Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 3 - MCQExams.com

Let S be set of all rational numbers. The functions f:RR, g:RR are defined as 
f(x)={0,xS1,xS
g(x)={1xS0xS
then, (fog)(π)+(gof)(e)=
  • 1
  • 0
  • 1
  • 2
Set A has n elements. The number of functions that can be defined from A into A is:
  • n2
  • n!
  • nn
  • n
If n1 is any integer, d(n) denotes the number of positive factors of n, then for any prime number p, d(d(d(p7)))=
  • 1
  • 2
  • 3
  • 4
Let f(x)=x2x+1,x(12) then the solution of the equation f(x)=f1(x) is
  • x=1
  • x=2
  • x=12
  • None of these
lf f:[6,6]R is defined by f(x)=x23 for xR then
(fofof)(1)+(fofof)(0)+(fofof)(1)=
  • f(42)
  • f(32)
  • f(22)
  • f(2)
lf f : RR is defined by
f(x)={x+4x<43x+24x<4x4x4
then the correct matching of list I to List II is. 
List - IList - II
A)f(5)+f(4)=i)14
B)f(|f(8)|)=ii )4
C)f(f(7)+f(3))=iii)11
D)f(f(f(f(0)))+1=iv)1
v) 1
vi) 0
  • A-iii , B-vi , C-ii , D- v
  • A-iii , B-iv , C-ii , D- vi
  • A-iv , B-iii , C-ii , D- i
  • A-ii , B-vi , C-v , D- ii

lf g(f(x))=|sinx|,f(g(x))=(sinx)2, then
  • f(x)=sin2x,g(x)=x
  • f(x)=sinx,g(x)=|x|
  • f(x)=x2,g(x)=sinx
  • f,g cannot be determined

lf f(x)=xx2+x3x4+.. when |x|<1, then the ascending order of the following is
a) f(1/2)
b) f1(1/2)
c) f(1/2)
d) f1(1/2)
  • a, b, c, d
  • c, d, a, b
  • b, a, d, c
  • d, c, a, b
Let f be an injective function with domain {x,y,z}and range {1,2,3} such that exactly one of the follwowing statements is correct and the remaining are false :
f(x)=1,f(y)1,
f(z)2
then the value of f1(1) is
  • x
  • y
  • z
  • none
If f:RR is defined by f(x)=2x2,  then (ff)(x)+2=
  • f(x)
  • 2f(x)
  • 3f(x)
  • f(x)
If f(x)=x1x2,g(x)=x1+x2 then (fg)(x)=
  • x1x2
  • x1+x2
  • 1x21x2
  • x
If f(x)=logx,g(x)=x3 then f[g(a)]+f[g(b)]=
  • f[g(a)+g(b)]
  • f[g(ab)]
  • g[f(ab)]
  • g[f(a)+f(b)]
If X={1,2,3,4,5} and Y={1,3,5,7,9}, determine which of the following sets represent a relation and also a mapping.
  • R1={(x,y):y=x+2,xX,yY}
  • R2={(1,1),(2,1),(3,3),(4,3),(5,5)}
  • R3={(1,1),(1,3),(3,5),(3,7),(5,7)}
  • R4={(1,3),(2,5),(4,7),(5,9),(3,1)}
If f:RR and g:RR are defined by f(x)=2x+3 and g(x)=x2+7, then the values of x such that g(f(x))=8 are:
  • 1,2
  • 1,2
  • 1,2
  • 1,2
If f(x)=2x+5x2+x+5, then f[f(1)] is equal to
  • 149155
  • 155147
  • 155149
  • 147155
Set A has 3 elements and set B has 4 elements. The number of injections that can be defined from A into B is :
  • 144
  • 12
  • 24
  • 64
If ABCPQR, then AB:PQ =
  • AC:PB
  • AC:PR
  • AB:PR
  • AC:RQ
If f:RR and g:RR are defined by f(x)=x[x] and g(x)=[x] for xR, where [x] is the greatest integer not exceeding x, then for every xR,f(g(x))=
  • x
  • 0
  • f(x)
  • g(x)
If y=f(x)=2x1x2, then f(y)=
  • x
  • y
  • 2y1
  • y2
If f(g(x)) is one-one function, then
  • g(x) must be one-one
  • f(x) must be one-one
  • f(x) may not be one-one
  • g(x) may not be one-one
Which of the following functions are one-one?
  • f:RR given by f(x)=2x2+1 for all xR
  • g:ZZ given by g(x)=x4 for all xR
  • h:RR given by h(x)=x3+4 for all xR
  • ϕ:CC given ϕ(z)=2z6+4 for all xR
A mapping function f:XY is one-one, if
  • f(x1)f(x2) for all x1,x2X
  • f(x1)=f(x2)x1=x2 for all x1,x2X
  • x1=x2f(x1)=f(x2) for all x1,x2X
  • none of these
Let f:RA={y:0y<π2} be a function such that f(x)=tan1(x2+x+k), where k is a constant. The value of k for which f is an onto function is 
  • 1
  • 0
  • 14
  • none of these
If f:RR given by f(x)=x3+(a+2)x2+3ax+5 is one-one, then a belongs to the interval
  • (,1)
  • (1,)
  • (1,4)
  • (4,)
Let R be the relation in the set N given by ={(a,b):a=b2,b>6}. Choose the correct answer.
  • (2,4)R
  • (3,8)R
  • (6,8)R
  • (8,7)R
Let f:{x,y,z}{a,b,c} be a one-one function and only one of the conditions (i)f(x)b,(ii)f(y)=b,(iii)f(z)a is true then the function f  is given by the set 
  • {(x,a),(y,b),(z,c)}
  • {(x,a),(y,c),(z,b)}
  • {(x,b),(y,a),(z,c)}
  • {(x,c),(y,b),(z,a)}
Which of the following function is one-one?
  • f:RR given byf(x)=|x1| for all xR
  • g:[π2,π2]R given by g(x)=|sinx| for all x[π2,π2]
  • h:[π2,π2]R given by h(x)=sinx for all x[π2,π2]
  • ϕ:RR given by f(x)=x24 for all xR
If f and g are one-one functions from RR, then
  • f+g is one-one
  • fg is one-one
  • fog is one-one
  • none of these
If f:R+A, Where A={x:5<x<} be defined by f(x)=x25. Then f1(7)=
  • only 23
  • only 23
  • both options A and B
  • none
If the function f:[1,)[1,) is defined by f(x)=3x(x1) then f1(x) is 
  • (12)x(x1)
  • 12(1+1+4log3x)
  • 12(11+4log3x)
  • not defined
If the function f:RR be such that f(x)=x[x], where [y] denotes the greatest integer less than or equal to y, then f1(x) is
  • 1x[x]
  • [x]x
  • not defined
  • none of these
If f:(3,4)(0,1) is defined by f(x)=x[x] where [x]denotes the greatest integer function then f1(x) is
  • 1x[x]
  • [x]x
  • x3
  • x+3
Let f:(,1](,1] such that f(x)=x(2x). Then f1(x) is
  • 1+1x
  • 11x
  • 1x
  • none of these
If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) implies
  • f(a)=g(c)
  • f(b)=g(b)
  • f(d)=g(b)
  • f(c)=g(a)
If f(x)=11x,x0,1 then the graph of the function y=f{f(f(x))},x>1, is
  • a circle
  • an ellipse
  • a straight line
  • a pair of straight lines
If f(x)=3x5 then f1(x)=
  • 13x5
  • x+53
  • does not exist because f is not one-one
  • does not exist because f is not onto
If f and g are two functions such that  (fg)(x)=(gf)(x) for all x. Then f and g may be defined as
  • f(x)=x,g(x)=cosx
  • f(x)=x3,g(x)=x+1
  • f(x)=x1,g(x)=x2+1
  • f(x)=xm,g(x)=xn where m,n are unequal integers
If f(x)=xn,nN and (gof)(x)=ng(x) then g(x) can be 
  • n|x|
  • 3.3x
  • ex
  • log|x|
The composite mapping fog of the map f:RR,f(x)=sinx and g:RR,g(x)=x2 is
  • x2sinx
  • (sinx)2
  • sinx2
  • sinxx2
Let S be a set containing n elements. Then the total number of binary operations on S is
  • nn
  • 2n2
  • nn2
  • n2
Let f:RR be defined by f(x)=3x4 then f1(x) is
  • 13(x+4)
  • 13(x4)
  • 3x+4
  • not defined
Let f(x)=axx+1, where x1. Then for what value of a is f(f(x))=x always true
  • 2
  • 2
  • 1
  • 1
A function y=f(x) is invertible only when
  • y=f(x) is monotonic increasing
  • y=f(x) is bijective
  • y=f(x) is monotonic decreasing
  • invertible
Let f:RR and g:RR be defined by f(x)=x2+2x3,g(x)=3x4 then (gof)(x)=
  • 3x2+6x13
  • 3x26x13
  • 3x2+6x+13
  • 3x2+6x13
If f:[1,+][2,+) is given by f(x)=x+1x  then f1(x) equals
  • x+x2+42
  • x1+x2
  • x+x242
  • 1+x24
f:RR is a function defined by f(x)=10x7. If g=f1, then g(x) is equals 
  • 110x7
  • 110x+7
  • x+710
  • x710
Set A has 3 elements and set B has 4 elements. The number of injections that can be defined from A to B is
  • 144
  • 12
  • 24
  • 64
If f:RR such that f(x)=log3x then f1x is equal to
  • logx3
  • 3x
  • 3x
  • 31/x
The inverse of f(x)=e3xe3xe3x+e3x is
  • 16log10(1+x1x)
  • 16log10(x1x)
  • 16loge(1+x1x)
  • 16loge(1x1+x)
If X={1,2,3,4,5} and Y={1,3,5,7,9} then which of the following sets are relation from X to Y
  • R1={(x,a):a=x+2,xX,aY}
  • R2={(1,1),(2,1),(3,3),(4,3),(5,5)}
  • R3={(1,1),(1,3),(3,5),(3,7),(5,7)}
  • R4={(1,3),(2,5),(4,7),(5,9),(3,1)}
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers