A is a $$2\times 2$$ matrix such that $$A\begin{bmatrix} 1 & \\ & -1 \end{bmatrix}=\begin{bmatrix} 1 & \\ 0 & \end{bmatrix}$$ and $${ A }^{ 2 }\begin{bmatrix} 1 & \\ & -1 \end{bmatrix}=\begin{bmatrix} 1 & \\ 0 & \end{bmatrix}$$. The sum of the elements f A, is
0%
-1
0%
0
0%
2
0%
5
Q.11.
Let A be a $$3 \times 3$$ matrix such that is: $$A\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{matrix} \right]=\left[ \begin{matrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{matrix} \right] $$Then $$A^{-1}$$ is
If $$A=[x \quad y],B=[_{ h } ^{ a }\quad _{ b } ^{ h }],C=[_{ y } ^{ x }]$$, then $$ABC = $$ ___.
0%
$$({ ax }+hy+{ bxy })$$
0%
$$({ ax }^{ 2 }+2hxy+{ by }^{ 2 })$$
0%
$$({ ax }^{ 2 }-2hxy+{ by }^{ 2 })$$
0%
$$({ bx }^{ 2 }-2hxy+{ ay }^{ 2 })$$
Q.13.
If $$A=\begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$$ and $$B=\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$$ then the value of $$\alpha $$ for which $$A^2=b$$ is
0%
1
0%
-1
0%
4
0%
no real value
Q.14.
If a , b and c are all different from zero such that $$\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 0$$, then the matrix A = $$\begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c \end{vmatrix}$$ is -
0%
symmetric
0%
non-singular
0%
can be written as sum of a symmetric and a skew symmetric matrix
0%
none of these
Q.15.
If $$\displaystyle \begin{bmatrix} a & b \\ -a & 2b \end{bmatrix}\left[ \begin{matrix} 2 \\ -1 \end{matrix} \right] =\left[ \begin{matrix} 5 \\ 4 \end{matrix} \right] $$ then $$(a,b)$$ is
0%
$$(1,-3)$$
0%
$$(-3,1)$$
0%
$$(1,3)$$
0%
$$(-1,3)$$
Q.16.
Matrix A when multiplied with Matrix C gives the Identity matrix I, what is C?
0%
Identity matrix
0%
Inverse of A
0%
Square of A
0%
Transpose of A
Q.17.
For each real $$ x, -1 < x < 1 . $$ let A (x) be the matrix $$(1-x)^{-1} \begin{bmatrix} 1 & -x \\ -x & 1 \end{bmatrix} $$ and z = $$ \dfrac { x +y }{ 1 +xy} $$. then
0%
$$ A (z) = A(x) A(y) $$
0%
$$ A (z) = A(x) - A(y) $$
0%
$$ A(z) = A(x) + A(y ) $$
0%
$$ A(z) = A(x) [ A (y)]^{-1} $$
Support mcqexams.com by disabling your adblocker.
Please disable the adBlock and continue. Thank you.