CBSE Questions for Class 12 Commerce Maths Matrices Quiz 2 - MCQExams.com

If $$A = \begin{bmatrix}2 & 3 & 4 \\ -3 & 4 & 8\end{bmatrix},$$ $$B = \begin{bmatrix}-1 & 4 & 7 \\ -3 & -2 & 5\end{bmatrix}$$ and $$ A+B = \begin{bmatrix}1 & a & b \\ c & 2 & 13\end{bmatrix},$$ then find the value of $$a+b+c.$$
  • $$12$$
  • $$21$$
  • $$15$$
  • $$5$$
If $$A = \begin{bmatrix}3 & 1 \\ -1 & 2\end{bmatrix}$$, Then $$A^2$$ = 
  • $$\begin{bmatrix}8 & -5 \\ -5 & 3\end{bmatrix}$$
  • $$\begin{bmatrix}8 & -5 \\ 5 & 3\end{bmatrix}$$
  • $$\begin{bmatrix}8 & -5 \\ -5 & -3\end{bmatrix}$$
  • $$\begin{bmatrix}8 & 5 \\ -5 & 3\end{bmatrix}$$
If $$\displaystyle 2\begin{bmatrix}3 &4 \\5  &x \end{bmatrix}+\begin{bmatrix}1 &y \\0  &2 \end{bmatrix}=\begin{bmatrix}7 &0 \\10  &5 \end{bmatrix}$$, then the values of $$x\ and\ y$$ are :
  • $$\displaystyle x=0,y=-2$$
  • $$\displaystyle x=\dfrac{3}{2},y=-8$$
  • $$\displaystyle x=-2,y=-8$$
  • $$\displaystyle x=2,y=8$$
If $$\begin{bmatrix} x & y \\ u & v \end{bmatrix}$$ is symmetric matrix, then
  • $$x+v=0$$
  • $$x-v=0$$
  • $$y+u=0$$
  • $$y-u=0$$
If $$\displaystyle A=\begin{bmatrix}x &y \\z  &w \end{bmatrix},B=\begin{bmatrix}x &-y \\-z  &w \end{bmatrix}$$ and $$C=\begin{bmatrix}-2x &0 \\0  &-2w \end{bmatrix},$$ then $$A+B+C$$ is a:
  • identity matrix
  • null matrix
  • row matrix
  • column matrix
If matrix $$A$$ is of order $$p\times q$$ and matrix $$B$$ is of order $$r\times s$$ ,then $$A-B$$ will exist if
  • $$p=q$$
  • $$p=r, q=s$$
  • $$p=q, r=s$$
  • $$p=s, q=r$$
If $$\displaystyle A=\left [ a_{ij} \right ]_{m\times\:n}, B=\left [ b_{ij} \right ]_{m\times\:n},$$ then the element $$\displaystyle C_{23}$$ of the matrix $$C=A+B$$ is 
  • $$\displaystyle C_{32}$$
  • $$\displaystyle a_{23}+b_{32}$$
  • $$\displaystyle a_{23}+b_{23}$$
  • $$\displaystyle a_{32}+b_{23}$$
If $$A-A'=0$$, then $$A'$$ is
  • orthogonal matrix
  • symmetric matrix
  • skew-symmetric matrix
  • triangular matrix
For any square matrix $$A,  \  A+{A}^{T}$$ is-
  • unit matrix
  • symmetric matrix
  • skew symmetric matrix
  • zero matrix
If $$\displaystyle  \begin{bmatrix} x & y   \\ 1 & 6   \end{bmatrix} $$ = $$\displaystyle  \begin{bmatrix} 1 & 8   \\ 1 & 6   \end{bmatrix},$$ then $$x+2y=$$
  • $$13$$
  • $$17$$
  • $$19$$
  • None of these
If $$A= \displaystyle  \begin{bmatrix} 1 & 0   \\ 1 & 0   \end{bmatrix}  $$ and B=$$\displaystyle  \begin{bmatrix} 1 & 0   \\ 0 & 1   \end{bmatrix}, $$ then $$A+B=$$
  • $$A$$
  • $$B$$
  • $$\displaystyle \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} $$
  • $$\displaystyle \begin{bmatrix} 0 & 2 \\ 2 & 2 \end{bmatrix} $$
If A is any square matrix, then $$(A\, +\, A^T)$$ is a ............ matrix 
  • symmetric
  • skew symmetric
  • scalar
  • identity
If $$A$$ is a square matrix, then $$A-{A}^{T}$$ is-
  • unit matrix
  • null matrix
  • $$A$$
  • a skew symmetric matrix
If $$\displaystyle  \begin{bmatrix} 2 & 3   \\ 4 & 4   \end{bmatrix} $$+$$\displaystyle  \begin{bmatrix} x & 3   \\ y & 1   \end{bmatrix} $$=$$\displaystyle  \begin{bmatrix} 10 & 6   \\ 8 & 5   \end{bmatrix},$$ then $$(x,y)=$$
  • $$(4,8)$$
  • $$(8,4)$$
  • $$(1,2)$$
  • $$(2,4)$$
For square matrix $$A$$, $$A{A}^{T}$$ is-
  • unit matrix
  • symmetric matrix
  • skew symmetric matrix
  • diagonal matrix
IF $$A=\begin{bmatrix} -1 & 0 & 2 \\ 3 & 1 & 2 \end{bmatrix}$$ and $$B=\begin{bmatrix} -1 & 5 \\ 2 & 7 \\ 3 & 10 \end{bmatrix},$$ then
  • $$AB$$ and $$BA$$ both exist
  • $$AB$$ exists but bot $$BA$$
  • $$BA$$ exists but not $$AB$$
  • but $$AB$$ and $$BA$$ do not exist
If $$A$$ and $$B$$ are symmetric matrices of order $$\displaystyle n,\left( A\neq B \right) $$, then
  • $$A+B$$ is skew-symmetric
  • $$A+B$$ is symmetric
  • $$A+B$$ is a diagonal matrix
  • $$A+B$$ is a zero matrix
If $$A$$ is a skew symmetric matrix then $$ \displaystyle A^{T} $$ 
  • $$-A$$
  • $$A$$
  • $$0$$
  • diagonal matrix
If $$ A= \begin{bmatrix} 1 & 2\end{bmatrix}, B=\begin{bmatrix} 3 & 4\end{bmatrix}$$ then $$A+B=$$
  • $$\begin{bmatrix}1 & 4\end{bmatrix}$$
  • $$\begin{bmatrix}4 & 4\end{bmatrix}$$
  • $$\begin{bmatrix}4 & 6\end{bmatrix}$$
  • None of these
If $$A$$ is matrix of order $$\displaystyle m\times n$$ and $$B$$ is a matrix of order $$\displaystyle n\times p,$$ then the order of $$AB$$ is 
  • $$\displaystyle p\times m$$
  • $$\displaystyle p\times n$$
  • $$\displaystyle n\times p$$
  • $$\displaystyle m\times p$$
Two matrices $$A$$ and $$B$$ are added if 
  • both are rectangular
  • both have same order
  • no of columns of A is equal to columns of B
  • no of rows of A is equal to no of columns of B
Find the output order for the following matrix multiplication $$A_{4 \times 2}\times B_{2\times4}$$?
  • $$2 \times 4$$
  • $$4 \times 4$$
  • $$4 \times2$$
  • Multiplication not possible 
If the matrices $$A=\begin{bmatrix}2 & 1 & 3 \\4 & 1 & 0\end{bmatrix}$$ and $$B=\begin{bmatrix}1 & -1\\ 0 & 2 \\5 & 0\end{bmatrix}$$, then AB will be
  • $$\begin{bmatrix}17 & 0 \\4 & -2\end{bmatrix}$$
  • $$\begin{bmatrix}4 & 0 \\ 0 & 4\end{bmatrix}$$
  • $$\begin{bmatrix}17 & 4 \\0 & -2\end{bmatrix}$$
  • $$\begin{bmatrix}0 & 0 \\0 & 0\end{bmatrix}$$
Least number of changes for the expression $$ax^{2} + bxy + cy^{2} + dx + ey + f$$ to be symmetric in x and y is
  • $$a = b, c = d$$
  • $$b = c, e = f$$
  • $$a = c, d = e$$
  • $$a = f, b = e, c = d$$
What is the output for the following matrix multiplication $$A_{3 \times 2}\times B_{2\times 3}$$?
  • $$(AB)_{3\times 2}$$
  • $$(AB)_{3\times 3}$$
  • $$(AB)_{2\times 3}$$
  • $$(AB)_{2\times 2}$$
Find the output order for the following matrix multiplication $$X_{5 \times 3}\times Y_{3\times 5}$$?
  • $$5 \times 5$$
  • $$3 \times 5$$
  • $$5 \times 3$$
  • $$3 \times 3$$
Find the value in place of question mark in the following:
$$A_{6 \times 2}\times B_{2\times 6} = C_{?\times6}$$?
  • $$2$$
  • $$6$$
  • $$12$$
  • None of these
$$A=\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta\end{bmatrix}$$ and $$AB=BA=I$$, then B is equal to
  • $$\begin{bmatrix} -\cos\theta & \sin\theta \\ \sin\theta & \cos\theta\end{bmatrix}$$
  • $$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta\end{bmatrix}$$
  • $$\begin{bmatrix} -\sin\theta & \cos\theta \\ \cos\theta & \sin\theta\end{bmatrix}$$
  • $$\begin{bmatrix} \sin\theta & -\cos\theta \\ -\cos\theta & \sin\theta\end{bmatrix}$$
If $$A=\begin{bmatrix} 3 & x-1 \\ 2x+3 & x+2 \end{bmatrix}$$ is symmetric matrix then the value of $$x$$ is
  • $$4$$
  • $$3$$
  • $$-4$$
  • $$-3$$
What is the output order for the following matrix multiplication $$A_{2 \times 1}\times B_{1\times 2}$$?
  • $$1 \times 1$$
  • $$2 \times 3$$
  • $$2 \times 2$$
  • $$2 \times 1$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers