MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Matrices Quiz 6 - MCQExams.com
CBSE
Class 12 Commerce Maths
Matrices
Quiz 6
Given $$A, B, C$$ are three matrices such that
$$A = \begin{bmatrix}x & y & z\end{bmatrix}$$, $$B = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}$$, $$C = \begin{bmatrix}x \\ y \\ z\end{bmatrix}.$$ Evaluate $$ABC$$.
Report Question
0%
$$ABC = \begin{bmatrix}ax^2 + by^2 + cz^2 + 2hxy + 2gzx + 2fyz\end{bmatrix}$$
0%
$$ABC = \begin{bmatrix}ax^2 - by^2 + cz^2 + 2hxy + 2gzx + 2fyz\end{bmatrix}$$
0%
$$ABC = \begin{bmatrix}ax^2 - by^2 + cz^2 - 2hxy + 2gzx + 2fyz\end{bmatrix}$$
0%
$$ABC = \begin{bmatrix}ax^2 + by^2 + cz^2 - 2hxy + 2gzx - 2fyz\end{bmatrix}$$
Explanation
$$A = \begin{bmatrix}x & y & z\end{bmatrix}$$, $$B = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}$$, $$C = \begin{bmatrix}x \\ y \\ z\end{bmatrix}$$
$$AB=\begin{bmatrix}ax+hy+gz & hx+by+z & gx+fy+cz\end{bmatrix}$$
$$ABC=\begin{bmatrix}ax+hy+gz & hx+by+z & gx+fy+cz\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix}$$
$$=\begin{bmatrix}ax^2 + by^2 + cz^2 + 2hxy + 2gzx + 2fyz\end{bmatrix}$$
Hence, option A.
If $$A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$$ and $$B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$$. Find $$AB$$ and show that $$AB \ne BA$$
Report Question
0%
$$AB = \begin{bmatrix} 0 & -4 \\ 10 & -3 \end{bmatrix}$$
0%
$$AB = \begin{bmatrix} 0 & 4 \\ 10 & 3 \end{bmatrix}$$
0%
$$AB = \begin{bmatrix} 0 & -4 \\ 10 & 3 \end{bmatrix}$$
0%
None of these.
Explanation
Given,
$$A=\begin{bmatrix} 1\quad & -2\quad & 3 \\ -4 & 2 & 5 \end{bmatrix},B=\begin{bmatrix} 2\quad & 3 \\ 4\quad & 5 \\ 2\quad & 1 \end{bmatrix}\\ AB=\begin{bmatrix} 1\quad & -2\quad & 3 \\ -4 & 2 & 5 \end{bmatrix}\begin{bmatrix} 2\quad & 3 \\ 4\quad & 5 \\ 2\quad & 1 \end{bmatrix}=\begin{bmatrix} 2-8+6\quad & 3-10+3 \\ -8+8+10\quad & -12+10+5 \end{bmatrix}=\begin{bmatrix} 0\quad & -4 \\ 10\quad & 3 \end{bmatrix}\\ BA=\begin{bmatrix} 2\quad & 3 \\ 4\quad & 5 \\ 2\quad & 1 \end{bmatrix}\begin{bmatrix} 1\quad & -2\quad & 3 \\ -4 & 2 & 5 \end{bmatrix}=\begin{vmatrix} 2-12\quad & -4+6\quad & 6+15 \\ 4-20 & -8+10\quad & 12+25 \\ 2-4 & -4+2 & -6+5 \end{vmatrix}\begin{bmatrix} -10\quad & 2\quad & 21 \\ -16 & 2 & 37 \\ -2 & -2 & -1 \end{bmatrix}$$
Hence $$ AB\neq BA$$
If $$\displaystyle \begin{bmatrix} x+y & y \\ 2x & x-y \end{bmatrix} \: \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$ then $$x-y$$ is equal to
Report Question
0%
$$2$$
0%
$$-2$$
0%
$$4$$
0%
$$6$$
Explanation
Comparing LHS and RHS gives us
$$2x+2y-2y=3$$ ...(i)
And
$$4x-2x+2y=2$$ ...(ii)
from i
$$2x=3$$ and from ii
$$2x+2y=2$$
Therefore
$$3+2y=3$$
$$y=\dfrac{-1}{2}$$ and $$x=\dfrac{3}{2}$$
Hence
$$x-y=\dfrac{3}{2}-(\dfrac{-1}{2})$$
$$=\dfrac{4}{2}$$
$$=2$$.
