Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:2
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Matrices Quiz 6 - MCQExams.com
CBSE
Class 12 Commerce Maths
Matrices
Quiz 6
Given
A
,
B
,
C
are three matrices such that
A
=
[
x
y
z
]
,
B
=
[
a
h
g
h
b
f
g
f
c
]
,
C
=
[
x
y
z
]
.
Evaluate
A
B
C
.
Report Question
0%
A
B
C
=
[
a
x
2
+
b
y
2
+
c
z
2
+
2
h
x
y
+
2
g
z
x
+
2
f
y
z
]
0%
A
B
C
=
[
a
x
2
−
b
y
2
+
c
z
2
+
2
h
x
y
+
2
g
z
x
+
2
f
y
z
]
0%
A
B
C
=
[
a
x
2
−
b
y
2
+
c
z
2
−
2
h
x
y
+
2
g
z
x
+
2
f
y
z
]
0%
A
B
C
=
[
a
x
2
+
b
y
2
+
c
z
2
−
2
h
x
y
+
2
g
z
x
−
2
f
y
z
]
Explanation
A
=
[
x
y
z
]
,
B
=
[
a
h
g
h
b
f
g
f
c
]
,
C
=
[
x
y
z
]
A
B
=
[
a
x
+
h
y
+
g
z
h
x
+
b
y
+
z
g
x
+
f
y
+
c
z
]
A
B
C
=
[
a
x
+
h
y
+
g
z
h
x
+
b
y
+
z
g
x
+
f
y
+
c
z
]
[
x
y
z
]
=
[
a
x
2
+
b
y
2
+
c
z
2
+
2
h
x
y
+
2
g
z
x
+
2
f
y
z
]
Hence, option A.
If
A
=
[
1
−
2
3
−
4
2
5
]
and
B
=
[
2
3
4
5
2
1
]
. Find
A
B
and show that
A
B
≠
B
A
Report Question
0%
A
B
=
[
0
−
4
10
−
3
]
0%
A
B
=
[
0
4
10
3
]
0%
A
B
=
[
0
−
4
10
3
]
0%
None of these.
Explanation
Given,
A
=
[
1
−
2
3
−
4
2
5
]
,
B
=
[
2
3
4
5
2
1
]
A
B
=
[
1
−
2
3
−
4
2
5
]
[
2
3
4
5
2
1
]
=
[
2
−
8
+
6
3
−
10
+
3
−
8
+
8
+
10
−
12
+
10
+
5
]
=
[
0
−
4
10
3
]
B
A
=
[
2
3
4
5
2
1
]
[
1
−
2
3
−
4
2
5
]
=
|
2
−
12
−
4
+
6
6
+
15
4
−
20
−
8
+
10
12
+
25
2
−
4
−
4
+
2
−
6
+
5
|
[
−
10
2
21
−
16
2
37
−
2
−
2
−
1
]
Hence
A
B
≠
B
A
If
[
x
+
y
y
2
x
x
−
y
]
[
2
−
2
]
=
[
3
2
]
then
x
−
y
is equal to
Report Question
0%
2
0%
−
2
0%
4
0%
6
Explanation
Comparing LHS and RHS gives us
2
x
+
2
y
−
2
y
=
3
...(i)
And
4
x
−
2
x
+
2
y
=
2
...(ii)
from i
2
x
=
3
and from ii
2
x
+
2
y
=
2
Therefore
3
+
2
y
=
3
y
=
−
1
2
and
x
=
3
2
Hence
x
−
y
=
3
2
−
(
−
1
2
)
=
4
2
=
2
.
If
[
1
x
1
]
[
1
3
2
2
5
1
15
3
2
]
[
1
2
x
]
=
O
then
x
is
Report Question
0%
2
0%
−
2
0%
14
0%
none of these
Explanation
[
1
x
1
]
[
1
3
2
2
5
1
15
3
2
]
[
1
2
x
]
=
O
⇒
[
16
+
2
x
6
+
5
x
4
+
x
]
[
1
2
x
]
=
O
⇒
x
2
+
16
x
+
28
=
0
∴
x
=
−
2
o
r
x
=
−
4
If
A
=
[
3
1
−
1
2
0
6
]
and
B
=
[
5
4
6
4
1
2
−
5
−
1
1
]
, then
Report Question
0%
A
+
B
exists
0%
A
B
exists
0%
B
A
exists
0%
none of these
Explanation
A
=
[
3
1
−
1
2
0
6
]
and
B
=
[
5
4
6
4
1
2
−
5
−
1
1
]
Order of
A
is
3
×
2
Order of
B
is
3
×
3
Order of
A
and
B
are not same. So ,
A
+
B
does not exists.
Again ,
A
B
also does not exists as the number of columns of
A
are not equal to the number of rows of
B
.
Here,
B
A
exists as the number of columns of
B
is equal to the number of rows of
A
.
If
A
=
[
0
c
−
b
−
c
0
a
b
−
a
0
]
and
B
=
[
a
2
a
b
a
c
b
a
b
2
b
c
c
a
c
b
c
2
]
then
A
B
is equal to
Report Question
0%
[
0
]
0%
I
0%
2
I
0%
none of these
Explanation
A
=
[
0
c
−
b
−
c
0
a
b
−
a
0
]
and
B
=
[
a
2
a
b
a
c
b
a
b
2
b
c
c
a
c
b
c
2
]
Now,
A
B
=
[
0
c
−
b
−
c
0
a
b
−
a
0
]
[
a
2
a
b
a
c
b
a
b
2
b
c
c
a
c
b
c
2
]
⇒
A
B
=
[
0
0
0
0
0
0
0
0
0
]
If
A
=
[
1
3
0
−
1
2
1
0
0
2
]
,
B
=
[
2
3
4
1
2
3
−
1
1
2
]
, then
A
B
=
Report Question
0%
[
5
9
13
−
1
2
4
−
2
2
4
]
0%
[
5
9
13
−
1
−
2
4
2
−
2
−
4
]
0%
[
5
−
9
13
1
−
2
4
2
−
2
4
]
0%
[
5
−
9
13
1
−
2
4
−
2
2
4
]
Explanation
Given,
A
=
[
1
3
0
−
1
2
1
0
0
2
]
and
B
=
[
2
3
4
1
2
3
−
1
1
2
]
A
B
=
[
1
3
0
−
1
2
1
0
0
2
]
[
2
3
4
1
2
3
−
1
1
2
]
=
[
5
9
13
−
1
2
4
−
2
2
4
]
Hence, option A is correct.
Given
A
=
[
1
−
1
2
−
1
]
, which of the following result is true?
Report Question
0%
A
2
=
I
0%
A
2
=
−
I
0%
A
2
=
2
I
0%
None of these
Explanation
Given,
A
=
[
1
−
1
2
−
1
]
Now,
A
2
=
[
1
−
1
2
−
1
]
[
1
−
1
2
−
1
]
=
[
−
1
0
0
−
1
]
⇒
A
2
=
−
I
A
=
[
4
x
+
2
2
x
−
3
x
+
1
]
is symmetric, then
x
=
Report Question
0%
3
0%
5
0%
2
0%
4
Explanation
A
=
[
4
x
+
2
2
x
−
3
x
+
1
]
A
T
=
[
4
2
x
−
3
x
+
2
x
+
1
]
A
is symmetric.
∴
A
=
A
T
⇒
2
x
−
3
=
x
+
2
∴
x
=
5
Hence, option B.
If
A
=
[
4
−
1
−
4
3
0
−
4
3
−
1
−
3
]
then
A
2
is equal to
Report Question
0%
A
0%
I
0%
A
T
0%
none of these
Explanation
Given,
A
=
[
4
−
1
−
4
3
0
−
4
3
−
1
−
3
]
A
2
=
[
4
−
1
−
4
3
0
−
4
3
−
1
−
3
]
[
4
−
1
−
4
3
0
−
4
3
−
1
−
3
]
=
[
1
0
0
0
1
0
0
0
1
]
⇒
A
2
=
I
If
A
be a matrix such that
A
×
[
1
−
2
1
4
]
=
[
6
0
0
6
]
then
A
is
Report Question
0%
[
2
4
1
−
1
]
0%
[
−
1
1
4
2
]
0%
[
4
2
−
1
1
]
0%
none of these
Explanation
A
×
[
1
−
2
1
4
]
=
[
6
0
0
6
]
We will check using options
Option A
Consider,
A
[
1
−
2
1
4
]
=
[
2
4
1
−
1
]
[
1
−
2
1
4
]
=
[
6
12
0
−
6
]
≠
R
H
S
Hence, option
A
cannot be matrix
A
.
Option B,
Consider,
A
[
1
−
2
1
4
]
[
−
1
1
4
2
]
[
1
−
2
1
4
]
=
[
0
6
6
0
]
≠
R
H
S
Hence, option
B
cannot be matrix
A
.
Option C,
Consider,
A
[
1
−
2
1
4
]
=
[
4
2
−
1
1
]
[
1
−
2
1
4
]
=
[
6
0
0
6
]
=
R
H
S
Hence, option C is correct for
A
.
If
A
=
[
0
c
−
b
−
c
0
a
b
−
a
0
]
and
B
=
[
a
2
a
b
a
c
a
b
b
2
b
c
a
c
b
c
c
2
]
,
then
A
B
=
Report Question
0%
A
3
0%
B
2
0%
I
0%
O
Explanation
Given :
A
=
[
0
c
−
b
−
c
0
a
b
−
a
0
]
B
=
[
a
2
a
b
a
c
a
b
b
2
b
c
a
c
b
c
c
2
]
Then,
A
B
=
[
0
c
−
b
−
c
0
a
b
−
a
0
]
[
a
2
a
b
a
c
a
b
b
2
b
c
a
c
b
c
c
2
]
=
[
a
b
c
−
a
b
c
b
2
c
−
b
2
c
b
c
2
−
b
c
2
−
a
2
c
+
a
2
c
−
a
b
c
+
a
b
c
−
a
c
2
+
a
c
2
a
2
b
−
a
2
b
a
b
2
−
a
b
2
a
b
c
−
a
b
c
]
=
O
If
A
=
(
1
2
2
2
1
2
2
2
1
)
If
A
2
−
4
A
=
p
I
where
I
and
O
are the unit matrix and the null matrix of order
3
respectively. Find the value of
p
Report Question
0%
p
=
2
0%
p
=
3
0%
p
=
4
0%
p
=
5
Explanation
Given
A
=
(
1
2
2
2
1
2
2
2
1
)
∴
A
2
=
A
.
A
=
(
1
2
2
2
1
2
2
2
1
)
×
(
1
2
2
2
1
2
2
2
1
)
=
(
1
+
4
+
4
2
+
2
+
4
2
+
4
+
2
2
+
2
+
4
4
+
1
+
4
4
+
2
+
2
2
+
4
+
2
4
+
2
+
2
4
+
4
+
1
)
=
(
9
8
8
8
9
8
8
8
9
)
∴
A
2
−
4
A
=
(
9
8
8
8
9
8
8
8
9
)
−
4
(
1
2
2
2
1
2
2
2
1
)
=
(
9
8
8
8
9
8
8
8
9
)
−
(
4
8
8
8
4
4
4
4
8
)
=
(
5
0
0
0
5
0
0
0
5
)
=
5
I
Let
A
=
[
0
0
−
1
0
−
1
0
−
1
0
0
]
. The only correct statement about the matrix
A
is
Report Question
0%
A
is a zero matrix
0%
A
=
(
−
1
)
I
3
0%
A
2
=
−
I
0%
A
2
=
I
Explanation
A
=
[
0
0
−
1
0
−
1
0
−
1
0
0
]
A
2
=
[
0
0
−
1
0
−
1
0
−
1
0
0
]
[
0
0
−
1
0
−
1
0
−
1
0
0
]
=
[
1
0
0
0
1
0
0
0
1
]
∴
A
2
=
I
Hence, option D.
If
A
is a square matrix then
A
−
A
′
is a
Report Question
0%
diagonal matrix
0%
skew symmetric matrix
0%
symmetric matrix
0%
None of these
Explanation
Consider,
(
A
−
A
′
)
′
=
A
′
−
(
A
′
)
′
=
A
′
−
A
=
−
(
A
−
A
′
)
⇒
(
A
−
A
′
)
′
=
−
(
A
−
A
′
)
Hence,
A
−
A
′
is skew-symmetric
Let
A
=
[
−
1
2
3
]
and
B
=
[
−
2
−
1
−
4
]
,
then matrix
(
A
B
)
A
equals
Report Question
0%
12
A
0%
−
12
A
0%
4
A
0%
3
A
Explanation
A
=
[
−
1
2
3
]
,
B
=
[
−
2
−
1
−
4
]
A
B
=
[
2
1
4
−
4
−
2
−
8
−
6
−
3
−
12
]
(
A
B
)
A
=
[
2
1
4
−
4
−
2
−
8
−
6
−
3
−
12
]
[
−
1
2
3
]
⇒
(
A
B
)
A
=
[
12
−
24
−
36
]
=
−
12
[
−
1
2
3
]
=
−
12
A
Use the method of elementary row transformation to compute the inverse of
[
1
2
5
2
3
1
−
1
1
1
]
Report Question
0%
A
−
1
=
[
2
21
1
7
−
13
21
−
1
7
2
7
3
7
5
21
−
1
7
−
1
21
]
0%
A
−
1
=
[
1
21
1
7
−
11
21
−
1
7
2
7
3
7
5
21
−
2
7
−
2
21
]
0%
A
−
1
=
[
4
21
1
7
−
16
21
−
1
7
2
7
3
7
5
21
−
2
7
−
4
21
]
0%
A
−
1
=
[
4
21
2
7
−
13
21
−
1
7
2
7
3
7
4
21
−
2
7
−
1
21
]
Explanation
Let
A
=
[
1
2
5
2
3
1
−
1
1
1
]
⇒
W
r
i
t
e
A
A
−
1
=
I
[
1
2
5
2
3
1
−
1
1
1
]
A
−
1
=
[
1
0
0
0
1
0
0
0
1
]
R
21
(
−
2
)
~
R
31
(
1
)
[
1
0
5
2
3
1
−
1
1
1
]
A
−
1
=
[
1
0
0
−
2
1
0
1
0
1
]
R
2
(
−
1
)
~
R
3
(
1
/
3
)
[
1
2
5
0
1
9
0
1
2
]
A
−
1
=
[
1
0
0
2
−
1
0
1
3
0
1
3
]
R
12
(
−
2
)
~
R
32
(
−
1
)
[
1
0
−
13
0
1
9
0
0
−
7
]
A
−
1
=
[
−
3
2
0
2
−
1
0
−
5
3
1
1
3
]
R
3
(
−
1
/
7
)
~
[
1
0
−
13
0
1
9
0
0
1
]
A
−
1
=
[
−
3
2
0
2
−
1
0
5
21
−
1
7
−
1
21
]
R
13
(
13
)
~
R
23
(
−
9
)
[
1
0
0
0
1
0
0
0
1
]
A
−
1
=
[
2
21
1
7
−
13
21
−
1
7
2
7
3
7
5
21
−
1
7
−
1
21
]
Hence,
A
−
1
=
[
2
21
1
7
−
13
21
−
1
7
2
7
3
7
5
21
−
1
7
−
1
21
]
Report Question
0%
Both (A) & (R) are individually true & (R) is correct explanation of (A),
0%
Both (A) & (R) are individually true but (R) is not the correct (proper) explanation of (A).
0%
(A)is true but (R} is false,
0%
(A)is false but (R} is true.
Explanation
A
=
(
0
a
b
−
a
0
c
−
b
−
c
0
)
∴
A
T
=
(
0
−
a
−
b
a
0
−
c
b
c
0
)
A
T
=
−
A
∴
Assertion (A) & Reason (R) both are true & Reason(R) is correct explanation of Assertion (A).
If
A
=
[
1
1
2
0
1
]
then
A
64
is
Report Question
0%
[
1
32
32
1
]
0%
[
1
0
32
1
]
0%
[
1
32
0
1
]
0%
none of these
Explanation
A
2
=
[
1
1
2
0
1
]
[
1
1
2
0
1
]
=
[
1
1
0
1
]
A
4
=
[
1
1
0
1
]
[
1
1
0
1
]
=
[
1
2
0
1
]
A
8
=
[
1
2
0
1
]
[
1
2
0
1
]
=
[
1
4
0
1
]
Similarly,
A
64
=
[
1
32
0
1
]
If
A
=
(
a
i
j
)
3
×
3
is a skew symmetric matrix, then
Report Question
0%
a
i
i
=
0
∀
i
0%
A
+
A
T
is a null matrix
0%
|
A
|
=
0
0%
A
is not invertible.
Explanation
Let
A
=
[
a
α
β
−
α
b
γ
−
β
−
γ
c
]
⇒
−
A
=
[
−
a
−
α
−
β
α
−
b
−
γ
β
γ
−
c
]
A
T
=
[
a
−
α
−
β
α
b
−
γ
β
γ
c
]
since A is a skew-symmetric matrix
A
T
=
−
A
⇒
a
=
−
a
,
b
=
−
b
,
c
=
−
c
⇒
a
=
b
=
c
=
0
∴
a
i
i
=
0
for all i
A
T
=
−
A
⇒
A
T
+
A
=
O
|
A
|
=
0
(
∵
A is a skew-symmetric of odd order)
since
|
A
|
=
0
A is not invertible. (
∵
only non-singular matrices are invertible).
A
=
[
a
b
b
a
]
and
A
2
=
[
α
β
β
α
]
then
Report Question
0%
α
=
a
2
+
b
2
,
β
=
2
a
b
0%
α
=
a
2
+
b
2
,
β
=
a
2
−
b
2
0%
α
=
2
a
b
,
β
=
a
2
+
b
2
0%
α
=
a
2
+
b
2
,
β
=
a
b
Explanation
A
2
=
A
A
=
(
a
b
b
a
)
(
a
b
b
a
)
=
(
a
2
+
b
2
2
a
b
2
a
b
a
2
+
b
2
)
=
(
α
β
β
α
)
If
ω
≠
1
is cube root of unity, and
A
=
[
1
ω
ω
2
ω
ω
2
1
ω
2
1
ω
]
is
Report Question
0%
symmetric
0%
skew symmetric
0%
singular
0%
orthogonal
Explanation
A
=
[
1
ω
ω
2
ω
ω
2
1
ω
2
1
ω
]
A
T
=
[
1
ω
ω
2
ω
ω
2
1
ω
2
1
ω
]
⇒
A
T
=
A
i.e
A
is a symmetric matrix.
|
A
|
=
|
1
ω
ω
2
ω
ω
2
1
ω
2
1
ω
|
=
0
i.e
A
is singular.
Hence, options A and C.
Let
A
be a symmetric matrix such that
A
5
=
0
and
B
=
I
+
A
+
A
2
+
A
3
+
A
4
, then
B
is
Report Question
0%
symmetric
0%
singular
0%
non-singular
0%
skew symmetric
Explanation
Given
A
be a symmetric matrix such that
A
5
=
0
and
B
=
I
+
A
+
A
2
+
A
3
+
A
4
B
−
1
=
(
I
+
A
+
A
2
+
A
3
+
A
4
)
−
1
=
I
′
+
A
−
1
+
(
A
−
1
)
2
+
(
A
−
1
)
3
+
(
A
−
1
)
4
=
I
+
A
+
A
2
+
A
3
+
A
4
=
B
∴
B
is symmetric.
B
A
=
(
I
+
A
+
A
2
+
A
3
+
A
4
)
A
=
A
+
A
2
+
A
3
+
A
4
+
A
5
=
B
−
I
⇒
B
A
=
B
−
I
⇒
B
(
I
−
A
)
=
I
⇒
B
−
1
=
I
−
A
B
−
1
exists.
∴
B
is non-singualr.
Hence, options A and C.
If
A
=
[
α
β
γ
−
α
]
is such that
A
2
=
I
, then
Report Question
0%
1
+
α
2
+
β
γ
=
0
0%
1
−
α
2
−
β
γ
=
0
0%
1
−
α
2
+
β
γ
=
0
0%
1
+
α
2
−
β
γ
=
0
Explanation
A
=
[
α
β
γ
−
α
]
A
2
=
[
α
2
+
β
γ
α
β
−
α
β
α
γ
−
α
γ
β
γ
+
α
2
]
but,
A
2
=
I
⇒
α
2
+
β
γ
=
1
⇒
1
−
α
2
−
β
γ
=
0
Hence, option B is correct.
If
A
and
B
are two matrices of the same order, then
Report Question
0%
A
2
−
B
2
=
(
A
+
B
)
(
A
−
B
)
0%
A
2
=
I
⇔
(
A
+
I
)
(
A
−
I
)
=
0
0%
(
A
′
)
′
=
A
0%
A
+
A
′
is symmetric
Explanation
A and B
→
Two matrices of same order
Option A:
A
2
−
B
2
=
(
A
+
B
)
(
A
−
B
)
RHS
=
A
2
−
A
B
+
B
A
+
B
2
RHS
=
LHS if and only if
A
B
=
B
A
→
Option A is not true for all cases
Option B:
A
2
=
I
⇔
(
A
+
I
)
(
A
−
I
)
=
0
RHS
=
A
2
−
A
+
A
−
I
=
0
⇒
A
2
=
I
⇒
Option B is correct
Option C:
(
A
T
)
T
=
A
Transpose means we reverse the columns and rows
Let C be columns and R be rows
A
T
means C becomes rows
(
A
′
)
′
mean columns and rows are again interchanged
C
→
columns
R
→
rows
∴
(
A
′
)
′
=
A
Option C is correct
Option D Let
A
+
A
T
=
P
P
T
=
(
A
+
A
′
)
′
=
A
′
+
A
∴
P
=
P
T
∴
A
+
A
T
=
(
A
+
A
T
)
T
⇒
symmetric
Option D is correct
If
A
=
[
a
b
b
2
−
a
2
−
a
b
]
, then
A
2
is equal
Report Question
0%
O
0%
I
0%
−
I
0%
none of these
Explanation
A
=
[
a
b
b
2
−
a
2
−
a
b
]
A
2
=
[
a
b
b
2
−
a
2
−
a
b
]
[
a
b
b
2
−
a
2
−
a
b
]
=
[
a
2
b
2
−
a
2
b
2
a
b
3
−
a
b
3
−
a
3
b
+
a
3
b
−
a
2
b
2
+
a
2
b
2
]
=
[
0
0
0
0
]
∴
A
2
=
[
0
0
0
0
]
=
O
Hence, option A.
If A is any square matrix then (1/2)
(
A
+
A
T
)
is a _____ matrix
Report Question
0%
symmetric
0%
skew symmetric
0%
scalar
0%
identity
Explanation
Given
1
2
(
A
+
A
T
)
Let
A
+
A
T
=
P
Then
P
T
=
(
A
+
A
T
)
T
=
A
+
A
T
=
P
∵
P
T
=
P
⇒
(
A
+
A
T
)
T
=
A
+
A
T
⇒
1
2
(
A
+
A
T
)
is symmetric
OPTION A
Find the value of
x
and
y
that satisfy the equation:
[
3
−
2
3
0
2
4
]
[
y
y
x
x
]
=
[
3
3
3
y
3
y
10
10
]
Report Question
0%
x
=
3
/
2
,
y
=
2
0%
x
=
2
,
y
=
3
/
2
0%
x
=
3
,
y
=
2
0%
x
=
2
,
y
=
3
Explanation
[
3
−
2
3
0
2
4
]
[
y
y
x
x
]
=
[
3
3
3
y
3
y
10
10
]
⇒
[
3
y
−
2
x
3
y
−
2
x
3
y
3
y
2
y
+
4
x
2
y
+
4
x
]
=
[
3
3
3
y
3
y
10
10
]
∴
3
y
−
2
x
=
3
and
2
y
+
4
x
=
10
⇒
x
=
3
2
,
y
=
2
Let
A
be square matrix. Then which of the following is not a symmetric matrix.
Report Question
0%
A
+
A
′
0%
A
A
′
0%
A
′
A
0%
A
−
A
′
Explanation
If
A
is a square matrix, then and if
A
′
represents its transpose, then
A
+
A
′
is symmetric and
A
−
A
′
is skew symmetric.
Hence matrix A can be written as
A
=
(
A
+
A
′
2
)
+
(
A
−
A
′
2
)
Therefore of all the above matrix,
A
−
A
′
is not symmetric.
Say true or false:
All positive odd integral powers of skew-symmetric matrix are symmetric.
Report Question
0%
True
0%
False
Explanation
All positive odd integral power of a skew-symmetric matrix are skew-symmetric and positive even integral power of a skew-symmetric matrix are symmetric.
0:0:2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page