Processing math: 1%

CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 2 - MCQExams.com

If n(A)=4 and n(B)=6, then the number of surjections from A to B is
  • 46
  • 64
  • 0
  • 24
The number of injections that are possible from A to itself is 720, then n (A) =
  • 5
  • 6
  • 7
  • 8
Let A=\{1,2,3\}, B =\{a, b, c\} and If f=\{(1,a),(2,b),(3,c)\}, g=\{(1,b),(2,a),(3,b)\}, h=\{(1,b)(2,c),(3,a)\} then
  • g and h are injections
  • f and h are injections
  • f and g injections
  • f,g and h are injections
The number of one-one functions that can be defined from A = \left \{ 1,2,3 \right \} to  B = \left \{ a,e,i,o,u \right \} is 
  • 3^{5}
  • 5^{3}
  • {_{}}^{5}P_{3}
  • 5!
The number of non-surjective mappings that can be defined from A = \left \{ 1,4,9,16 \right \}   to  B=\left \{ 2,8,16,32,64 \right \} is
  • 1024
  • 20
  • 505
  • 625
If f:A\rightarrow B  is a constant function which is onto then B is
  • a singleton set
  • a null set
  • an infinite set
  • a finite set
If  f:A\rightarrow B  is a bijection then f^{-1} of = 
  • fof^{-1}
  • f
  • f^{-1}
  • an identity
The number of injections possible from A=\{1,3,5,6\} to B =\{2,8,11\} is
  • 8
  • 64
  • 2^{12}
  • 0
The number of possible surjection from A=\{1,2,3,...n\} to B = \{1,2\} (where n \geq 2) is 62, then n=
  • 5
  • 6
  • 7
  • 8
If f:R\rightarrow R, g:R\rightarrow R are defined by f(x)=x^{2}, g(x)=\cos x  then (gof)(x)=
  • \cos 2x
  • x^{2}\cos x
  • \cos x^{2}
  • \cos^{2} x^{2}
If f:R\rightarrow R  is defined by \displaystyle f(x)={\dfrac{2x+1}{3}}  then f^{-1}(x)=
  • \dfrac{3x-1}{2}
  • \dfrac{x-3}{2}
  • \dfrac{2x-1}{3}
  • \dfrac{x-4}{3}
Let f(x)=\dfrac{Kx}{x+1}(x\neq -1) then the value of K for which (fof)(x)=x is
  • 1
  • -1
  • 2
  • \sqrt{2}
f:\left ( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right )\rightarrow \left ( -\infty ,\infty  \right ) defined by f(x)=1+3x is
  • one-one but not onto
  • onto but not one-one
  • neither one - one nor onto
  • bijective
If f:R\rightarrow R, g:R\rightarrow R are defined by f(x)=4x-1,g(x)=x^{3}+2, then (gof)\left(\dfrac{a+1}{4}\right)= 
  • 43
  • 4a^3-1
  • a^{3}+2
  • 64a^3 - 8a^{2}-1
The function f:(0,\infty )\rightarrow (-\infty ,\infty ) is defined by f(x)=\log_{3} x then f^{-1}(x)=
  • 3^{x}
  • 3^{-x}
  • -3^{x}
  • -3x^{-x}
If f:R\rightarrow R,f(x)=3x-2 then (fof)(x)+2=
  • f(x)
  • 2f(x)
  • 3f(x)
  • -f(x)
If f(x)=2x+1 and g(x)=x^{2}+1 then (go(fof))(2)=
  • 112
  • 122
  • 12
  • 124
If f(x)=\dfrac{1}{x}, g(x)=\sqrt{x}  and  (go\sqrt{f})(16)=
  • 2
  • 1
  • \dfrac{1}{2}
  • 4
If f(x)=x, g(x)=2x^{2}+1 and h(x)=x+1  then  (hogof)(x) is equal to
  • x^{2}+2
  • 2x^{2}+1
  • x^{2}+1
  • 2(x^{2}+1)
If f(x)=\dfrac{e^{x}+e^{-x}}{2}, then the inverse of f(x) is
  • \log_{e}(x+\sqrt{x^{2}+1})
  • \log_{e}\sqrt{x^{2}-1}
  • \log_{e}\left(\dfrac {x+\sqrt{x^{2}-1}}{2}\right)
  • \log_{e}(x+\sqrt{x^{2}-1})
If f:(-\infty ,\infty )\rightarrow (-\infty ,\infty ) is defined by f(x)=5x-6, then f^{-1}(x)=
  • \dfrac{x+5}{6}
  • \dfrac{x-5}{6}
  • \dfrac{x-6}{5}
  • \dfrac{x+6}{5}
If f(x)=\dfrac{5x+6}{7x+9} then f^{-1}(x)=
  • \dfrac{y+6}{7y+9}
  • \dfrac{7y+9}{5y+6}
  • \dfrac{9y-6}{-7y+9}
  • \dfrac{9y-6}{-7y+5}
If f from R into R is defined by f(x)=x^{3}-1, then f^{-1}\left \{ -2,0,7 \right \}=
  • \left \{ -1,1,2 \right \}
  • \left \{ 0,1,2 \right \}
  • \left \{ \pm 1,\pm 2 \right \}
  • \left \{ 0,\pm 2 \right \}
If f(x)=3x-1 and g(x)=5x+6 then (g^{-1}of^{-1})(2)=
  • 10
  • -1
  • 11
  • 12
If f(x)=e^{5x+13}  then f^{-1}(x)=
  • \dfrac{13-\log y}{5}
  • \dfrac{-13+\log y}{5}
  • \dfrac{5+\log y}{13}
  • \dfrac{5-\log y}{13}
If f:[1,\infty )\rightarrow [2,\infty) is given by f(x)=x+\dfrac{1}{x}, then f^{-1}(x)=
  • \dfrac{x+\sqrt{x^{2}-4}}{2}
  • \dfrac{x}{1+x^{2}}
  • \dfrac{x-\sqrt{x^{2}-4}}{2}
  • x+\sqrt{x^{2}-4}
If f:\left \{ 1,2,3,..... \right \}\rightarrow \left \{ 0,\pm 1,\pm 2,..... \right \} is defined by  f(n)=\begin{cases} \dfrac{n}{2} & \text{ if } n  \space is \space even \\-\left (\dfrac{n-1}{2} \right ) & \text{ if } n \space is \space  odd \end{cases} then  f^{-1}(-100) is
  • Function is not invertible.
  • 199
  • 201
  • 200
f:R\rightarrow R is defined by f(x)=x^{2}+4 then f^{-1}(13)=
  • \left \{ -3,3 \right \}
  • \left \{ -2,2 \right \}
  • \left \{ -1,1 \right \}
  • Not invertible
If f(x)=2+x^{3}, then f^{-1}(x) is equal to
  • \sqrt[3]{x}+2
  • \sqrt[3]{x}-2
  • \sqrt[3]{x-2}
  • \sqrt[3]{x+2}
The solution of 8x\equiv 6(mod \  14) is
  • \{8, 6\}
  • \{6,14\}
  • \{6,13\}
  • \{8,14,6\}
If f(x)=(1-x)^{1/2} and g(x)= \ln(x)  then  the  domain  of (gof)(x) is
  • (-\infty ,2)
  • (-1,1)
  • (-\infty ,1]
  • (-\infty ,1)
If f:R^{+}\rightarrow R such that f(x)=\log_{5} x then f^{-1}(x)=
  • \log_{x}10
  • 5^{x}
  • 3^{-x}
  • 3^{1/x}
If f(x)=\dfrac{x+1}{x-1}(x\neq 1) then fofofof(x)=
  • f(x)
  • 2\left ( \dfrac{x+1}{x-1} \right )
  • \dfrac{x-1}{x+1}
  • x
If F(n)=(-1)^{k-1}(n-1), G(n)=n-F(n) then (GoG)(n)= (where k is odd)
  • 1
  • n
  • 2
  • n-1
If f:[1,\infty )\rightarrow B  defined  by the function f(x)=x^{2}-2x+6 is a surjection, then B is equals to
  • [1,\infty )
  • [5,\infty )
  • [6,\infty )
  • [2,\infty )
If f:R\rightarrow R^{+} then \displaystyle f(x)=\left(\dfrac{1}{3}\right)^{x}, then f^{-1}(x)=
  • \displaystyle \left(\dfrac{1}{3}\right)^{-x}
  • 3^{x}
  • \displaystyle \log_{1/3} x
  • \displaystyle \log_{x}\left(\dfrac{1}{3}\right)
If  X =\{1, 2,3,4,5\} and Y =\{1,3,5,7,9\}, determine which of the following sets represent a relation and also a mapping?
  • R_{1}= \{(x,y): y=x+2, x \in Y,y \in Y\}
  • R_{2}=\{(1,1), (1,3), (3,5), (4,7), (5,9)\}
  • R_{3}=\{(1,1), (2,3), (3,5), (3,7), (5,7)\}
  • R_{4}=\{(1,3), (2,5), (4,7), (5,9), (3,1)\}
If f(x)=\dfrac{x}{\sqrt{1+x^{2}}} then fofof(x)=
  • \dfrac{x}{\sqrt{1+3x^{2}}}
  • \dfrac{x}{\sqrt{1-x^{2}}}
  • \dfrac{2x}{\sqrt{1+2x^{2}}}
  • \dfrac{x}{\sqrt{1+x^{2}}}
If A ={x : x^{2}-3x+2= 0}, and R is a universal relation on A, then R is
  • \{(1,1),(2, 2)\}
  • \{(1,1)\}
  • \phi
  • \{(1,1),(1, 2)(2,1),(2,2)\}
Assertion(A):  If X=\left \{ x:-1\leq x\leq 1 \right \}  and  f:X\rightarrow X defined by f(x)=\sin \pi x; \forall x\in A is not invertible function

Reason (R): For a function f to have inverse, it should be a bijection
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true but R is not correct explanation of A
  • A is true but R is false
  • A is false but R is true
If f(x)=\displaystyle \dfrac{x}{\sqrt{1-x^{2}}},g(x)=\displaystyle \dfrac{x}{\sqrt{1+x^{2}}} , then (fog)(x)=       
  • x
  • \dfrac{x}{\sqrt{1+x^{2}}}
  • \sqrt{1+x^{2}}
  • 2x
If f(x)=1+x+x^{2}+x^{3}+\ldots\ldots for \left | x \right |<1  then f^{-1}(x)=
  • \dfrac{x-1}{x+1}
  • \dfrac{x+1}{x}
  • \dfrac{x}{x-1}
  • \dfrac{x-1}{x}
If the function is f:R\rightarrow R,  g:R\rightarrow R are defined as f(x)=2x+3, g(x)=x^{2}+7  and  f[g(x)]=25  then  x=    
  • f(x)
  • \pm 2
  • \pm 3
  • \pm 4
If f(x)=\displaystyle \frac{2^{x}+2^{-x}}{2^{x}-2^{-x}},  then  f^{-1}(x)=
  • \displaystyle\frac{1}{2}\log_{2}\left ( \frac{x-1}{x+1} \right )
  • \displaystyle\frac{1}{2}\log_{2}\left ( \frac{x+1}{x-1} \right )
  • \displaystyle\frac{1}{2}\log_{2}\left ( \frac{x+1}{x-2} \right )
  • \displaystyle\frac{1}{2}\log_{2}\left ( \frac{x-2}{x-1} \right )
If f(x)=\dfrac{x}{\sqrt{1-x^{2}}}, then (fof)(x)=
  • \dfrac{x}{\sqrt{1-x^{2}}}
  • \dfrac{x}{\sqrt{1-2x^{2}}}
  • \dfrac{x}{\sqrt{1-3x^{2}}}
  • x
If f:R\rightarrow R is defined by f(x)=x^{2}-10x+21 then f^{-1}(-3) is
  • \left \{ -4,6 \right \}
  • \left \{ 4,6 \right \}
  • \left \{ -4, 4, 6 \right \}
  • Not Invertible
I: If f:A\rightarrow B is a bijection only then does f have an inverse function
II: The inverse function f:R^{+}\rightarrow R^{+} defined by f(x)=x^{2} is f^{-1}(x)=\sqrt{x}
  • only I is true
  • only II is true
  • both I and II are true
  • neither I nor II true
If f(x)=\sin^{-1}\left \{ 3-(x-6)^{4} \right \}^{1/3}  then f^{-1}(x)=
  • 6+\sqrt[4]{3+\sin^{3}x}
  • 6+\sqrt[4]{3-\sin^{3}x}
  • 6+\sqrt[4]{3+\sin x}
  • 6+\sqrt[4]{3-\sin x}
Which of the following functions defined from (-\infty ,\infty ) to (-\infty ,\infty ) is invertible ?
  • f(x) = \sin (2x+3)
  • f(x) = x^{2} + 4
  • f (x) =x^{3}
  • f (x) = \cos x
lf {f}\left({x}\right)=\sin^{2}{x}+\sin^{2}\left({x}+\displaystyle \dfrac{\pi}{3}\right)+ \cos x \cos \left({x}+\displaystyle \dfrac{\pi}{3}\right) and {g}\left(\displaystyle\dfrac{5}{4}\right)=1, g\left(1\right) = 0 then \left({g}{o}{f}\right)\left({x}\right)=
  • 1
  • 0
  • \sin x
  • Data is insufficient
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers