Processing math: 1%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 2 - MCQExams.com
CBSE
Class 12 Commerce Maths
Relations And Functions
Quiz 2
If
n
(
A
)
=
4
and
n
(
B
)
=
6
, then the number of surjections from
A
to
B
is
Report Question
0%
4
6
0%
6
4
0%
0
0%
24
Explanation
n
(
A
)
<
n
(
B
)
∴
Co-domain can never be equal to range.
\therefore
No of surjections is zero
The number of injections that are possible from
A
to itself is
720,
then
n (A) =
Report Question
0%
5
0%
6
0%
7
0%
8
Explanation
first element of
A
in domain can be mapped to
any of the
n
elements of
A
in range.
2^{nd}
element of
A
in domain can be mapped to any of
(n-1)
elements of
A
in range.
\therefore
Total no of injections possible is
n\times (n-1)\times (n-2)...\times 3\times 2\times 1=n!
\therefore n!=720
\Rightarrow n=6
Let
A=\{1,2,3\}, B =\{a, b, c\}
and If
f=\{(1,a),(2,b),(3,c)\}, g=\{(1,b),(2,a),(3,b)\}, h=\{(1,b)(2,c),(3,a)\}
then
Report Question
0%
g
and
h
are injections
0%
f
and
h
are injections
0%
f
and
g
injections
0%
f,g
and
h
are injections
Explanation
g(1)=g(3)=b \Rightarrow
g is not one-one.
domain of
f =
domain of
h = A.
range of
f =
range of
h = B
n(A)=n(B)=3
\therefore f
and
h
are injections.
The number of one-one functions that can be defined from
A = \left \{ 1,2,3 \right \}
to
B = \left \{ a,e,i,o,u \right \}
is
Report Question
0%
3^{5}
0%
5^{3}
0%
{_{}}^{5}P_{3}
0%
5!
Explanation
You can correlate this to permutation and combination problems.
We have to arrange 3 people on 5 places.
So total no of permutations
={_{}}^{5}P_{3}
The number of non-surjective mappings that can be defined from
A = \left \{ 1,4,9,16 \right \}
to
B=\left \{ 2,8,16,32,64 \right \}
is
Report Question
0%
1024
0%
20
0%
505
0%
625
Explanation
Here
n(B)>n(A)
, no function can be a surjective.
No of functions
=
No of non-surjectives
Any elements of
A
can be mapped to any of
5
elements in
B
So non surjective mapping from
A
to
B
=5\times5\times5\times5
=625
If
f:A\rightarrow B
is a constant function which is onto then
B
is
Report Question
0%
a singleton set
0%
a null set
0%
an infinite set
0%
a finite set
Explanation
f(x)
is a constant fucntion
\Rightarrow
Range of
f(x)
is a singleton set.
For
f
to be an onto function, Co domain
B
should be equal to Range.
\therefore B
is a singleton set.
If
f:A\rightarrow B
is a bijection then
f^{-1} of =
Report Question
0%
fof^{-1}
0%
f
0%
f^{-1}
0%
an identity
Explanation
Since
f
is bijective, its inverse will also be bijective.
f(x)=y
x=f^{-1}(y)
f(x)=f^{-1}(y)
y=f(f)^{-1}(y)=f(x)=y
Hence, it is an identity.
The number of injections possible from
A=\{1,3,5,6\}
to
B =\{2,8,11\}
is
Report Question
0%
8
0%
64
0%
2^{12}
0%
0
Explanation
co-domain
n(B) <
domain
n(A)
There can't be any one-one function from
A
to
B.
The number of possible surjection from
A=\{1,2,3,...n\}
to
B = \{1,2\}
(where
n \geq 2)
is
62
, then
n=
Report Question
0%
5
0%
6
0%
7
0%
8
Explanation
Each element in
A
can be mapped onto any of two elements of
B
\therefore
Total possible functions are
2^{n}
For the
f^{{n}'s}
to be surjections , they shouldn't be mapped alone to any of the two elements.
\therefore
Total no of surjections
= 2^{n}-2
2^{n}-2=62
\Rightarrow n=6
If
f:R\rightarrow R, g:R\rightarrow R
are defined by
f(x)=x^{2}, g(x)=\cos x
then
(gof)(x)=
Report Question
0%
\cos 2x
0%
x^{2}\cos x
0%
\cos x^{2}
0%
\cos^{2} x^{2}
Explanation
gof\left ( x \right )=g\left ( f\left ( x \right ) \right )=g\left ( x^{2} \right )
=\cos x^{2}
If
f:R\rightarrow R
is defined by
\displaystyle f(x)={\dfrac{2x+1}{3}}
then
f^{-1}(x)=
Report Question
0%
\dfrac{3x-1}{2}
0%
\dfrac{x-3}{2}
0%
\dfrac{2x-1}{3}
0%
\dfrac{x-4}{3}
Explanation
f\left ( x \right )=\dfrac{2x+1}{3}
Let
f\left ( x \right )=y=\dfrac{2x+1}{3}
\Rightarrow 2x+1=3y
2x=3y-1
x=\dfrac{3y-1}{2}
\therefore f\left ( x \right )=y\Rightarrow f^{-1}\left ( y \right )=x
\Rightarrow f^{-1}\left ( y \right )=\dfrac{3y-1}{2}
\Rightarrow f^{-1}\left ( x \right )=\dfrac{3x-1}{2}
Let
f(x)=\dfrac{Kx}{x+1}(x\neq -1)
then the value of
K
for which
(fof)(x)=x
is
Report Question
0%
1
0%
-1
0%
2
0%
\sqrt{2}
Explanation
f\left ( f\left ( x \right ) \right )=f\left ( \dfrac{kx}{x+1} \right )
=\dfrac{k\left ( \dfrac{kx}{x+1} \right )}{\dfrac{kx}{x+1}=1}=\dfrac{k^{2}x}{\left ( k+1 \right )x+1}
\therefore
for
f\left ( f\left ( x \right ) \right )=x
\Rightarrow k+1=0
k^{2}=1
\therefore k=-1
f:\left ( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right )\rightarrow \left ( -\infty ,\infty \right )
defined by
f(x)=1+3x
is
Report Question
0%
one-one but not onto
0%
onto but not one-one
0%
neither one - one nor onto
0%
bijective
Explanation
f(x_{1})=f(x_{2}) \Rightarrow 1+3x_{1}=1+3x
x_{1}=x_{2}
\therefore f(x_{1})=f(x_{2})\Rightarrow x_{1}=x_{2}
\therefore
f is one-one.
f
lies b/w
(1-\dfrac{3\pi }{2},\dfrac{1+3\pi }{2})
\therefore
co-domain
(-\infty ,\infty )
is not equal to range
(\dfrac{1-3\pi }{2},\dfrac{1+3\pi }{2})
\Rightarrow
f is not onto.
\therefore
f is one-one but not onto.
If
f:R\rightarrow R, g:R\rightarrow R
are defined by
f(x)=4x-1,g(x)=x^{3}+2,
then
(gof)\left(\dfrac{a+1}{4}\right)=
Report Question
0%
43
0%
4a^3-1
0%
a^{3}+2
0%
64a^3 - 8a^{2}-1
Explanation
g\left ( f\left ( \dfrac{a+1}{4} \right ) \right )=g\left ( 4\left ( \dfrac{a+1}{4} \right )-1 \right )
=g\left ( a \right )
=a^{3}+2
The function
f:(0,\infty )\rightarrow (-\infty ,\infty )
is defined by
f(x)=\log_{3} x
then
f^{-1}(x)=
Report Question
0%
3^{x}
0%
3^{-x}
0%
-3^{x}
0%
-3x^{-x}
Explanation
f\left ( x \right )=\log _{3}x
f^{-1}:\left ( -\infty ,\infty \right )\rightarrow \left ( 0, \infty \right )
Let
\log _{3}x=y=f\left ( x \right )
\Rightarrow x=3^{y}
f\left ( x \right )=y\Rightarrow f^{-1}\left ( y \right )=x=3^{y}
\therefore f^{-1}\left ( x \right )=3^{x}
If
f:R\rightarrow R,f(x)=3x-2
then
(fof)(x)+2=
Report Question
0%
f(x)
0%
2f(x)
0%
3f(x)
0%
-f(x)
Explanation
fof (x)=f(f(x))
=f(3x-2)
=3(3x-2)-2
=9x-8
fof(x)+2=9x-6=3(3x-2)
=3f(x)
If
f(x)=2x+1
and
g(x)=x^{2}+1
then
(go(fof))(2)=
Report Question
0%
112
0%
122
0%
12
0%
124
Explanation
(go(fof))\left( x \right) =g\left( f\left( f\left( x \right) \right) \right)
=g\left ( f\left ( 2x+1 \right ) \right )
=g\left ( 2\left ( 2x+1 \right )+1 \right )
=g\left ( 4x+3 \right )
=\left ( 4x+3 \right )^{2}+1
(go(fof))\left ( 2 \right )=\left ( 11 \right )^{2}+1=122
If
f(x)=\dfrac{1}{x}, g(x)=\sqrt{x}
and
(go\sqrt{f})(16)=
Report Question
0%
2
0%
1
0%
\dfrac{1}{2}
0%
4
Explanation
\sqrt{f\left ( x \right )}=\dfrac{1}{\sqrt{x}}
g\left ( \sqrt{f\left ( x \right )} \right )=g\left ( \dfrac{1}{\sqrt{x}} \right )=\dfrac{1}{\sqrt{\sqrt{x}}}=\dfrac{1}{x^{\frac{1}{4}}}
\left ( go\sqrt{f} \right )(16)=\dfrac{1}{\left ( 16 \right )^{\dfrac{1}{4}}}=\dfrac{1}{2}
If
f(x)=x, g(x)=2x^{2}+1
and
h(x)=x+1
then
(hogof)(x)
is equal to
Report Question
0%
x^{2}+2
0%
2x^{2}+1
0%
x^{2}+1
0%
2(x^{2}+1)
Explanation
Given
f(x)=x, g(x)=2x^{2}+1
and
h(x)=x+1
hogof(x)
=h(g(f(x)))
=h\left ( g\left ( x \right ) \right )\dots\dots \left[ \because f\left ( x \right )=x \right ]
=h\left ( 2x^{2}+1 \right )\dots\dots\left [ \because g\left ( x \right )=2x^{2}+1 \right ]
=2x^{2}+1+1
=2x^2+2
=2\left (x ^{2} +1\right )
\therefore hogof(x)=2(x^2+1)
If
f(x)=\dfrac{e^{x}+e^{-x}}{2}
, then the inverse of
f(x)
is
Report Question
0%
\log_{e}(x+\sqrt{x^{2}+1})
0%
\log_{e}\sqrt{x^{2}-1}
0%
\log_{e}\left(\dfrac {x+\sqrt{x^{2}-1}}{2}\right)
0%
\log_{e}(x+\sqrt{x^{2}-1})
Explanation
Let
f\left ( x \right )=\dfrac{e^{x}+e^{-x}}{2}=y
\therefore x=f^{-1}\left ( y \right )
e^{x}+e^{-x}=2y
e^{2x}-2y e^{x}+1=0
\Rightarrow e^{x}=\dfrac{2y \pm \sqrt{4y^{2}-4}}{2}
e^{x}=\dfrac{y\pm \sqrt{y^{2}-1}}{1}
Range of
f
is
\left ( -\infty ,\infty \right )\Rightarrow e^{x}=\dfrac{y+\sqrt{y^{2}-1}}{1}
As if we take
e^{x}=\dfrac{y-\sqrt{y^{2}-1}}{1}
, which is always small
\therefore x=\log _{e}\left ( \dfrac{y+\sqrt{y^{2}-1}}{1} \right )
\therefore f^{-1}\left ( x \right )=\log_{e}\left ( \dfrac{x+\sqrt{x^{2}-1}}{1} \right )
If
f:(-\infty ,\infty )\rightarrow (-\infty ,\infty )
is defined by
f(x)=5x-6
, then
f^{-1}(x)=
Report Question
0%
\dfrac{x+5}{6}
0%
\dfrac{x-5}{6}
0%
\dfrac{x-6}{5}
0%
\dfrac{x+6}{5}
Explanation
f(x)=5x-6=y
\Rightarrow 5x=y+6
x=\dfrac{y+6}{5}
\therefore f\left ( x \right )=y\Rightarrow x=f^{-1}\left ( y \right )
\therefore f^{-1}\left ( y \right )=\dfrac{y+6}{5}
If
f(x)=\dfrac{5x+6}{7x+9}
then
f^{-1}(x)=
Report Question
0%
\dfrac{y+6}{7y+9}
0%
\dfrac{7y+9}{5y+6}
0%
\dfrac{9y-6}{-7y+9}
0%
\dfrac{9y-6}{-7y+5}
Explanation
Let
f\left ( x \right )=y=\dfrac{5x+6}{7x+9}
7xy+9y=5x+6
\Rightarrow x\left ( 7y-5 \right )=6-9y
x=\dfrac{9y-6}{-7y+5}
x=f^{-1}\left ( y \right )=\dfrac{9y-6}{-7y+5}
If
f
from
R
into
R
is defined by
f(x)=x^{3}-1
, then
f^{-1}\left \{ -2,0,7 \right \}=
Report Question
0%
\left \{ -1,1,2 \right \}
0%
\left \{ 0,1,2 \right \}
0%
\left \{ \pm 1,\pm 2 \right \}
0%
\left \{ 0,\pm 2 \right \}
Explanation
f
is invertible throughout
R
\therefore f\left ( x \right )=x^{3}-1=y
\Rightarrow x=\sqrt[3]{y+1}=f^{-1}\left ( y \right )
\therefore f^{-1}\left ( -2 \right )=-1
f^{-1}\left ( 0 \right )=1
f^{-1}\left ( 7 \right )=2
\therefore f^{-1}\left \{ -2,0,7 \right \}=\left \{ -1,1,2 \right \}
If
f(x)=3x-1
and
g(x)=5x+6
then
(g^{-1}of^{-1})(2)=
Report Question
0%
10
0%
-1
0%
11
0%
12
Explanation
f\left ( x \right )=3x-1=y
\Rightarrow x=\displaystyle\frac{y+1}{3}
\therefore \displaystyle f^{-1}\left ( y \right )=\frac{y+1}{3}
\Rightarrow \displaystyle f^{-1}\left ( x \right )=\frac{x+1}{3}
g\left ( x \right )=5x+6=z
\Rightarrow x=\displaystyle \frac{z-6}{5}
g^{-1}\left ( z \right )=\displaystyle \frac{z-6}{5}
\Rightarrow g^{-1}\left ( x \right )=\displaystyle \frac{x-6}{5}
\displaystyle g^{-1}\left ( f^{-1} \left ( x \right )\right )=g^{-1}\left ( \frac{x+1}{3} \right )
=\displaystyle \frac{\dfrac{x+1}{3}-6}{5}
\displaystyle =\frac{x-17}{15}
\displaystyle \therefore g^{-1}\left ( f^{-1}\left ( 2 \right ) \right )=\frac{2-17}{15}=-1
If
f(x)=e^{5x+13}
then
f^{-1}(x)=
Report Question
0%
\dfrac{13-\log y}{5}
0%
\dfrac{-13+\log y}{5}
0%
\dfrac{5+\log y}{13}
0%
\dfrac{5-\log y}{13}
Explanation
Let
f\left ( x \right )=e^{5x+13}=y
f\left ( x \right )=y\Rightarrow x=f^{-1}\left ( y \right )
5x+13=\ln y
5 x=-13+\log y
x=\dfrac{-13+\log y}{5}
\therefore f^{-1}\left ( y \right )=\dfrac{-13+\log y}{5}
If
f:[1,\infty )\rightarrow [2,\infty)
is given by
f(x)=x+\dfrac{1}{x}
, then
f^{-1}(x)=
Report Question
0%
\dfrac{x+\sqrt{x^{2}-4}}{2}
0%
\dfrac{x}{1+x^{2}}
0%
\dfrac{x-\sqrt{x^{2}-4}}{2}
0%
x+\sqrt{x^{2}-4}
Explanation
Let
f\left ( x \right )=x+\dfrac{1}{x}=y
\Rightarrow x=f^{-1}\left ( y \right )
&
x^{2}-yx+1=0
Solving
x^{2}-yx+1
, we get
x^{2}-yx+1=0
x=\dfrac{y\pm \sqrt{y^{2}-4}}{2}
\therefore f^{-1}=\dfrac{x+\sqrt{x^{2}-4}}{2}
\because
f
is defined from
\left ( 1,\infty \right )\rightarrow \left ( 2,\infty \right )
negative part is discarded.
If
f:\left \{ 1,2,3,..... \right \}\rightarrow \left \{ 0,\pm 1,\pm 2,..... \right \}
is defined by
f(n)=\begin{cases} \dfrac{n}{2} & \text{ if } n \space is \space even \\-\left (\dfrac{n-1}{2} \right ) & \text{ if } n \space is \space odd \end{cases}
then
f^{-1}(-100)
is
Report Question
0%
Function is not invertible.
0%
199
0%
201
0%
200
Explanation
f(n)
is positive if
n
is even & negative if
n
is odd.
\therefore f^{-1}\left ( -100 \right )=-2x+1
=-2\left ( -100 \right )+1
=200+1
=201
f:R\rightarrow R
is defined by
f(x)=x^{2}+4
then
f^{-1}(13)=
Report Question
0%
\left \{ -3,3 \right \}
0%
\left \{ -2,2 \right \}
0%
\left \{ -1,1 \right \}
0%
Not invertible
Explanation
f\left ( x \right )=x^{2}+4=y
\Rightarrow x^{2}=y-4
x=\pm \sqrt{y-4}
\therefore f^{-1}\left ( 13 \right )=\pm \sqrt{13-4}=\pm 3
f(3)=13\,\&\,f(-3)=13
Thus image
13
has two pre-images i.e,
3
and
-3
\therefore
f
is not invertible
If
f(x)=2+x^{3}
, then
f^{-1}(x)
is equal to
Report Question
0%
\sqrt[3]{x}+2
0%
\sqrt[3]{x}-2
0%
\sqrt[3]{x-2}
0%
\sqrt[3]{x+2}
Explanation
Let
f\left ( x \right )=y
\Rightarrow 2+x^{3}=y
\Rightarrow x^{3}=y-2
\Rightarrow x=\left ( y-2 \right )^{1/3}
\therefore f^{-1}\left ( y \right )=x
=\left ( y-2 \right )^{{1}/{3}}
\therefore f^{-1}\left ( x \right )=\left ( x-2 \right )^{{1}/{3}}
The solution of
8x\equiv 6(mod \ 14)
is
Report Question
0%
\{8, 6\}
0%
\{6,14\}
0%
\{6,13\}
0%
\{8,14,6\}
Explanation
Since,
8\mathrm{x}\equiv 6(mod \ 14)
i.e.,
8\mathrm{x}-6=14\mathrm{k}
for
\mathrm{k}\in \mathrm{I}
.
\Rightarrow 8x = 14k+6
\Rightarrow 4x = 7k+3
The values
6
and
13
satisfy this equation (when
k =3
and
k=7
),
while
8, 14
and
16
do not.
If
f(x)=(1-x)^{1/2}
and
g(x)= \ln(x)
then the domain of
(gof)(x)
is
Report Question
0%
(-\infty ,2)
0%
(-1,1)
0%
(-\infty ,1]
0%
(-\infty ,1)
Explanation
Given
f(x)=(1-x)^{\frac{1}{2}}
and
g(x)=ln(x)
gof(x)
=g(f(x))
=\ln\left ( 1-x \right )^{1/2}
=\dfrac{1}{2}\ln\left ( 1-x \right )
\therefore
For the composite function to be defined
1-x>0
x<1
\therefore
Domain is
\left ( -\infty ,1 \right )
If
f:R^{+}\rightarrow R
such that
f(x)=\log_{5} x
then
f^{-1}(x)=
Report Question
0%
\log_{x}10
0%
5^{x}
0%
3^{-x}
0%
3^{1/x}
Explanation
f\left ( x \right )=y
\Rightarrow \log _{5}x=y
\Rightarrow \dfrac{\log x}{\log 5}=y
\Rightarrow \log x=y\log 5
\Rightarrow e^{\log x}=e^{y\log 5}
\Rightarrow e^{\log x} =e^{\log 5^{y}}
[\because a \log x = \log x^{a}
]
\Rightarrow x=5^{y}=f^{-1}\left ( y \right )
\therefore f^{-1}\left ( x \right )=5^{x}
If
f(x)=\dfrac{x+1}{x-1}(x\neq 1)
then
fofofof(x)=
Report Question
0%
f(x)
0%
2\left ( \dfrac{x+1}{x-1} \right )
0%
\dfrac{x-1}{x+1}
0%
x
Explanation
fofofof\left(x\right)=fofof\left(\dfrac{x+1}{x-1}\right)
=fof\left(\dfrac{\dfrac{x+1}{x-1}+1}{\dfrac{x+1}{x-1}-1}\right)=fof\left(\dfrac{2x}{2}\right)
=fof\left(x\right)
=f\left(\dfrac{x+1}{x-1}\right)=x
If
F(n)=(-1)^{k-1}(n-1), G(n)=n-F(n)
then
(GoG)(n)=
(where
k
is odd)
Report Question
0%
1
0%
n
0%
2
0%
n-1
Explanation
G(n)=n-(-1)^{k-1}(n-1)
GoG(n)=G(n-(-1)^{k-1}(n-1))
=n-(-1)^{k-1}(n-1)-(-1)^{k-1}((n-1)-(-1)^{k-1}(n-1))
=n-(n-1)
=1
If
f:[1,\infty )\rightarrow B
defined by the function
f(x)=x^{2}-2x+6
is a surjection, then
B
is equals to
Report Question
0%
[1,\infty )
0%
[5,\infty )
0%
[6,\infty )
0%
[2,\infty )
Explanation
f(x)=x^2-2x+6
is a surjection.
So the range of
f(x)
will be equal to its codomain.
f(x)=x^2-2x+6
f^1(x)=2x-2
=2(x-1)
f(x)
will be increasing when
x\geqslant 1
.
\therefore f(1)=1-2+6
=5
\therefore B=[5, \infty)
If
f:R\rightarrow R^{+}
then
\displaystyle f(x)=\left(\dfrac{1}{3}\right)^{x}
, then
f^{-1}(x)=
Report Question
0%
\displaystyle \left(\dfrac{1}{3}\right)^{-x}
0%
3^{x}
0%
\displaystyle \log_{1/3}
x
0%
\displaystyle \log_{x}\left(\dfrac{1}{3}\right)
Explanation
Let
\displaystyle f(x)=\left(\frac{1}{3}\right)^{x}=y
Taking logarithm on both sides,
\displaystyle x\log \frac{1}{3}=\log y
\displaystyle \Rightarrow x=\frac{\log y}{\log \frac{1}{3}}
\displaystyle \Rightarrow x=\log _ { 1/3 } y\quad \quad \quad \left[ \because \frac { \log b }{ \log a } =\log _{ a }{ b } \right]
\therefore f^{-1}\left ( x \right )=\log _{1/3}x
If
X =\{1, 2,3,4,5\}
and
Y =\{1,3,5,7,9\}
, determine which of the following sets represent a relation and also a mapping?
Report Question
0%
R_{1}= \{(x,y)
:
y=x+2, x \in Y,y \in Y\}
0%
R_{2}=\{(1,1), (1,3), (3,5), (4,7), (5,9)\}
0%
R_{3}=\{(1,1), (2,3), (3,5), (3,7), (5,7)\}
0%
R_{4}=\{(1,3), (2,5), (4,7), (5,9), (3,1)\}
Explanation
Here we will check all options one by one:
Option A:
R_1 = \{(x,y): y= x+2, x\in X, y\in Y\}
\implies \mathrm{R}_{1}=\{(1,3),(2, 4),(3,5),(4,6),(5,7)\}
Since
4
amd
6
are the images of
2
and
4
respectively but
4
and
6
do not belong to
Y
\therefore (2, 4),(4,6)\not\in X \times Y
Hence
R_{1}
is not a relation as well as not a mapping.
Option B:
R_{2}
: It is a relation but not a mapping because the element
1
has two different images.
Option C:
R_{2}
: It is a relation but not a mapping because the element
3
has two different images.
Option D:
R_{4}
: It is both a relation and a mapping because every element in
X
is mapped to the elements in
Y
. Also, every element of
X
has a one and only one image in
Y
and every element in
Y
has its pre-image in
X
. Hence, it is also one-one and onto mapping and hence it is a bijection.
If
f(x)=\dfrac{x}{\sqrt{1+x^{2}}}
then
fofof(x)=
Report Question
0%
\dfrac{x}{\sqrt{1+3x^{2}}}
0%
\dfrac{x}{\sqrt{1-x^{2}}}
0%
\dfrac{2x}{\sqrt{1+2x^{2}}}
0%
\dfrac{x}{\sqrt{1+x^{2}}}
Explanation
fofof\left(x\right)=fof\left(\dfrac{x}{\sqrt{1+x^{2}}}\right)
=f\left(\dfrac{\dfrac{x}{\sqrt{1+x^{2}}}}{\sqrt{1+\dfrac{x^{2}}{1+x^{2}}}}\right)
=f\left(\dfrac{x}{\sqrt{1+2x^{2}}}\right)
=\left(\dfrac{\dfrac{x}{\sqrt{1+2x^{2}}}}{\sqrt{1+\dfrac{x^{2}}{1+2x^{2}}}}\right)
=\dfrac{x}{\sqrt{1+3x^{2}}}
If A
=
{
x : x^{2}-3x+2= 0
}, and
R
is a universal relation on
A
, then
R
is
Report Question
0%
\{(1,1),(2, 2)\}
0%
\{(1,1)\}
0%
\phi
0%
\{(1,1),(1, 2)(2,1),(2,2)\}
Explanation
Consider,
x^2-3x+2=0
\implies x^2-2x-x+2=0
\implies (x-2)(x-1)=0
\implies x=1,2
\therefore A=\{1,2\}
Also R is universal relation on set A, then every element of set A is related every other element of A
So
R= \{(1,1), (1,2), (2,1), (2,2)\}
.
Assertion(A):
If
X=\left \{ x:-1\leq x\leq 1 \right \}
and
f:X\rightarrow X
defined by
f(x)=\sin \pi x; \forall x\in A
is not invertible function
Reason (R):
For a function
f
to have inverse, it should be a bijection
Report Question
0%
Both A and R are true and R is the correct explanation of A
0%
Both A and R are true but R is not correct explanation of A
0%
A is true but R is false
0%
A is false but R is true
Explanation
f(-\pi )=f(0)=f(\pi )=0
\therefore f
is not a bijection
\therefore \sin\pi x
is not invertible.
If
f(x)=\displaystyle \dfrac{x}{\sqrt{1-x^{2}}},g(x)=\displaystyle \dfrac{x}{\sqrt{1+x^{2}}}
, then
(fog)(x)=
Report Question
0%
x
0%
\dfrac{x}{\sqrt{1+x^{2}}}
0%
\sqrt{1+x^{2}}
0%
2x
Explanation
fog\left(x\right)=f\left(g\left(x\right)\right)
\displaystyle =f\left(\dfrac{x}{\sqrt{1+x^{2}}}\right)
\displaystyle =\dfrac{\dfrac{x}{\sqrt{1+x^{2}}}}{\sqrt{1-\dfrac{x^{2}}{1+x^{2}}}}=x
If
f(x)=1+x+x^{2}+x^{3}+\ldots\ldots
for
\left | x \right |<1
then
f^{-1}(x)=
Report Question
0%
\dfrac{x-1}{x+1}
0%
\dfrac{x+1}{x}
0%
\dfrac{x}{x-1}
0%
\dfrac{x-1}{x}
Explanation
f(x)=1+x+x^{2}+\ldots\ldots
=\dfrac{1}{1-x}
Let
y=\dfrac{1}{1-x}=f(x)
1-x=\dfrac{1}{y}
x=1-\dfrac{1}{y}=\dfrac{y-1}{y}
But
x=f^{-1}(y)=\dfrac{y-1}{y}
If the function is
f:R\rightarrow R, g:R\rightarrow R
are defined as
f(x)=2x+3, g(x)=x^{2}+7
and
f[g(x)]=25
then
x=
Report Question
0%
f(x)
0%
\pm 2
0%
\pm 3
0%
\pm 4
Explanation
f(g(x))=f(x^{2}+7) =25
=2(x^{2}+7)+3
=2x^{2}+17
\Rightarrow 2x^{2}=8
x^{2}=4 \Rightarrow x=\pm 2
If
f(x)=\displaystyle \frac{2^{x}+2^{-x}}{2^{x}-2^{-x}}
, then
f^{-1}(x)=
Report Question
0%
\displaystyle\frac{1}{2}\log_{2}\left ( \frac{x-1}{x+1} \right )
0%
\displaystyle\frac{1}{2}\log_{2}\left ( \frac{x+1}{x-1} \right )
0%
\displaystyle\frac{1}{2}\log_{2}\left ( \frac{x+1}{x-2} \right )
0%
\displaystyle\frac{1}{2}\log_{2}\left ( \frac{x-2}{x-1} \right )
Explanation
Let
f\left(x\right)=y=\displaystyle \frac{2^{x}+2^{-x}}{2^{x}-2^{-x}}
\Rightarrow 2^{x}\left(y-1\right)=2^{-x}\left(1+y\right)
2^{2x}=\displaystyle\frac{y+1}{y-1}
\displaystyle 2x=\log_{2}\left(\frac{y+1}{y-1}\right)
\Rightarrow \displaystyle x=f^{-1}\left(y\right)=\frac{1}{2}\log_{2}\left(\frac{y+1}{y-1}\right)
So,
\displaystyle f^{-1}x=\frac{1}{2}\log_{2}\left(\frac{x+1}{x-1}\right)
If
f(x)=\dfrac{x}{\sqrt{1-x^{2}}}
, then
(fof)(x)=
Report Question
0%
\dfrac{x}{\sqrt{1-x^{2}}}
0%
\dfrac{x}{\sqrt{1-2x^{2}}}
0%
\dfrac{x}{\sqrt{1-3x^{2}}}
0%
x
Explanation
fof\left ( x \right )=f\left ( f\left ( x \right ) \right )=\left ( x/\sqrt{1-x^{2}} \right )/\left ( \sqrt{1-\left ( x^{2}/\left ( 1-x^{2} \right ) \right )} \right )
=\left ( x/\sqrt{1-x^{2}} \right )/\sqrt{\left ( 1-x^{2}-x^{2} \right )/\left ( 1-x^{2} \right )}
=\left ( x/\sqrt{1-x^{2}} \right )/\left ( \sqrt{1-2 x^{2}} /\sqrt{1-x^{2}}\right)
=x/\sqrt{1-2x^{2}}
If
f:R\rightarrow R
is defined by
f(x)=x^{2}-10x+21
then
f^{-1}(-3)
is
Report Question
0%
\left \{ -4,6 \right \}
0%
\left \{ 4,6 \right \}
0%
\left \{ -4, 4, 6 \right \}
0%
Not Invertible
Explanation
Let
f^{-1}(-3)=t
\Rightarrow f(t)=-3
t^{2}-10t+21=-3
t^{2}-10t+24=0
t^{2}-6t-4t+24=0
t(t-6)-4(t-6)=0
\Rightarrow t=6,4 = f^{-1}(-3)
I: If
f:A\rightarrow B
is a bijection only then does
f
have an inverse function
II: The inverse function
f:R^{+}\rightarrow R^{+}
defined by
f(x)=x^{2}
is
f^{-1}(x)=\sqrt{x}
Report Question
0%
only I is true
0%
only II is true
0%
both I and II are true
0%
neither I nor II true
Explanation
f
is a bijection
\Rightarrow
f
is one one and onto.
\therefore
there exists on inverse value for every value in co-domain.
\therefore
f
is invertible if and only if
f
is a bijection
f:R^{+}\rightarrow R^{+} ; f(x)=x^{2}=y
\Rightarrow x=\sqrt{y}=f^{-1}(y)
If
f(x)=\sin^{-1}\left \{ 3-(x-6)^{4} \right \}^{1/3}
then
f^{-1}(x)=
Report Question
0%
6+\sqrt[4]{3+\sin^{3}x}
0%
6+\sqrt[4]{3-\sin^{3}x}
0%
6+\sqrt[4]{3+\sin x}
0%
6+\sqrt[4]{3-\sin x}
Explanation
Let
f(x)=y=\sin^{-1}(3-(x-6)^{4})^{\frac{1}{3}}
\sin y=(3-(x-6)^{4})^{\frac{1}{3}}
\sin^{3}y=3-(x-6)^{4}
(x-6)^{4}=3-\sin^{3}y
x-6=(3-\sin^{3}y)^{\frac{-1}{4}}
x=(3-\sin^{3}y)^{\frac{1}{4}}+6
x=f^{-1}(y)=(3-\sin^{3}y)^{\frac{1}{4}}+6.
Which of the following functions defined from
(-\infty ,\infty )
to
(-\infty ,\infty )
is invertible ?
Report Question
0%
f(x) = \sin (2x+3)
0%
f(x) = x^{2} + 4
0%
f (x) =x^{3}
0%
f (x) = \cos x
Explanation
f(x)=\sin(2x+3)
lies only from
[-1,1]
and hence is not onto.
So,
f(x)
is not bijective
\therefore
it is not invertible
f(x)=x^{2}+4
is always positive and so not onto.
So,
f(x)
is not bijective
\therefore
It is also not invertible.
f(x)=x^{3}
varies from
(-\infty ,\infty )
as
x
varies from
(-\infty ,\infty )
So,
f(x)
is bijective
\therefore
It is invertible.
f(x)=\cos x
always lies between
[-1,1]
and so is into function.
So,
f(x)
is not bijective
Hence, not invertible.
lf
{f}\left({x}\right)=\sin^{2}{x}+\sin^{2}\left({x}+\displaystyle \dfrac{\pi}{3}\right)+ \cos x \cos \left({x}+\displaystyle \dfrac{\pi}{3}\right)
and
{g}\left(\displaystyle\dfrac{5}{4}\right)=1
,
g\left(1\right) = 0
then
\left({g}{o}{f}\right)\left({x}\right)=
Report Question
0%
1
0%
0
0%
\sin x
0%
Data is insufficient
Explanation
\displaystyle {f}\left({x}\right)=\sin^{2}{x}+\left(\sin{x}\cos\frac{\pi}{3}+ \cos{x} \displaystyle \sin\frac{\pi}{3}\right)^{2}+ {c}{o}{s} {x}\left(\displaystyle \cos {x}\cos\frac{\pi}{3}-\sin {x}\sin\frac{\pi}{3}\right)
\displaystyle =\sin ^{ 2 }{ x } +{ \left[ \frac { \sin{ x } }{ 2 } +\frac { \sqrt { 3 } \cos{ x } }{ 2 } \right] }^{ 2 }+\frac { \cos^{ 2 }{ x } }{ 2 } -\frac { \sqrt { 3 } }{ 2 } \cos x \sin x
\displaystyle =\sin ^{ 2 }{ x } +\frac { \sin ^{ 2 }{ x } }{ 4 } +\frac { 3 }{ 4 } \cos ^{ 2 }{ x } +\frac { \sqrt { 3 } }{ 2 } \sin x\cos{ x }+\frac { \cos ^{ 2 }{ x } }{ 2 } -\frac { \sqrt { 3 } }{ 2 } \sin { x\cos { x } }
=\displaystyle \frac{5}{4}\left(\sin^{2}{x}+\cos^{2}{x}\right)=\frac{5}{4}
\displaystyle \therefore
[{g}{o}{f}]\left({x}\right)={g}[{f}\left({x}\right)]={g}\left(\displaystyle \frac{5}{4}\right)=1
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page