7\pi }{6}) is equal to
  • \dfrac{7\pi }{6}
  • \dfrac{5\pi }{6}
  • \dfrac{\pi }{3}
  • \dfrac{\pi }{6}
Choose the correct answer : 
\sin \left ( \dfrac{\pi }{3} - \sin^{-1}\left ( -\dfrac{1}{2} \right ) \right ) is equal to
  • \pi
  • - \dfrac{\pi }{2}
  • 1
  • 2 \sqrt{3}
If   \sin ^{-1} x = y , then
  • 0 \leq y \leq \pi
  • - \dfrac{\pi}{2} \leq y \leq \dfrac{\pi }{2}
  • 0 < y < \pi
  • - \dfrac{\pi}{2} < y < \dfrac{\pi }{2}
\tan^{-1} \sqrt{3} - \sec^{-1} (-2) is equal to
  • \pi
  • - \dfrac{\pi }{3}
  • \dfrac{\pi }{3}
  • - \dfrac{2\pi }{3}
Multiple choice Questions :
2\sin \left ( \cos^{-1}\left ( \dfrac{-4}{5} \right ) \right )\times \cos \cos^{-1} \left ( \dfrac{-4}{5} \right )
  • \dfrac{24}{25}
  • - \dfrac{24}{25}
  • - \dfrac{6}{25}
  • \dfrac{- 6}{25}
Multiple choice Questions :
\sin^{-1}\left ( \dfrac{4}{5} \right ) + \cos^{-1}\left ( \dfrac{4}{5} \right )=
  • \dfrac{\pi}{2}
  • 0
  • \pi
  • \dfrac{-\pi}{2}
Multiple choice Questions :
\cos^{-1} \cos \left ( \dfrac{4 \pi}{3} \right ) =  
  • \dfrac{4 \pi}{3}
  • \dfrac{2 \pi}{3}
  • \dfrac{- \pi}{3}
  • - \pi
Multiple choice Questions :
The value of \tan^{-1} (\tan 5)
  • 2 \pi
  • 5 - 2 \pi
  • 5
  • \dfrac{2 \pi}{3}
\tan ^{-1}\left ( \dfrac{x}{y} \right ) - \tan^{-1} \dfrac{x - y}{x + y} is equal to
  • \dfrac{\pi }{2}
  • \dfrac{\pi }{3}
  • \dfrac{\pi }{4}
  • \dfrac{-3\pi }{4}
Multiple choice Questions :
If a > b > c ,
\cot^{-1} \left ( \dfrac{1 + ab}{a - b} \right ) + \cot^{-1}\left ( \dfrac{1 + bc}{b - c} \right ) + \cot^{-1} \left ( \dfrac{1 + ac}{c - a} \right )
  • 0
  • \pi
  • 2 \pi
  • \dfrac{\pi}{2}
If \sin^{-1}\left(\dfrac{1}{2}\right)=x, then general value x$ is:
  • 2n\pi \pm \dfrac{\pi}{6}
  • \dfrac{\pi}{6}
  • n\pi \pm \dfrac{\pi}{6}
  • n\pi +(-1)^n\dfrac{\pi}{6}
If \tan^{-1}(1)+\cos^{-1}(\dfrac{1}{\sqrt{2}})=\sin^{-1}x, then value of x is
  • -1
  • 0
  • 1
  • -\dfrac{1}{2}
2\tan(\tan^{-1}x+\tan^{-1}x^3) is:

  • \dfrac{2x}{1-x^2}
  • 1+x^2
  • 2x
  • none of these
Value of \sin^{-1}(\dfrac{\sqrt{3}}{2})+2\cos^{-1}(\dfrac{\sqrt{3}}{2}) is:

  • \dfrac{\pi}{2}
  • \dfrac{\pi}{3}
  • \dfrac{2\pi}{3}
  • \pi
If \cot^{-1}x+\tan^{-1}\dfrac{1}{3}=\dfrac{\pi}{2} then x is:
  • 1
  • 3
  • \dfrac{1}{3}
  • none of these
If \tan^{-1}(3x)+\tan^{-1} 2x=\dfrac{\pi}{4}, then x is:
  • \dfrac{1}{6}
  • \dfrac{1}{3}
  • \dfrac{1}{10}
  • \dfrac{1}{2}
lf the equation \displaystyle \sin^{-1}(x^{2}+x+1)+\cos^{-1}(\lambda x+1)=\frac{\pi}{2} has exactly two solutions, then \lambda can not have the integral value(s)
  • -1
  • 0
  • 1
  • 2
Assertion(A): \cos^{-1}x and \tan^{-1}x are positive for all positive real values of x in their domain.
Reason(R): The domain of f(x)=\cos^{-1}x+\tan^{-1}x is [-1, 1].
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true but R is not correct explanation of A
  • A is true but R is false
  • A is false but R is true

\sin^{-1}|\sin x|=\sqrt{\sin^{-1}|\sin x|} then x=
  • n\pi-1
  • n\pi
  • n\pi+1
  • n\displaystyle \frac{\pi}{2}+1
The number of solutions of:
\displaystyle \sin^{-1}(1+b+b^{2}+\ldots.\infty)+\cos^{-1}(a-\frac{a^{2}}{3}+\frac{a^{3}}{9}+\ldots\infty)=\frac{\pi}{2}
  • 1
  • 2
  • 3
  • \infty
If (\tan^{-1}x)^{2}+(\cot^{-1}x)^{2} = \displaystyle \frac{5\pi^{2}}{8}, then x=
  • -1
  • 1
  • 0
  • 2
cos^{-1} \left (\sqrt{\dfrac{a-x}{a-b}} \right) =sin^{-1} \left (\sqrt{\dfrac{x-b}{a-b}}\right) is possible if
  • a>x>b or a< x < b
  • a=x=b
  • a > b and x takes any value
  • a < b and x takes any value
The solution set of the equation \tan^{-1}x -\cot^{-1}x =\cos^{-1}(2-x) is
  • (0,1)
  • (-1,1)
  • [1,3)
  • (1,3)
If \sin^{-1}\alpha+\sin^{-1}\beta+\sin^{-1}\gamma =\displaystyle \frac{3\pi}{2}, then \alpha\beta+\alpha\gamma+\beta\gamma is equal to :
  • 1
  • 0
  • 3
  • -3
The number of positive integral solutions of the equation  tan^{-1}x+cot^{-1}y =tan^{-1} 3 is :
  • 0
  • 1
  • 2
  • 3
The domain of \displaystyle \mathrm{f}(\mathrm{x})=\cot^{-1}\left(\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}-[\mathrm{x}^{2}]}}\right) is
( [\;.] denotes the greatest integer function)
  • (0,\infty)
  • \mathrm{R}-\{0\}
  • \mathrm{R}-\{\mathrm x:\mathrm{x}\in \mathrm{Z}\}
  • (-\infty,0)
If (tan^{-1} x)^2 +(cot ^{-1}x)^2=\displaystyle \frac{5 \pi^2}{8}, then x =
  • -1
  • 0
  • 1
  • 2
The number of integral solutions of sin^{-1}\sqrt{4x-x^{2}-3}+tan^{-1}\sqrt{x^{2}-3x+2}=\frac{\pi }{2} is


  • zero
  • infinite
  • four
  • None of these
The value of sin^{-1}(sin2010^{0})+cos^{-1}(cos2010^{0})+tan^{-1}(tan2010^{0}) is

  • \frac{\pi }{6}
  • \frac{\pi }{3}
  • \frac{2\pi }{3}
  • \frac{5\pi }{6}
The number of solutions of the equation 1+x^{2}+2x\, sin\: (cos^{-1}y)=0 is 
  • 1
  • 2
  • 3
  • 4
The value of \displaystyle \sec^{-1}\left (\displaystyle \frac{1}{1-2x^{2}}\right)+4{\cos^{-1}}\sqrt{\displaystyle \frac{1+x}{2}} is equal to
  • \pi
  • 2\pi
  • \dfrac{\pi}{2}
  • None of these
The largest interval lying in \left ( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right ) for which the function \left [ f(x)=4^{-x^{2}}+\cos^{-1}\left ( \dfrac{x}{2}-1 \right )+\log (\cos x) \right ] is defined, is-
  • [0,\pi ]
  • \left ( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right )
  • \left [- \dfrac{\pi }{4},\dfrac{\pi }{2} \right )
  • \left [0,\dfrac{\pi }{2} \right )
The number of real solutions of tan^{-1} (\sqrt{x(x+1)}+sin^{-1} \displaystyle \sqrt{(x^{2}+x+1)}=\dfrac{\pi}{2} is
  • 0
  • 1
  • 2
  • infinite
If x> 0\, and \, cos^{-1}\left ( \dfrac{12}{x} \right )+cos^{-1}\left ( \dfrac{35}{x} \right )=\dfrac{\pi }{2}, then x is
  • 7
  • 39
  • 37
  • -37
The value of \sin^{-1}\left \{ \tan\left ( \cos^{-1}\sqrt{\dfrac{2+\sqrt{3}}{4}}+\cos^{-1}\dfrac{\sqrt{12}}{4} -\text{cosec}^{-1}\sqrt{2}\right ) \right \}, is
  • 0
  • \dfrac{\pi }{2}
  • -\dfrac{\pi }{2}
  • \pi
If cosec ^{ -1 }\left(cosec (x) \right) and cosec\left(cosec ^{ -1 }(x) \right) are equal functions, then the maximum range of value of x is
  • \displaystyle\:\left [ -\frac{\pi }{2},-1\right ]\cup \left [ 1,\frac{\pi }{2} \right ]
  • \displaystyle\:\left (-\frac{\pi }{2},-1\right )\cup \left (1,\frac{\pi }{2} \right )
  • \displaystyle\:\left ( -\infty ,-1]\cup [1,\infty \right )
  • \displaystyle\:\left ( -\infty ,-1)\cup (1,\infty \right )
If \left[ \sin ^{ -1 }{ \cos ^{ -1 }{ \sin ^{ -1 }{ \tan ^{ -1 }{ \theta  }  }  }  }  \right] =1, where [.] denotes the greatest integer function, the \theta lies in the interval  
  • [\tan { \sin { \cos { 1 } } } ,\sin { \tan { \cos { \sin { 1 } } } } ]
  • [\sin { \tan { \cos { 1 } } } ,\tan { \sin { \cos { \sin { 1 } } } } ]
  • [\tan { \sin { \cos { 1 } } } ,\tan { \sin { \cos { \sin { 1 } } } } ]
  • None of these
\displaystyle \:\cos ^{-1}x+\cos ^{-1}\left ( \frac{x}{2}+\frac{1}{2}\sqrt{3-3x^{2}} \right ) is equal to
  • \displaystyle \:\frac{\pi }{3} for x \epsilon \left [ \dfrac{1}{2},1 \right ]
  • \displaystyle \:\frac{\pi }{3} for x\epsilon \left [ 0,\dfrac{1}{2} \right ]
  • \displaystyle \:2\cos ^{-1}x-\cos ^{-1}\dfrac{1}{2} for x \epsilon \left [ \dfrac{1}{2},1 \right ]
  • \displaystyle \:2\cos ^{-1}x-\cos ^{-1}\dfrac{1}{2} for x \epsilon \left [ 0,\dfrac{1}{2}\right ]
The range of values of p for which the equation \sin \cos ^{-1}(\cos (\tan ^{-1}x))= p has a solution is
  • \left ( -\frac{1}{\sqrt{2}},\frac{2}{\sqrt{2}} \right )
  • [0,1)
  • \left ( \frac{1}{\sqrt{2}1} \right )
  • (-1,1)
The solution set of the equation \displaystyle \sin^{-1} \sqrt{1-x} + \cos^{-1}x = \cot^{-1} \left ( \frac{\sqrt{1-x^{2}}}{x} \right )-\sin^{-1}x
  • \displaystyle \left [ -1,\: 1 \right ] - \left \{ 0 \right \}
  • \displaystyle \left ( 0, \: 1 \right ] \cup \left \{ -1 \right \}
  • \displaystyle \left [ -1,\: 0 \right ) \cup \left \{ 1 \right \}
  • \displaystyle  \{ 1 \}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers