Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 2 - MCQExams.com
CBSE
Class 12 Commerce Maths
Relations And Functions
Quiz 2
If
n
(
A
)
=
4
and
n
(
B
)
=
6
, then the number of surjections from
A
to
B
is
Report Question
0%
4
6
0%
6
4
0%
0
0%
24
Explanation
n
(
A
)
<
n
(
B
)
∴
Co-domain can never be equal to range.
∴
No of surjections is zero
The number of injections that are possible from
A
to itself is
720
,
then
n
(
A
)
=
Report Question
0%
5
0%
6
0%
7
0%
8
Explanation
first element of
A
in domain can be mapped to
any of the
n
elements of
A
in range.
2
n
d
element of
A
in domain can be mapped to any of
(
n
−
1
)
elements of
A
in range.
∴
Total no of injections possible is
n
×
(
n
−
1
)
×
(
n
−
2
)
.
.
.
×
3
×
2
×
1
=
n
!
∴
n
!
=
720
⇒
n
=
6
Let
A
=
{
1
,
2
,
3
}
,
B
=
{
a
,
b
,
c
}
and If
f
=
{
(
1
,
a
)
,
(
2
,
b
)
,
(
3
,
c
)
}
,
g
=
{
(
1
,
b
)
,
(
2
,
a
)
,
(
3
,
b
)
}
,
h
=
{
(
1
,
b
)
(
2
,
c
)
,
(
3
,
a
)
}
then
Report Question
0%
g
and
h
are injections
0%
f
and
h
are injections
0%
f
and
g
injections
0%
f
,
g
and
h
are injections
Explanation
g
(
1
)
=
g
(
3
)
=
b
⇒
g is not one-one.
domain of
f
=
domain of
h
=
A
.
range of
f
=
range of
h
=
B
n
(
A
)
=
n
(
B
)
=
3
∴
f
and
h
are injections.
The number of one-one functions that can be defined from
A
=
{
1
,
2
,
3
}
to
B
=
{
a
,
e
,
i
,
o
,
u
}
is
Report Question
0%
3
5
0%
5
3
0%
5
P
3
0%
5
!
Explanation
You can correlate this to permutation and combination problems.
We have to arrange 3 people on 5 places.
So total no of permutations
=
5
P
3
The number of non-surjective mappings that can be defined from
A
=
{
1
,
4
,
9
,
16
}
to
B
=
{
2
,
8
,
16
,
32
,
64
}
is
Report Question
0%
1024
0%
20
0%
505
0%
625
Explanation
Here
n
(
B
)
>
n
(
A
)
, no function can be a surjective.
No of functions
=
No of non-surjectives
Any elements of
A
can be mapped to any of
5
elements in
B
So non surjective mapping from
A
to
B
=
5
×
5
×
5
×
5
=
625
If
f
:
A
→
B
is a constant function which is onto then
B
is
Report Question
0%
a singleton set
0%
a null set
0%
an infinite set
0%
a finite set
Explanation
f
(
x
)
is a constant fucntion
⇒
Range of
f
(
x
)
is a singleton set.
For
f
to be an onto function, Co domain
B
should be equal to Range.
∴
B
is a singleton set.
If
f
:
A
→
B
is a bijection then
f
−
1
o
f
=
Report Question
0%
f
o
f
−
1
0%
f
0%
f
−
1
0%
an identity
Explanation
Since
f
is bijective, its inverse will also be bijective.
f
(
x
)
=
y
x
=
f
−
1
(
y
)
f
(
x
)
=
f
−
1
(
y
)
y
=
f
(
f
)
−
1
(
y
)
=
f
(
x
)
=
y
Hence, it is an identity.
The number of injections possible from
A
=
{
1
,
3
,
5
,
6
}
to
B
=
{
2
,
8
,
11
}
is
Report Question
0%
8
0%
64
0%
2
12
0%
0
Explanation
co-domain
n
(
B
)
<
domain
n
(
A
)
There can't be any one-one function from
A
to
B
.
The number of possible surjection from
A
=
{
1
,
2
,
3
,
.
.
.
n
}
to
B
=
{
1
,
2
}
(where
n
≥
2
)
is
62
, then
n
=
Report Question
0%
5
0%
6
0%
7
0%
8
Explanation
Each element in
A
can be mapped onto any of two elements of
B
∴
Total possible functions are
2
n
For the
f
n
′
s
to be surjections , they shouldn't be mapped alone to any of the two elements.
∴
Total no of surjections
=
2
n
−
2
2
n
−
2
=
62
⇒
n
=
6
If
f
:
R
→
R
,
g
:
R
→
R
are defined by
f
(
x
)
=
x
2
,
g
(
x
)
=
cos
x
then
(
g
o
f
)
(
x
)
=
Report Question
0%
cos
2
x
0%
x
2
cos
x
0%
cos
x
2
0%
cos
2
x
2
Explanation
g
o
f
(
x
)
=
g
(
f
(
x
)
)
=
g
(
x
2
)
=
cos
x
2
If
f
:
R
→
R
is defined by
f
(
x
)
=
2
x
+
1
3
then
f
−
1
(
x
)
=
Report Question
0%
3
x
−
1
2
0%
x
−
3
2
0%
2
x
−
1
3
0%
x
−
4
3
Explanation
f
(
x
)
=
2
x
+
1
3
Let
f
(
x
)
=
y
=
2
x
+
1
3
⇒
2
x
+
1
=
3
y
2
x
=
3
y
−
1
x
=
3
y
−
1
2
∴
f
(
x
)
=
y
⇒
f
−
1
(
y
)
=
x
⇒
f
−
1
(
y
)
=
3
y
−
1
2
⇒
f
−
1
(
x
)
=
3
x
−
1
2
Let
f
(
x
)
=
K
x
x
+
1
(
x
≠
−
1
)
then the value of
K
for which
(
f
o
f
)
(
x
)
=
x
is
Report Question
0%
1
0%
−
1
0%
2
0%
√
2
Explanation
f
(
f
(
x
)
)
=
f
(
k
x
x
+
1
)
=
k
(
k
x
x
+
1
)
k
x
x
+
1
=
1
=
k
2
x
(
k
+
1
)
x
+
1
∴
for
f
(
f
(
x
)
)
=
x
⇒
k
+
1
=
0
k
2
=
1
∴
k
=
−
1
f
:
(
−
π
2
,
π
2
)
→
(
−
∞
,
∞
)
defined by
f
(
x
)
=
1
+
3
x
is
Report Question
0%
one-one but not onto
0%
onto but not one-one
0%
neither one - one nor onto
0%
bijective
Explanation
f
(
x
1
)
=
f
(
x
2
)
⇒
1
+
3
x
1
=
1
+
3
x
x
1
=
x
2
∴
f
(
x
1
)
=
f
(
x
2
)
⇒
x
1
=
x
2
∴
f is one-one.
f
lies b/w
(
1
−
3
π
2
,
1
+
3
π
2
)
∴
co-domain
(
−
∞
,
∞
)
is not equal to range
(
1
−
3
π
2
,
1
+
3
π
2
)
⇒
f is not onto.
∴
f is one-one but not onto.
If
f
:
R
→
R
,
g
:
R
→
R
are defined by
f
(
x
)
=
4
x
−
1
,
g
(
x
)
=
x
3
+
2
,
then
(
g
o
f
)
(
a
+
1
4
)
=
Report Question
0%
43
0%
4
a
3
−
1
0%
a
3
+
2
0%
64
a
3
−
8
a
2
−
1
Explanation
g
(
f
(
a
+
1
4
)
)
=
g
(
4
(
a
+
1
4
)
−
1
)
=
g
(
a
)
=
a
3
+
2
The function
f
:
(
0
,
∞
)
→
(
−
∞
,
∞
)
is defined by
f
(
x
)
=
log
3
x
then
f
−
1
(
x
)
=
Report Question
0%
3
x
0%
3
−
x
0%
−
3
x
0%
−
3
x
−
x
Explanation
f
(
x
)
=
log
3
x
f
−
1
:
(
−
∞
,
∞
)
→
(
0
,
∞
)
Let
log
3
x
=
y
=
f
(
x
)
⇒
x
=
3
y
f
(
x
)
=
y
⇒
f
−
1
(
y
)
=
x
=
3
y
∴
f
−
1
(
x
)
=
3
x
If
f
:
R
→
R
,
f
(
x
)
=
3
x
−
2
then
(
f
o
f
)
(
x
)
+
2
=
Report Question
0%
f
(
x
)
0%
2
f
(
x
)
0%
3
f
(
x
)
0%
−
f
(
x
)
Explanation
f
o
f
(
x
)
=
f
(
f
(
x
)
)
=
f
(
3
x
−
2
)
=
3
(
3
x
−
2
)
−
2
=
9
x
−
8
f
o
f
(
x
)
+
2
=
9
x
−
6
=
3
(
3
x
−
2
)
=
3
f
(
x
)
If
f
(
x
)
=
2
x
+
1
and
g
(
x
)
=
x
2
+
1
then
(
g
o
(
f
o
f
)
)
(
2
)
=
Report Question
0%
112
0%
122
0%
12
0%
124
Explanation
(
g
o
(
f
o
f
)
)
(
x
)
=
g
(
f
(
f
(
x
)
)
)
=
g
(
f
(
2
x
+
1
)
)
=
g
(
2
(
2
x
+
1
)
+
1
)
=
g
(
4
x
+
3
)
=
(
4
x
+
3
)
2
+
1
(
g
o
(
f
o
f
)
)
(
2
)
=
(
11
)
2
+
1
=
122
If
f
(
x
)
=
1
x
,
g
(
x
)
=
√
x
and
(
g
o
√
f
)
(
16
)
=
Report Question
0%
2
0%
1
0%
1
2
0%
4
Explanation
√
f
(
x
)
=
1
√
x
g
(
√
f
(
x
)
)
=
g
(
1
√
x
)
=
1
√
√
x
=
1
x
1
4
(
g
o
√
f
)
(
16
)
=
1
(
16
)
1
4
=
1
2
If
f
(
x
)
=
x
,
g
(
x
)
=
2
x
2
+
1
and
h
(
x
)
=
x
+
1
then
(
h
o
g
o
f
)
(
x
)
is equal to
Report Question
0%
x
2
+
2
0%
2
x
2
+
1
0%
x
2
+
1
0%
2
(
x
2
+
1
)
Explanation
Given
f
(
x
)
=
x
,
g
(
x
)
=
2
x
2
+
1
and
h
(
x
)
=
x
+
1
h
o
g
o
f
(
x
)
=
h
(
g
(
f
(
x
)
)
)
=
h
(
g
(
x
)
)
…
…
[
∵
f
(
x
)
=
x
]
=
h
(
2
x
2
+
1
)
…
…
[
∵
g
(
x
)
=
2
x
2
+
1
]
=
2
x
2
+
1
+
1
=
2
x
2
+
2
=
2
(
x
2
+
1
)
∴
h
o
g
o
f
(
x
)
=
2
(
x
2
+
1
)
If
f
(
x
)
=
e
x
+
e
−
x
2
, then the inverse of
f
(
x
)
is
Report Question
0%
log
e
(
x
+
√
x
2
+
1
)
0%
log
e
√
x
2
−
1
0%
log
e
(
x
+
√
x
2
−
1
2
)
0%
log
e
(
x
+
√
x
2
−
1
)
Explanation
Let
f
(
x
)
=
e
x
+
e
−
x
2
=
y
∴
x
=
f
−
1
(
y
)
e
x
+
e
−
x
=
2
y
e
2
x
−
2
y
e
x
+
1
=
0
⇒
e
x
=
2
y
±
√
4
y
2
−
4
2
e
x
=
y
±
√
y
2
−
1
1
Range of
f
is
(
−
∞
,
∞
)
⇒
e
x
=
y
+
√
y
2
−
1
1
As if we take
e
x
=
y
−
√
y
2
−
1
1
, which is always small
∴
x
=
log
e
(
y
+
√
y
2
−
1
1
)
∴
f
−
1
(
x
)
=
log
e
(
x
+
√
x
2
−
1
1
)
If
f
:
(
−
∞
,
∞
)
→
(
−
∞
,
∞
)
is defined by
f
(
x
)
=
5
x
−
6
, then
f
−
1
(
x
)
=
Report Question
0%
x
+
5
6
0%
x
−
5
6
0%
x
−
6
5
0%
x
+
6
5
Explanation
f
(
x
)
=
5
x
−
6
=
y
⇒
5
x
=
y
+
6
x
=
y
+
6
5
∴
f
(
x
)
=
y
⇒
x
=
f
−
1
(
y
)
∴
f
−
1
(
y
)
=
y
+
6
5
If
f
(
x
)
=
5
x
+
6
7
x
+
9
then
f
−
1
(
x
)
=
Report Question
0%
y
+
6
7
y
+
9
0%
7
y
+
9
5
y
+
6
0%
9
y
−
6
−
7
y
+
9
0%
9
y
−
6
−
7
y
+
5
Explanation
Let
f
(
x
)
=
y
=
5
x
+
6
7
x
+
9
7
x
y
+
9
y
=
5
x
+
6
⇒
x
(
7
y
−
5
)
=
6
−
9
y
x
=
9
y
−
6
−
7
y
+
5
x
=
f
−
1
(
y
)
=
9
y
−
6
−
7
y
+
5
If
f
from
R
into
R
is defined by
f
(
x
)
=
x
3
−
1
, then
f
−
1
{
−
2
,
0
,
7
}
=
Report Question
0%
{
−
1
,
1
,
2
}
0%
{
0
,
1
,
2
}
0%
{
±
1
,
±
2
}
0%
{
0
,
±
2
}
Explanation
f
is invertible throughout
R
∴
f
(
x
)
=
x
3
−
1
=
y
⇒
x
=
3
√
y
+
1
=
f
−
1
(
y
)
∴
f
−
1
(
−
2
)
=
−
1
f
−
1
(
0
)
=
1
f
−
1
(
7
)
=
2
∴
f
−
1
{
−
2
,
0
,
7
}
=
{
−
1
,
1
,
2
}
If
f
(
x
)
=
3
x
−
1
and
g
(
x
)
=
5
x
+
6
then
(
g
−
1
o
f
−
1
)
(
2
)
=
Report Question
0%
10
0%
−
1
0%
11
0%
12
Explanation
f
(
x
)
=
3
x
−
1
=
y
⇒
x
=
y
+
1
3
∴
f
−
1
(
y
)
=
y
+
1
3
⇒
f
−
1
(
x
)
=
x
+
1
3
g
(
x
)
=
5
x
+
6
=
z
⇒
x
=
z
−
6
5
g
−
1
(
z
)
=
z
−
6
5
⇒
g
−
1
(
x
)
=
x
−
6
5
g
−
1
(
f
−
1
(
x
)
)
=
g
−
1
(
x
+
1
3
)
=
x
+
1
3
−
6
5
=
x
−
17
15
∴
g
−
1
(
f
−
1
(
2
)
)
=
2
−
17
15
=
−
1
If
f
(
x
)
=
e
5
x
+
13
then
f
−
1
(
x
)
=
Report Question
0%
13
−
log
y
5
0%
−
13
+
log
y
5
0%
5
+
log
y
13
0%
5
−
log
y
13
Explanation
Let
f
(
x
)
=
e
5
x
+
13
=
y
f
(
x
)
=
y
⇒
x
=
f
−
1
(
y
)
5
x
+
13
=
ln
y
5
x
=
−
13
+
log
y
x
=
−
13
+
log
y
5
∴
f
−
1
(
y
)
=
−
13
+
log
y
5
If
f
:
[
1
,
∞
)
→
[
2
,
∞
)
is given by
f
(
x
)
=
x
+
1
x
, then
f
−
1
(
x
)
=
Report Question
0%
x
+
√
x
2
−
4
2
0%
x
1
+
x
2
0%
x
−
√
x
2
−
4
2
0%
x
+
√
x
2
−
4
Explanation
Let
f
(
x
)
=
x
+
1
x
=
y
⇒
x
=
f
−
1
(
y
)
&
x
2
−
y
x
+
1
=
0
Solving
x
2
−
y
x
+
1
, we get
x
2
−
y
x
+
1
=
0
x
=
y
±
√
y
2
−
4
2
∴
f
−
1
=
x
+
√
x
2
−
4
2
∵
f
is defined from
(
1
,
∞
)
→
(
2
,
∞
)
negative part is discarded.
If
f
:
{
1
,
2
,
3
,
.
.
.
.
.
}
→
{
0
,
±
1
,
±
2
,
.
.
.
.
.
}
is defined by
f
(
n
)
=
{
n
2
if
n
i
s
e
v
e
n
−
(
n
−
1
2
)
if
n
i
s
o
d
d
then
f
−
1
(
−
100
)
is
Report Question
0%
Function is not invertible.
0%
199
0%
201
0%
200
Explanation
f
(
n
)
is positive if
n
is even & negative if
n
is odd.
∴
f
−
1
(
−
100
)
=
−
2
x
+
1
=
−
2
(
−
100
)
+
1
=
200
+
1
=
201
f
:
R
→
R
is defined by
f
(
x
)
=
x
2
+
4
then
f
−
1
(
13
)
=
Report Question
0%
{
−
3
,
3
}
0%
{
−
2
,
2
}
0%
{
−
1
,
1
}
0%
Not invertible
Explanation
f
(
x
)
=
x
2
+
4
=
y
⇒
x
2
=
y
−
4
x
=
±
√
y
−
4
∴
f
−
1
(
13
)
=
±
√
13
−
4
=
±
3
f
(
3
)
=
13
&
f
(
−
3
)
=
13
Thus image
13
has two pre-images i.e,
3
and
−
3
∴
f
is not invertible
If
f
(
x
)
=
2
+
x
3
, then
f
−
1
(
x
)
is equal to
Report Question
0%
3
√
x
+
2
0%
3
√
x
−
2
0%
3
√
x
−
2
0%
3
√
x
+
2
Explanation
Let
f
(
x
)
=
y
⇒
2
+
x
3
=
y
⇒
x
3
=
y
−
2
⇒
x
=
(
y
−
2
)
1
/
3
∴
f
−
1
(
y
)
=
x
=
(
y
−
2
)
1
/
3
∴
f
−
1
(
x
)
=
(
x
−
2
)
1
/
3
The solution of
8
x
≡
6
(
m
o
d
14
)
is
Report Question
0%
{
8
,
6
}
0%
{
6
,
14
}
0%
{
6
,
13
}
0%
{
8
,
14
,
6
}
Explanation
Since,
8
x
≡
6
(
m
o
d
14
)
i.e.,
8
x
−
6
=
14
k
for
k
∈
I
.
⇒
8
x
=
14
k
+
6
⇒
4
x
=
7
k
+
3
The values
6
and
13
satisfy this equation (when
k
=
3
and
k
=
7
),
while
8
,
14
and
16
do not.
If
f
(
x
)
=
(
1
−
x
)
1
/
2
and
g
(
x
)
=
ln
(
x
)
then the domain of
(
g
o
f
)
(
x
)
is
Report Question
0%
(
−
∞
,
2
)
0%
(
−
1
,
1
)
0%
(
−
∞
,
1
]
0%
(
−
∞
,
1
)
Explanation
Given
f
(
x
)
=
(
1
−
x
)
1
2
and
g
(
x
)
=
l
n
(
x
)
g
o
f
(
x
)
=
g
(
f
(
x
)
)
=
ln
(
1
−
x
)
1
/
2
=
1
2
ln
(
1
−
x
)
∴
For the composite function to be defined
1
−
x
>
0
x
<
1
∴
Domain is
(
−
∞
,
1
)
If
f
:
R
+
→
R
such that
f
(
x
)
=
log
5
x
then
f
−
1
(
x
)
=
Report Question
0%
log
x
10
0%
5
x
0%
3
−
x
0%
3
1
/
x
Explanation
f
(
x
)
=
y
⇒
log
5
x
=
y
⇒
log
x
log
5
=
y
⇒
log
x
=
y
log
5
⇒
e
log
x
=
e
y
log
5
⇒
e
log
x
=
e
log
5
y
[
∵
a
log
x
=
log
x
a
]
⇒
x
=
5
y
=
f
−
1
(
y
)
∴
f
−
1
(
x
)
=
5
x
If
f
(
x
)
=
x
+
1
x
−
1
(
x
≠
1
)
then
f
o
f
o
f
o
f
(
x
)
=
Report Question
0%
f
(
x
)
0%
2
(
x
+
1
x
−
1
)
0%
x
−
1
x
+
1
0%
x
Explanation
f
o
f
o
f
o
f
(
x
)
=
f
o
f
o
f
(
x
+
1
x
−
1
)
=
f
o
f
(
x
+
1
x
−
1
+
1
x
+
1
x
−
1
−
1
)
=
f
o
f
(
2
x
2
)
=
f
o
f
(
x
)
=
f
(
x
+
1
x
−
1
)
=
x
If
F
(
n
)
=
(
−
1
)
k
−
1
(
n
−
1
)
,
G
(
n
)
=
n
−
F
(
n
)
then
(
G
o
G
)
(
n
)
=
(where
k
is odd)
Report Question
0%
1
0%
n
0%
2
0%
n
−
1
Explanation
G
(
n
)
=
n
−
(
−
1
)
k
−
1
(
n
−
1
)
G
o
G
(
n
)
=
G
(
n
−
(
−
1
)
k
−
1
(
n
−
1
)
)
=
n
−
(
−
1
)
k
−
1
(
n
−
1
)
−
(
−
1
)
k
−
1
(
(
n
−
1
)
−
(
−
1
)
k
−
1
(
n
−
1
)
)
=
n
−
(
n
−
1
)
=
1
If
f
:
[
1
,
∞
)
→
B
defined by the function
f
(
x
)
=
x
2
−
2
x
+
6
is a surjection, then
B
is equals to
Report Question
0%
[
1
,
∞
)
0%
[
5
,
∞
)
0%
[
6
,
∞
)
0%
[
2
,
∞
)
Explanation
f
(
x
)
=
x
2
−
2
x
+
6
is a surjection.
So the range of
f
(
x
)
will be equal to its codomain.
f
(
x
)
=
x
2
−
2
x
+
6
f
1
(
x
)
=
2
x
−
2
=
2
(
x
−
1
)
f
(
x
)
will be increasing when
x
⩾
.
\therefore f(1)=1-2+6
=5
\therefore B=[5, \infty)
If
f:R\rightarrow R^{+}
then
\displaystyle f(x)=\left(\dfrac{1}{3}\right)^{x}
, then
f^{-1}(x)=
Report Question
0%
\displaystyle \left(\dfrac{1}{3}\right)^{-x}
0%
3^{x}
0%
\displaystyle \log_{1/3}
x
0%
\displaystyle \log_{x}\left(\dfrac{1}{3}\right)
Explanation
Let
\displaystyle f(x)=\left(\frac{1}{3}\right)^{x}=y
Taking logarithm on both sides,
\displaystyle x\log \frac{1}{3}=\log y
\displaystyle \Rightarrow x=\frac{\log y}{\log \frac{1}{3}}
\displaystyle \Rightarrow x=\log _ { 1/3 } y\quad \quad \quad \left[ \because \frac { \log b }{ \log a } =\log _{ a }{ b } \right]
\therefore f^{-1}\left ( x \right )=\log _{1/3}x
If
X =\{1, 2,3,4,5\}
and
Y =\{1,3,5,7,9\}
, determine which of the following sets represent a relation and also a mapping?
Report Question
0%
R_{1}= \{(x,y)
:
y=x+2, x \in Y,y \in Y\}
0%
R_{2}=\{(1,1), (1,3), (3,5), (4,7), (5,9)\}
0%
R_{3}=\{(1,1), (2,3), (3,5), (3,7), (5,7)\}
0%
R_{4}=\{(1,3), (2,5), (4,7), (5,9), (3,1)\}
Explanation
Here we will check all options one by one:
Option A:
R_1 = \{(x,y): y= x+2, x\in X, y\in Y\}
\implies \mathrm{R}_{1}=\{(1,3),(2, 4),(3,5),(4,6),(5,7)\}
Since
4
amd
6
are the images of
2
and
4
respectively but
4
and
6
do not belong to
Y
\therefore (2, 4),(4,6)\not\in X \times Y
Hence
R_{1}
is not a relation as well as not a mapping.
Option B:
R_{2}
: It is a relation but not a mapping because the element
1
has two different images.
Option C:
R_{2}
: It is a relation but not a mapping because the element
3
has two different images.
Option D:
R_{4}
: It is both a relation and a mapping because every element in
X
is mapped to the elements in
Y
. Also, every element of
X
has a one and only one image in
Y
and every element in
Y
has its pre-image in
X
. Hence, it is also one-one and onto mapping and hence it is a bijection.
If
f(x)=\dfrac{x}{\sqrt{1+x^{2}}}
then
fofof(x)=
Report Question
0%
\dfrac{x}{\sqrt{1+3x^{2}}}
0%
\dfrac{x}{\sqrt{1-x^{2}}}
0%
\dfrac{2x}{\sqrt{1+2x^{2}}}
0%
\dfrac{x}{\sqrt{1+x^{2}}}
Explanation
fofof\left(x\right)=fof\left(\dfrac{x}{\sqrt{1+x^{2}}}\right)
=f\left(\dfrac{\dfrac{x}{\sqrt{1+x^{2}}}}{\sqrt{1+\dfrac{x^{2}}{1+x^{2}}}}\right)
=f\left(\dfrac{x}{\sqrt{1+2x^{2}}}\right)
=\left(\dfrac{\dfrac{x}{\sqrt{1+2x^{2}}}}{\sqrt{1+\dfrac{x^{2}}{1+2x^{2}}}}\right)
=\dfrac{x}{\sqrt{1+3x^{2}}}
If A
=
{
x : x^{2}-3x+2= 0
}, and
R
is a universal relation on
A
, then
R
is
Report Question
0%
\{(1,1),(2, 2)\}
0%
\{(1,1)\}
0%
\phi
0%
\{(1,1),(1, 2)(2,1),(2,2)\}
Explanation
Consider,
x^2-3x+2=0
\implies x^2-2x-x+2=0
\implies (x-2)(x-1)=0
\implies x=1,2
\therefore A=\{1,2\}
Also R is universal relation on set A, then every element of set A is related every other element of A
So
R= \{(1,1), (1,2), (2,1), (2,2)\}
.
Assertion(A):
If
X=\left \{ x:-1\leq x\leq 1 \right \}
and
f:X\rightarrow X
defined by
f(x)=\sin \pi x; \forall x\in A
is not invertible function
Reason (R):
For a function
f
to have inverse, it should be a bijection
Report Question
0%
Both A and R are true and R is the correct explanation of A
0%
Both A and R are true but R is not correct explanation of A
0%
A is true but R is false
0%
A is false but R is true
Explanation
f(-\pi )=f(0)=f(\pi )=0
\therefore f
is not a bijection
\therefore \sin\pi x
is not invertible.
If
f(x)=\displaystyle \dfrac{x}{\sqrt{1-x^{2}}},g(x)=\displaystyle \dfrac{x}{\sqrt{1+x^{2}}}
, then
(fog)(x)=
Report Question
0%
x
0%
\dfrac{x}{\sqrt{1+x^{2}}}
0%
\sqrt{1+x^{2}}
0%
2x
Explanation
fog\left(x\right)=f\left(g\left(x\right)\right)
\displaystyle =f\left(\dfrac{x}{\sqrt{1+x^{2}}}\right)
\displaystyle =\dfrac{\dfrac{x}{\sqrt{1+x^{2}}}}{\sqrt{1-\dfrac{x^{2}}{1+x^{2}}}}=x
If
f(x)=1+x+x^{2}+x^{3}+\ldots\ldots
for
\left | x \right |<1
then
f^{-1}(x)=
Report Question
0%
\dfrac{x-1}{x+1}
0%
\dfrac{x+1}{x}
0%
\dfrac{x}{x-1}
0%
\dfrac{x-1}{x}
Explanation
f(x)=1+x+x^{2}+\ldots\ldots
=\dfrac{1}{1-x}
Let
y=\dfrac{1}{1-x}=f(x)
1-x=\dfrac{1}{y}
x=1-\dfrac{1}{y}=\dfrac{y-1}{y}
But
x=f^{-1}(y)=\dfrac{y-1}{y}
If the function is
f:R\rightarrow R, g:R\rightarrow R
are defined as
f(x)=2x+3, g(x)=x^{2}+7
and
f[g(x)]=25
then
x=
Report Question
0%
f(x)
0%
\pm 2
0%
\pm 3
0%
\pm 4
Explanation
f(g(x))=f(x^{2}+7) =25
=2(x^{2}+7)+3
=2x^{2}+17
\Rightarrow 2x^{2}=8
x^{2}=4 \Rightarrow x=\pm 2
If
f(x)=\displaystyle \frac{2^{x}+2^{-x}}{2^{x}-2^{-x}}
, then
f^{-1}(x)=
Report Question
0%
\displaystyle\frac{1}{2}\log_{2}\left ( \frac{x-1}{x+1} \right )
0%
\displaystyle\frac{1}{2}\log_{2}\left ( \frac{x+1}{x-1} \right )
0%
\displaystyle\frac{1}{2}\log_{2}\left ( \frac{x+1}{x-2} \right )
0%
\displaystyle\frac{1}{2}\log_{2}\left ( \frac{x-2}{x-1} \right )
Explanation
Let
f\left(x\right)=y=\displaystyle \frac{2^{x}+2^{-x}}{2^{x}-2^{-x}}
\Rightarrow 2^{x}\left(y-1\right)=2^{-x}\left(1+y\right)
2^{2x}=\displaystyle\frac{y+1}{y-1}
\displaystyle 2x=\log_{2}\left(\frac{y+1}{y-1}\right)
\Rightarrow \displaystyle x=f^{-1}\left(y\right)=\frac{1}{2}\log_{2}\left(\frac{y+1}{y-1}\right)
So,
\displaystyle f^{-1}x=\frac{1}{2}\log_{2}\left(\frac{x+1}{x-1}\right)
If
f(x)=\dfrac{x}{\sqrt{1-x^{2}}}
, then
(fof)(x)=
Report Question
0%
\dfrac{x}{\sqrt{1-x^{2}}}
0%
\dfrac{x}{\sqrt{1-2x^{2}}}
0%
\dfrac{x}{\sqrt{1-3x^{2}}}
0%
x
Explanation
fof\left ( x \right )=f\left ( f\left ( x \right ) \right )=\left ( x/\sqrt{1-x^{2}} \right )/\left ( \sqrt{1-\left ( x^{2}/\left ( 1-x^{2} \right ) \right )} \right )
=\left ( x/\sqrt{1-x^{2}} \right )/\sqrt{\left ( 1-x^{2}-x^{2} \right )/\left ( 1-x^{2} \right )}
=\left ( x/\sqrt{1-x^{2}} \right )/\left ( \sqrt{1-2 x^{2}} /\sqrt{1-x^{2}}\right)
=x/\sqrt{1-2x^{2}}
If
f:R\rightarrow R
is defined by
f(x)=x^{2}-10x+21
then
f^{-1}(-3)
is
Report Question
0%
\left \{ -4,6 \right \}
0%
\left \{ 4,6 \right \}
0%
\left \{ -4, 4, 6 \right \}
0%
Not Invertible
Explanation
Let
f^{-1}(-3)=t
\Rightarrow f(t)=-3
t^{2}-10t+21=-3
t^{2}-10t+24=0
t^{2}-6t-4t+24=0
t(t-6)-4(t-6)=0
\Rightarrow t=6,4 = f^{-1}(-3)
I: If
f:A\rightarrow B
is a bijection only then does
f
have an inverse function
II: The inverse function
f:R^{+}\rightarrow R^{+}
defined by
f(x)=x^{2}
is
f^{-1}(x)=\sqrt{x}
Report Question
0%
only I is true
0%
only II is true
0%
both I and II are true
0%
neither I nor II true
Explanation
f
is a bijection
\Rightarrow
f
is one one and onto.
\therefore
there exists on inverse value for every value in co-domain.
\therefore
f
is invertible if and only if
f
is a bijection
f:R^{+}\rightarrow R^{+} ; f(x)=x^{2}=y
\Rightarrow x=\sqrt{y}=f^{-1}(y)
If
f(x)=\sin^{-1}\left \{ 3-(x-6)^{4} \right \}^{1/3}
then
f^{-1}(x)=
Report Question
0%
6+\sqrt[4]{3+\sin^{3}x}
0%
6+\sqrt[4]{3-\sin^{3}x}
0%
6+\sqrt[4]{3+\sin x}
0%
6+\sqrt[4]{3-\sin x}
Explanation
Let
f(x)=y=\sin^{-1}(3-(x-6)^{4})^{\frac{1}{3}}
\sin y=(3-(x-6)^{4})^{\frac{1}{3}}
\sin^{3}y=3-(x-6)^{4}
(x-6)^{4}=3-\sin^{3}y
x-6=(3-\sin^{3}y)^{\frac{-1}{4}}
x=(3-\sin^{3}y)^{\frac{1}{4}}+6
x=f^{-1}(y)=(3-\sin^{3}y)^{\frac{1}{4}}+6.
Which of the following functions defined from
(-\infty ,\infty )
to
(-\infty ,\infty )
is invertible ?
Report Question
0%
f(x) = \sin (2x+3)
0%
f(x) = x^{2} + 4
0%
f (x) =x^{3}
0%
f (x) = \cos x
Explanation
f(x)=\sin(2x+3)
lies only from
[-1,1]
and hence is not onto.
So,
f(x)
is not bijective
\therefore
it is not invertible
f(x)=x^{2}+4
is always positive and so not onto.
So,
f(x)
is not bijective
\therefore
It is also not invertible.
f(x)=x^{3}
varies from
(-\infty ,\infty )
as
x
varies from
(-\infty ,\infty )
So,
f(x)
is bijective
\therefore
It is invertible.
f(x)=\cos x
always lies between
[-1,1]
and so is into function.
So,
f(x)
is not bijective
Hence, not invertible.
lf
{f}\left({x}\right)=\sin^{2}{x}+\sin^{2}\left({x}+\displaystyle \dfrac{\pi}{3}\right)+ \cos x \cos \left({x}+\displaystyle \dfrac{\pi}{3}\right)
and
{g}\left(\displaystyle\dfrac{5}{4}\right)=1
,
g\left(1\right) = 0
then
\left({g}{o}{f}\right)\left({x}\right)=
Report Question
0%
1
0%
0
0%
\sin x
0%
Data is insufficient
Explanation
\displaystyle {f}\left({x}\right)=\sin^{2}{x}+\left(\sin{x}\cos\frac{\pi}{3}+ \cos{x} \displaystyle \sin\frac{\pi}{3}\right)^{2}+ {c}{o}{s} {x}\left(\displaystyle \cos {x}\cos\frac{\pi}{3}-\sin {x}\sin\frac{\pi}{3}\right)
\displaystyle =\sin ^{ 2 }{ x } +{ \left[ \frac { \sin{ x } }{ 2 } +\frac { \sqrt { 3 } \cos{ x } }{ 2 } \right] }^{ 2 }+\frac { \cos^{ 2 }{ x } }{ 2 } -\frac { \sqrt { 3 } }{ 2 } \cos x \sin x
\displaystyle =\sin ^{ 2 }{ x } +\frac { \sin ^{ 2 }{ x } }{ 4 } +\frac { 3 }{ 4 } \cos ^{ 2 }{ x } +\frac { \sqrt { 3 } }{ 2 } \sin x\cos{ x }+\frac { \cos ^{ 2 }{ x } }{ 2 } -\frac { \sqrt { 3 } }{ 2 } \sin { x\cos { x } }
=\displaystyle \frac{5}{4}\left(\sin^{2}{x}+\cos^{2}{x}\right)=\frac{5}{4}
\displaystyle \therefore
[{g}{o}{f}]\left({x}\right)={g}[{f}\left({x}\right)]={g}\left(\displaystyle \frac{5}{4}\right)=1
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page