If $$\displaystyle \left[ \begin{matrix} 1 & x & 1 \end{matrix} \right] \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix}\: \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix}=O$$ then $$x$$ is
Report Question
0%
$$2$$
0%
$$-2$$
0%
$$14$$
0%
none of these
Explanation
$$\displaystyle \left[ \begin{matrix} 1 & x & 1 \end{matrix} \right] \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix}\: \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix}=O$$
$$\Rightarrow \begin{bmatrix} 16+2x & \quad 6+5x & \quad 4+x \end{bmatrix}\begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix}=O\\ \Rightarrow { x }^{ 2 }+16x+28\quad =\quad 0\\ \therefore \quad x=-2\quad or\quad x=-4$$
If $$\displaystyle A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \\ 0 & 6 \end{bmatrix}$$ and $$\displaystyle B=\begin{bmatrix} 5 & 4 & 6 \\ 4 & 1 & 2 \\ -5 & -1 & 1 \end{bmatrix}$$ , then
Report Question
0%
$$A + B$$ exists
0%
$$AB$$ exists
0%
$$BA$$ exists
0%
none of these
Explanation
$$\displaystyle A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \\ 0 & 6 \end{bmatrix}$$ and $$\displaystyle B=\begin{bmatrix} 5 & 4 & 6 \\ 4 & 1 & 2 \\ -5 & -1 & 1 \end{bmatrix}$$
Order of $$A$$ is $$3\times2$$
Order of $$B$$ is $$3\times3$$
Order of $$A$$ and $$B$$ are not same. So , $$A+B$$ does not exists.
Again , $$AB$$ also does not exists as the number of columns of $$A$$ are not equal to the number of rows of $$ B.$$
Here, $$BA$$ exists as the number of columns of $$B$$ is equal to the number of rows of $$A$$.
If $$\displaystyle A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$$ and $$\displaystyle B = \begin{bmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{bmatrix}$$ then $$AB$$ is equal to
Report Question
0%
$$[0]$$
0%
$$I$$
0%
$$2I$$
0%
none of these
Explanation
$$\displaystyle A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$$ and $$\displaystyle B = \begin{bmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{bmatrix}$$
Now, $$AB=\begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}\begin{bmatrix} a^{ 2 } & ab & ac \\ ba & b^{ 2 } & bc \\ ca & cb & c^{ 2 } \end{bmatrix}$$
$$\Rightarrow AB=\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
If $$A = \begin{bmatrix}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}, \space B = \begin{bmatrix}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$, then $$AB$$ =
Report Question
0%
$$\begin{bmatrix}5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4\end{bmatrix}$$
0%
$$\begin{bmatrix}5 & 9 & 13 \\ -1 & -2 & 4 \\ 2 & -2 & -4\end{bmatrix}$$
0%
$$\begin{bmatrix}5 & -9 & 13 \\ 1 & -2 & 4 \\ 2 & -2 & 4\end{bmatrix}$$
0%
$$\begin{bmatrix}5 & -9 & 13 \\ 1 & -2 & 4 \\ -2 & 2 & 4\end{bmatrix}$$
Explanation
Given, $$A = \begin{bmatrix}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$ and $$B = \begin{bmatrix}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$
$$AB=\begin{bmatrix}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}\begin{bmatrix}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}=\begin{bmatrix}5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4\end{bmatrix}$$
Hence, option A is correct.
Given $$A = \begin{bmatrix}1 & -1 \\ 2 & -1\end{bmatrix}$$, which of the following result is true?
Report Question
0%
$$A^2 = I$$
0%
$$A^2 = -I$$
0%
$$A^2 = 2I$$
0%
None of these
Explanation
Given, $$A = \begin{bmatrix}1 & -1 \\ 2 & -1\end{bmatrix}$$
Now, $$A^{2}=\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$
$$=\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$\Rightarrow A^{2}=-I$$
$$A = \begin{bmatrix}4 & x+2 \\ 2x-3 & x+1\end{bmatrix}$$ is symmetric, then $$x$$ =
Report Question
0%
$$3$$
0%
$$5$$
0%
$$2$$
0%
$$4$$
Explanation
$$A = \begin{bmatrix}4 & x+2 \\ 2x-3 & x+1\end{bmatrix}$$
$$A^{T}=\begin{bmatrix}4 & 2x-3 \\ x+2 & x+1\end{bmatrix}$$
$$A$$ is symmetric.
$$\therefore\quad A=A^{T}$$
$$\Rightarrow 2x-3=x+2$$
$$\therefore x=5$$
Hence, option B.
If $$\displaystyle A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}$$ then $$\displaystyle A^2$$ is equal to
Report Question
0%
$$A$$
0%
$$I$$
0%
$$\displaystyle A^T$$
0%
none of these
Explanation
Given, $$\displaystyle A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}$$
$$A^{ 2 }=\begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}\begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow A^{2}=I$$
If $$A$$ be a matrix such that $$\displaystyle A \times \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$ then $$A$$ is
Report Question
0%
$$\displaystyle \begin{bmatrix}
2 & 4 \\
1 & -1
\end{bmatrix}$$
0%
$$\displaystyle \begin{bmatrix}
-1 & 1 \\
4 & 2
\end{bmatrix}$$
0%
$$\displaystyle \begin{bmatrix}
4 & 2 \\
-1 & 1
\end{bmatrix}$$
0%
none of these
Explanation
$$\displaystyle A \times \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$
We will check using options
Option A
Consider, $$A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$
$$=\begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$
$$=\begin{bmatrix} 6 & 12 \\ 0 & -6 \end{bmatrix}$$
$$\ne RHS$$
Hence, option $$A$$ cannot be matrix $$A$$.
Option B,
Consider, $$A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$
$$\begin{bmatrix} -1 & 1 \\ 4 & 2 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$
$$=\begin{bmatrix} 0 & 6 \\ 6 & 0 \end{bmatrix}$$
$$\ne RHS$$
Hence, option $$B$$ cannot be matrix $$A$$.
Option C,
Consider, $$A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$
$$=\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$
$$=\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$
$$= RHS$$
Hence, option C is correct for $$A$$.
If $$\displaystyle A=\begin{bmatrix}0 &c &-b \\-c &0 &a \\b &-a &0 \end{bmatrix}$$ and $$\displaystyle B=\begin{bmatrix}a^{2} &ab &ac \\ab &b^{2} &bc \\ac &bc &c^{2} \end{bmatrix},$$ then $$AB=$$
Report Question
0%
$$\displaystyle A^{3}$$
0%
$$\displaystyle B^{2}$$
0%
$$I$$
0%
$$O$$
Explanation
Given :
$$\displaystyle A=\begin{bmatrix}0 &c &-b \\-c &0 &a \\b &-a &0 \end{bmatrix}$$ $$\displaystyle B=\begin{bmatrix}a^{2} &ab &ac \\ab &b^{2} &bc \\ac &bc &c^{2} \end{bmatrix}$$
Then, $$\displaystyle AB= \begin{bmatrix} 0& c & -b\\ -c & 0 & a\\b &-a &0 \end{bmatrix}\begin{bmatrix} a^{2} & ab & ac\\ ab & b^{2} & bc \\ ac & bc & c^{2}\end{bmatrix}$$
$$=\begin{bmatrix} abc-abc & b^{2}c-b^{2}c & bc^{2}-bc^{2} \\ -a^{2}c+a^{2}c & -abc+abc & -ac^{2}+ac^{2} \\ a^2b-a^2b & ab^2-ab^2 & abc-abc \end{bmatrix}$$
$$=O$$
If $$A = \begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{pmatrix}$$
If $$A^2 - 4A =pI $$ where $$I$$ and $$O$$ are the unit matrix and the null matrix of order $$3$$ respectively. Find the value of $$p$$
Report Question
0%
$$p=2$$
0%
$$p=3$$
0%
$$p=4$$
0%
$$p=5$$
Explanation
Given
$$\quad A = \begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{pmatrix}$$
$$\therefore
A^2 = A.A = \begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2
& 2 & 1\end{pmatrix}\times\begin{pmatrix}1& 2 & 2 \\ 2
& 1 & 2 \\ 2 & 2 & 1\end{pmatrix}$$
$$\quad
= \begin{pmatrix}1+4+4 & 2+2+4 &
2+4+2 \\ 2+2+4 & 4+1+4 & 4+2+2 \\ 2+4+2 & 4+2+2 &
4+4+1 \end{pmatrix}$$
$$\quad
= \begin{pmatrix}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8
& 9\end{pmatrix}$$
$$\therefore \quad A^2 - 4A
= \begin{pmatrix}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8
& 9\end{pmatrix} - 4\begin{pmatrix}1& 2 & 2 \\ 2 & 1
& 2 \\ 2 & 2 & 1\end{pmatrix}$$
$$\quad
= \begin{pmatrix}9&8&8 \\ 8&9&8
\\ 8&8&9\end{pmatrix} - \begin{pmatrix}4&8&8 \\
8&4&4 \\ 4&4&8\end{pmatrix} =
\begin{pmatrix}5&0&0 \\ 0&5&0 \\
0&0&5\end{pmatrix}=5I$$
Let $$\displaystyle A = \begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}$$. The only correct statement about the matrix $$A$$ is
Report Question
0%
$$\displaystyle A$$ is a zero matrix
0%
$$\displaystyle A = \left ( -1 \right )I_{3}$$
0%
$$A^2=-I$$
0%
$$\displaystyle A^{2} = I$$
Explanation
$$\displaystyle A = \begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}$$
$$\displaystyle A^2=\begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}\begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}=\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}$$
$$\therefore A^2=I$$
Hence, option D.
If $$A$$ is a square matrix then $$A-{A}'$$ is a
Report Question
0%
diagonal matrix
0%
skew symmetric matrix
0%
symmetric matrix
0%
None of these
Explanation
Consider, $$(A-A')'=A'-(A')'$$
$$=A'-A$$
$$=-(A-A')$$
$$\Rightarrow (A-A')'=-(A-A')$$
Hence, $$A-A'$$ is skew-symmetric
Let $$\displaystyle A=\begin{bmatrix}-1\\2\\3 \end{bmatrix}$$ and $$\displaystyle B=\begin{bmatrix} -2 & -1 & -4 \end{bmatrix},$$
then matrix $$(AB) A$$ equals
Report Question
0%
$$12A$$
0%
$$-12A$$
0%
$$4A$$
0%
$$3A$$
Explanation
$$A=\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix},B=\begin{bmatrix} -2 & -1 & -4 \end{bmatrix}$$
$$AB=\begin{bmatrix} 2 & 1 & 4 \\ -4 & -2 & -8 \\ -6 & -3 & -12 \end{bmatrix}$$
$$(AB)A=\begin{bmatrix} 2 & 1 & 4 \\ -4 & -2 & -8 \\ -6 & -3 & -12 \end{bmatrix}\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$$
$$\Rightarrow (AB)A=\begin{bmatrix} 12 \\ -24 \\ -36 \end{bmatrix}=-12\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}=-12A$$
Use the method of elementary row transformation to compute the inverse of
$$\quad \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix}$$
Report Question
0%
$$\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{2}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{13}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$$
0%
$$\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{1}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{11}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{2}{7} & -\displaystyle\frac{2}{21}\end{bmatrix}$$
0%
$$\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{4}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{16}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{2}{7} & -\displaystyle\frac{4}{21}\end{bmatrix}$$
0%
$$\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{4}{21} & \displaystyle\frac{2}{7} & -\displaystyle\frac{13}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{4}{21} & -\displaystyle\frac{2}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$$
Explanation
Let $$\quad A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix}$$
$$\Rightarrow \quad Write \space A A^{-1}= I$$
$$\quad \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix} A^{-1}= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}$$
$$\quad \begin{matrix}R_{21}(-2)\\ \mbox{~}\\ R_{31}(1)\end{matrix}\begin{bmatrix}1 & 0 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix}A^{-1} = \begin{bmatrix}1& 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1\end{bmatrix}$$
$$\quad \begin{matrix}R_2(-1) \\ \mbox{~} \\ R_3(1/3)\end{matrix}\begin{bmatrix}1 & 2 & 5 \\ 0 & 1 & 9 \\ 0 & 1 & 2\end{bmatrix}A^{-1} = \begin{bmatrix}1& 0 & 0 \\ 2 & -1 & 0 \\ \displaystyle\frac{1}{3} & 0 & \displaystyle\frac{1}{3}\end{bmatrix}$$
$$\quad \begin{matrix}R_{12}(-2) \\ \mbox{~} \\ R_{32}(-1)\end{matrix}\begin{bmatrix}1 & 0 & -13 \\ 0 & 1 & 9 \\ 0 & 0 & -7\end{bmatrix} A^{-1}= \begin{bmatrix}-3 & 2 & 0 \\ 2 & -1 & 0 \\ -\displaystyle\frac{5}{3} & 1 & \displaystyle\frac{1}{3}\end{bmatrix}$$
$$\quad \begin{matrix}R_3(-1/7)\\ \mbox{~}\end{matrix}\begin{bmatrix}1 & 0 & -13 \\ 0 & 1 & 9 \\ 0 & 0 & 1\end{bmatrix}A^{-1} = \begin{bmatrix}-3 & 2 & 0 \\ 2 & -1 & 0 \\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$$
$$\quad \begin{matrix}R_{13}(13) \\ \mbox{~} \\ R_{23}(-9)\end{matrix}\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}A^{-1} = \begin{bmatrix}\displaystyle\frac{2}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{13}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$$
Hence, $$\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{2}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{13}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$$
Report Question
0%
Both (A) & (R) are individually true & (R) is correct explanation of (A),
0%
Both (A) & (R) are individually true but (R) is not the correct (proper) explanation of (A).
0%
(A)is true but (R} is false,
0%
(A)is false but (R} is true.
Explanation
$$\displaystyle A=\begin{pmatrix}0 &a &b \\-a &0 &c \\-b &-c &0 \end{pmatrix}$$
$$\displaystyle \therefore A^{T}=\begin{pmatrix}0 &-a &-b \\a &0 &-c \\b &c &0 \end{pmatrix}$$
$$\displaystyle A^{T}=-A$$
$$\therefore $$ Assertion (A) & Reason (R) both are true & Reason(R) is correct explanation of Assertion (A).
If $$\displaystyle A=\begin{bmatrix} 1 & \frac { 1 }{ 2 } \\ 0 & 1 \end{bmatrix}$$ then $${ A }^{ 64 }$$ is
Report Question
0%
$$\begin{bmatrix} 1 & 32 \\ 32 & 1 \end{bmatrix}$$
0%
$$\begin{bmatrix} 1 & 0 \\ 32 & 1 \end{bmatrix}$$
0%
$$\begin{bmatrix} 1 & 32 \\ 0 & 1 \end{bmatrix}$$
0%
none of these
Explanation
$$\displaystyle { A }^{ 2 }=\begin{bmatrix} 1 & \frac { 1 }{ 2 } \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & \frac { 1 }{ 2 } \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\\ { A }^{ 4 }=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\\ { A }^{ 8 }=\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$$
Similarly, $${ A }^{ 64 }=\begin{bmatrix} 1 & 32 \\ 0 & 1 \end{bmatrix}$$
If $$A =(a_{ij})_{3\times 3}$$ is a skew symmetric matrix, then
Report Question
0%
$$a_{ii}=0\: \forall \: i$$
0%
$$A + A^T$$ is a null matrix
0%
$$|A|=0$$
0%
$$A$$ is not invertible.
Explanation
Let $$A=\begin{bmatrix} a & \alpha & \beta \\ -\alpha & b & \gamma \\ -\beta & -\gamma & c \end{bmatrix}\quad \Rightarrow \quad -A=\begin{bmatrix} -a & -\alpha & -\beta \\ \alpha & -b & -\gamma \\ \beta & \gamma & -c \end{bmatrix}$$
$$A^{ T }=\begin{bmatrix} a & -\alpha & -\beta \\ \alpha & b & -\gamma \\ \beta & \gamma & c \end{bmatrix}$$
since A is a skew-symmetric matrix $$A^{T}=-A$$
$$\Rightarrow a=-a,b=-b,c=-c$$
$$\Rightarrow a=b=c=0$$
$$\therefore a_{ii}=0$$ for all i
$$A^{T}=-A$$ $$\Rightarrow A^{T}+A=O$$
$$|A|=0$$ ($$\because$$ A is a skew-symmetric of odd order)
since $$|A|=0$$ A is not invertible. ($$\because$$ only non-singular matrices are invertible).
$$\displaystyle A=\begin{bmatrix}a &b \\b &a
\end{bmatrix}$$ and $$\displaystyle A^{2} =\begin{bmatrix}\alpha & \beta \\\beta & \alpha
\end{bmatrix}$$ then
Report Question
0%
$$\displaystyle \alpha=a^{2}+b^{2},\beta =2ab$$
0%
$$\displaystyle \alpha=a^{2}+b^{2},\beta =a^{2}-b^{2}$$
0%
$$\displaystyle \alpha=2ab ,\beta =a^{2}+b^{2}$$
0%
$$\displaystyle \alpha=a^{2}+b^{2},\beta =ab $$
Explanation
$$\displaystyle A^{2}=AA=\begin{pmatrix}a &b \\b &a \end{pmatrix}\begin{pmatrix}a &b \\b &a \end{pmatrix}$$ $$\displaystyle =\begin{pmatrix}a^{2}+b^{2} &2ab \\2ab &a^{2}+b^{2} \end{pmatrix}$$ $$\displaystyle =
\begin{pmatrix} \alpha &\beta \\\beta &\alpha \end{pmatrix}$$
If $$\omega \neq 1$$ is cube root of unity, and $$A=\begin{bmatrix} 1&\omega &\omega ^2 \\\omega & \omega ^2 &1 \\ \omega ^2 &1 &\omega \end{bmatrix}$$ is
Report Question
0%
symmetric
0%
skew symmetric
0%
singular
0%
orthogonal
Explanation
$$A=\begin{bmatrix} 1&\omega &\omega ^2 \\\omega & \omega ^2 &1 \\ \omega ^2 &1 &\omega \end{bmatrix}$$
$$A^{T}=\begin{bmatrix} 1&\omega &\omega ^2 \\\omega & \omega ^2 &1 \\ \omega ^2 &1 &\omega \end{bmatrix}$$
$$\Rightarrow A^{T}=A$$
i.e $$A$$ is a symmetric matrix.
$$|A|=\begin{vmatrix} 1&\omega &\omega ^2 \\\omega & \omega ^2 &1 \\ \omega ^2 &1 &\omega \end{vmatrix}=0$$
i.e $$A$$ is singular.
Hence, options A and C.
Let $$A$$ be a symmetric matrix such that $$A^5 =0$$ and $$B=I +A + A^2 +A^3 +A^4$$, then $$B$$ is
Report Question
0%
symmetric
0%
singular
0%
non-singular
0%
skew symmetric
Explanation
Given $$A$$ be a symmetric matrix such that $$A^5 =0$$ and $$B=I +A + A^2 +A^3 +A^4$$
$$B^{-1}=(I+A+A^2+A^3+A^4)^{-1}=I'+A^{-1}+(A^{-1})^2+(A^{-1})^3+(A^{-1})^4=I +A + A^2 +A^3 +A^4=B$$
$$\therefore B$$ is symmetric.
$$BA=(I +A + A^2 +A^3 +A^4)A=A + A^2 +A^3 +A^4+A^5=B-I$$
$$\Rightarrow BA=B-I$$
$$\Rightarrow B(I-A)=I \Rightarrow B^{-1}=I-A$$
$$B^{-1}$$ exists.
$$\therefore B$$ is non-singualr.
Hence, options A and C.
If $$A =\begin{bmatrix}\alpha &\beta \\\gamma &-\alpha \end{bmatrix}$$ is such that $$A^2 = I$$, then
Report Question
0%
$$1 +\alpha^2+\beta\gamma=0$$
0%
$$1 -\alpha^2-\beta\gamma=0$$
0%
$$1 -\alpha^2+\beta\gamma=0$$
0%
$$1 +\alpha^2-\beta\gamma=0$$
Explanation
$$A =\begin{bmatrix}\alpha &\beta \\\gamma &-\alpha \end{bmatrix}$$
$$A^2=\begin{bmatrix}\alpha^2+\beta \gamma &\alpha \beta-\alpha \beta \\\alpha \gamma - \alpha \gamma&\beta \gamma +\alpha^2 \end{bmatrix}$$
but, $$A^2=I$$
$$\Rightarrow \alpha ^2+\beta \gamma = 1$$
$$\Rightarrow 1 -\alpha ^2-\beta \gamma=0$$
Hence, option B is correct.
If $$A$$ and $$B$$ are two matrices of the same order, then
Report Question
0%
$$A^2 -B^2 = (A + B) (A -B)$$
0%
$$A^2=I\Leftrightarrow (A + I) (A -I) = 0$$
0%
$$(A')' = A$$
0%
$$A + A'$$ is symmetric
Explanation
A and B$$\rightarrow $$ Two matrices of same order
Option A: $${ A }^{ 2 }-{ B }^{ 2 }=\left( A+B \right) \left( A-B \right) $$
RHS$$={ A }^{ 2 }-AB+BA+{ B }^{ 2 }$$
RHS$$=$$LHS if and only if $$AB=BA$$
$$\rightarrow $$ Option A is not true for all cases
Option B: $${ A }^{ 2 }=I\Leftrightarrow \left( A+I \right) \left( A-I \right) =0$$
RHS$$={ A }^{ 2 }-A+A-I=0$$
$$\Rightarrow { A }^{ 2 }=I$$
$$\Rightarrow $$ Option B is correct
Option C: $${ \left( { A }^{ T } \right) }^{ T }=A$$
Transpose means we reverse the columns and rows
Let C be columns and R be rows
$${ A }^{ T }$$ means C becomes rows
$${ \left( { A }^{ ' } \right) }^{ ' }$$ mean columns and rows are again interchanged $$C\rightarrow $$columns
$$R\rightarrow $$rows
$$\therefore { \left( { A }^{ ' } \right) }^{ ' }=A$$
Option C is correct
Option D Let $$A+{ A }^{ T }=P\quad { P }^{ T }={ \left( A+{ A }^{ ' } \right) }^{ ' }={ A }^{ ' }+A$$
$$\therefore P={ P }^{ T }\quad \therefore A+{ A }^{ T }={ \left( A+{ A }^{ T } \right) }^{ T }\Rightarrow $$symmetric
Option D is correct
If $$A =\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}$$, then $$A^2$$ is equal
Report Question
0%
$$O$$
0%
$$I$$
0%
$$-I$$
0%
none of these
Explanation
$$A =\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}$$
$$A^2=\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}$$
$$=\begin{bmatrix} a^{ 2 }b^{ 2 }-a^{ 2 }b^{ 2 } & ab^{ 3 }-ab^{ 3 } \\ -a^{ 3 }b+a^{ 3 }b & -a^{ 2 }b^{ 2 }+a^{ 2 }b^{ 2 } \end{bmatrix}=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$\therefore A^2=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} =O$$
Hence, option A.
If A is any square matrix then (1/2) $$\displaystyle \left ( A+A^{T} \right )$$ is a _____ matrix
Report Question
0%
symmetric
0%
skew symmetric
0%
scalar
0%
identity
Explanation
Given $$\cfrac { 1 }{ 2 } \left( A+{ A }^{ T } \right) $$
Let $$A+{ A }^{ T }=P$$
Then $${ P }^{ T }={ \left( A+{ A }^{ T } \right) }^{ T }=A+{ A }^{ T }=P$$
$$\because { P }^{ T }=P$$
$$\Rightarrow { \left( A+{ A }^{ T } \right) }^{ T }=A+{ A }^{ T }$$
$$\Rightarrow \cfrac { 1 }{ 2 } \left( A+{ A }^{ T } \right) $$is symmetric
OPTION A
Find the value of $$x$$ and $$y$$ that satisfy the equation:
$$\begin{bmatrix} 3&-2 \\3 &0 \\2 &4 \end{bmatrix}
\begin{bmatrix} y&y \\x &x \end{bmatrix}=\begin{bmatrix} 3&3 \\3y &3y \\10 &10 \end{bmatrix}$$
Report Question
0%
$$x=3/2, \:y = 2$$
0%
$$x=2, \:y = 3/2$$
0%
$$x=3, \:y = 2$$
0%
$$x=2, \:y = 3$$
Explanation
$$\left[ \begin{matrix} 3\quad & -2 \\ 3 & \quad 0 \\ 2 & \quad 4 \end{matrix} \right] \begin{bmatrix} y\quad & y \\ x\quad & x \end{bmatrix}=\left[ \begin{matrix} 3\quad & 3 \\ 3y\quad & 3y \\ 10\quad & 10 \end{matrix} \right] \\ \Rightarrow \left[ \begin{matrix} 3y-2x\quad & 3y-2x \\ 3y\quad & 3y \\ 2y+4x\quad & 2y+4x \end{matrix} \right] =\left[ \begin{matrix} 3 & \quad 3 \\ 3y\quad & 3y \\ 10\quad & 10 \end{matrix} \right] $$
$$\therefore 3y-2x=3$$ and $$2y+4x=10$$
$$\displaystyle \Rightarrow x=\frac { 3 }{ 2 } ,y=2$$
Let $$A$$ be square matrix. Then which of the following is not a symmetric matrix.
Report Question
0%
$$A+A'$$
0%
$$AA'$$
0%
$$A'A$$
0%
$$A-A'$$
Explanation
If $$A$$ is a square matrix, then and if $$A'$$ represents its transpose, then
$$A+A'$$ is symmetric and $$A-A'$$ is skew symmetric.
Hence matrix A can be written as
$$A=(\dfrac{A+A'}{2})+(\dfrac{A-A'}{2})$$
Therefore of all the above matrix,
$$A-A'$$ is not symmetric.
Say true or false:
All positive odd integral powers of skew-symmetric matrix are symmetric.
Report Question
0%
True
0%
False
Explanation
All positive odd integral power of a skew-symmetric matrix are skew-symmetric and positive even integral power of a skew-symmetric matrix are symmetric.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page