Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 2 - MCQExams.com

If n(A)=4 and n(B)=6, then the number of surjections from A to B is
  • 46
  • 64
  • 0
  • 24
The number of injections that are possible from A to itself is 720, then n(A)=
  • 5
  • 6
  • 7
  • 8
Let A={1,2,3},B={a,b,c} and If f={(1,a),(2,b),(3,c)},g={(1,b),(2,a),(3,b)},h={(1,b)(2,c),(3,a)} then
  • g and h are injections
  • f and h are injections
  • f and g injections
  • f,g and h are injections
The number of one-one functions that can be defined from A={1,2,3} to B={a,e,i,o,u} is 
  • 35
  • 53
  • 5P3
  • 5!
The number of non-surjective mappings that can be defined from A={1,4,9,16} toB={2,8,16,32,64} is
  • 1024
  • 20
  • 505
  • 625
If f:AB is a constant function which is onto then B is
  • a singleton set
  • a null set
  • an infinite set
  • a finite set
If f:AB is a bijection then f1of=
  • fof1
  • f
  • f1
  • an identity
The number of injections possible from A={1,3,5,6} to B={2,8,11} is
  • 8
  • 64
  • 212
  • 0
The number of possible surjection from A={1,2,3,...n} to B={1,2} (where n2) is 62, then n=
  • 5
  • 6
  • 7
  • 8
If f:RR,g:RR are defined by f(x)=x2,g(x)=cosx  then (gof)(x)=
  • cos2x
  • x2cosx
  • cosx2
  • cos2x2
If f:RR is defined by f(x)=2x+13  then f1(x)=
  • 3x12
  • x32
  • 2x13
  • x43
Let f(x)=Kxx+1(x1) then the value of K for which (fof)(x)=x is
  • 1
  • 1
  • 2
  • 2
f:(π2,π2)(,) defined by f(x)=1+3x is
  • one-one but not onto
  • onto but not one-one
  • neither one - one nor onto
  • bijective
If f:RR,g:RR are defined by f(x)=4x1,g(x)=x3+2, then (gof)(a+14)= 
  • 43
  • 4a31
  • a3+2
  • 64a38a21
The function f:(0,)(,) is defined by f(x)=log3x then f1(x)=
  • 3x
  • 3x
  • 3x
  • 3xx
If f:RR,f(x)=3x2 then (fof)(x)+2=
  • f(x)
  • 2f(x)
  • 3f(x)
  • f(x)
If f(x)=2x+1 and g(x)=x2+1 then (go(fof))(2)=
  • 112
  • 122
  • 12
  • 124
If f(x)=1x,g(x)=x  and (gof)(16)=
  • 2
  • 1
  • 12
  • 4
If f(x)=x,g(x)=2x2+1 and h(x)=x+1  then  (hogof)(x) is equal to
  • x2+2
  • 2x2+1
  • x2+1
  • 2(x2+1)
If f(x)=ex+ex2, then the inverse of f(x) is
  • loge(x+x2+1)
  • logex21
  • loge(x+x212)
  • loge(x+x21)
If f:(,)(,) is defined by f(x)=5x6, then f1(x)=
  • x+56
  • x56
  • x65
  • x+65
If f(x)=5x+67x+9 then f1(x)=
  • y+67y+9
  • 7y+95y+6
  • 9y67y+9
  • 9y67y+5
If f from R into R is defined by f(x)=x31, then f1{2,0,7}=
  • {1,1,2}
  • {0,1,2}
  • {±1,±2}
  • {0,±2}
If f(x)=3x1 and g(x)=5x+6 then (g1of1)(2)=
  • 10
  • 1
  • 11
  • 12
If f(x)=e5x+13  then f1(x)=
  • 13logy5
  • 13+logy5
  • 5+logy13
  • 5logy13
If f:[1,)[2,) is given by f(x)=x+1x, then f1(x)=
  • x+x242
  • x1+x2
  • xx242
  • x+x24
If f:{1,2,3,.....}{0,±1,±2,.....} is defined by  f(n)={n2 if n is even(n12) if n is odd then  f1(100) is
  • Function is not invertible.
  • 199
  • 201
  • 200
f:RR is defined by f(x)=x2+4 then f1(13)=
  • {3,3}
  • {2,2}
  • {1,1}
  • Not invertible
If f(x)=2+x3, then f1(x) is equal to
  • 3x+2
  • 3x2
  • 3x2
  • 3x+2
The solution of 8x6(mod 14) is
  • {8,6}
  • {6,14}
  • {6,13}
  • {8,14,6}
If f(x)=(1x)1/2 and g(x)=ln(x)  then  the  domain  of (gof)(x) is
  • (,2)
  • (1,1)
  • (,1]
  • (,1)
If f:R+R such that f(x)=log5x then f1(x)=
  • logx10
  • 5x
  • 3x
  • 31/x
If f(x)=x+1x1(x1) then fofofof(x)=
  • f(x)
  • 2(x+1x1)
  • x1x+1
  • x
If F(n)=(1)k1(n1),G(n)=nF(n) then (GoG)(n)= (where k is odd)
  • 1
  • n
  • 2
  • n1
If f:[1,)B  defined  by the function f(x)=x22x+6 is a surjection, then B is equals to
  • [1,)
  • [5,)
  • [6,)
  • [2,)
If f:R\rightarrow R^{+} then \displaystyle f(x)=\left(\dfrac{1}{3}\right)^{x}, then f^{-1}(x)=
  • \displaystyle \left(\dfrac{1}{3}\right)^{-x}
  • 3^{x}
  • \displaystyle \log_{1/3} x
  • \displaystyle \log_{x}\left(\dfrac{1}{3}\right)
If  X =\{1, 2,3,4,5\} and Y =\{1,3,5,7,9\}, determine which of the following sets represent a relation and also a mapping?
  • R_{1}= \{(x,y): y=x+2, x \in Y,y \in Y\}
  • R_{2}=\{(1,1), (1,3), (3,5), (4,7), (5,9)\}
  • R_{3}=\{(1,1), (2,3), (3,5), (3,7), (5,7)\}
  • R_{4}=\{(1,3), (2,5), (4,7), (5,9), (3,1)\}
If f(x)=\dfrac{x}{\sqrt{1+x^{2}}} then fofof(x)=
  • \dfrac{x}{\sqrt{1+3x^{2}}}
  • \dfrac{x}{\sqrt{1-x^{2}}}
  • \dfrac{2x}{\sqrt{1+2x^{2}}}
  • \dfrac{x}{\sqrt{1+x^{2}}}
If A ={x : x^{2}-3x+2= 0}, and R is a universal relation on A, then R is
  • \{(1,1),(2, 2)\}
  • \{(1,1)\}
  • \phi
  • \{(1,1),(1, 2)(2,1),(2,2)\}
Assertion(A):  If X=\left \{ x:-1\leq x\leq 1 \right \}  and  f:X\rightarrow X defined by f(x)=\sin \pi x; \forall x\in A is not invertible function

Reason (R): For a function f to have inverse, it should be a bijection
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true but R is not correct explanation of A
  • A is true but R is false
  • A is false but R is true
If f(x)=\displaystyle \dfrac{x}{\sqrt{1-x^{2}}},g(x)=\displaystyle \dfrac{x}{\sqrt{1+x^{2}}} , then (fog)(x)=       
  • x
  • \dfrac{x}{\sqrt{1+x^{2}}}
  • \sqrt{1+x^{2}}
  • 2x
If f(x)=1+x+x^{2}+x^{3}+\ldots\ldots for \left | x \right |<1  then f^{-1}(x)=
  • \dfrac{x-1}{x+1}
  • \dfrac{x+1}{x}
  • \dfrac{x}{x-1}
  • \dfrac{x-1}{x}
If the function is f:R\rightarrow R,  g:R\rightarrow R are defined as f(x)=2x+3, g(x)=x^{2}+7  and  f[g(x)]=25  then  x=    
  • f(x)
  • \pm 2
  • \pm 3
  • \pm 4
If f(x)=\displaystyle \frac{2^{x}+2^{-x}}{2^{x}-2^{-x}},  then  f^{-1}(x)=
  • \displaystyle\frac{1}{2}\log_{2}\left ( \frac{x-1}{x+1} \right )
  • \displaystyle\frac{1}{2}\log_{2}\left ( \frac{x+1}{x-1} \right )
  • \displaystyle\frac{1}{2}\log_{2}\left ( \frac{x+1}{x-2} \right )
  • \displaystyle\frac{1}{2}\log_{2}\left ( \frac{x-2}{x-1} \right )
If f(x)=\dfrac{x}{\sqrt{1-x^{2}}}, then (fof)(x)=
  • \dfrac{x}{\sqrt{1-x^{2}}}
  • \dfrac{x}{\sqrt{1-2x^{2}}}
  • \dfrac{x}{\sqrt{1-3x^{2}}}
  • x
If f:R\rightarrow R is defined by f(x)=x^{2}-10x+21 then f^{-1}(-3) is
  • \left \{ -4,6 \right \}
  • \left \{ 4,6 \right \}
  • \left \{ -4, 4, 6 \right \}
  • Not Invertible
I: If f:A\rightarrow B is a bijection only then does f have an inverse function
II: The inverse function f:R^{+}\rightarrow R^{+} defined by f(x)=x^{2} is f^{-1}(x)=\sqrt{x}
  • only I is true
  • only II is true
  • both I and II are true
  • neither I nor II true
If f(x)=\sin^{-1}\left \{ 3-(x-6)^{4} \right \}^{1/3}  then f^{-1}(x)=
  • 6+\sqrt[4]{3+\sin^{3}x}
  • 6+\sqrt[4]{3-\sin^{3}x}
  • 6+\sqrt[4]{3+\sin x}
  • 6+\sqrt[4]{3-\sin x}
Which of the following functions defined from (-\infty ,\infty ) to (-\infty ,\infty ) is invertible ?
  • f(x) = \sin (2x+3)
  • f(x) = x^{2} + 4
  • f (x) =x^{3}
  • f (x) = \cos x
lf {f}\left({x}\right)=\sin^{2}{x}+\sin^{2}\left({x}+\displaystyle \dfrac{\pi}{3}\right)+ \cos x \cos \left({x}+\displaystyle \dfrac{\pi}{3}\right) and {g}\left(\displaystyle\dfrac{5}{4}\right)=1, g\left(1\right) = 0 then \left({g}{o}{f}\right)\left({x}\right)=
  • 1
  • 0
  • \sin x
  • Data is insufficient
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers