Processing math: 8%

CBSE Questions for Class 12 Commerce Maths Relations And Functions Quiz 9 - MCQExams.com

The graph of y = g(x) in its domain is broken at
  • 1 point
  • 2 point
  • 3 point
  • None of these
Let g(x)=f(x)1. If f(x)+f(1x)=2  x ϵ R, then g(x) is symmetrical about
  • Origin
  • The line x=12
  • The point (1,0)
  • The point (12,0)
Which of the following is not true about h1(x)?
  • It is periodic function with period π
  • Range is [0,1]
  • Domain if R
  • None of these
g(f(x)) is not defined if
  • a ϵ(10,)b ϵ(5,)
  • a ϵ(4,10)b ϵ(5,)
  • a ϵ(10,)b ϵ(0,1)
  • a ϵ(4,10)b ϵ(1,5)
Let f(x) and g(x) be differentiable for 0×<1 such that f(0)=0,g(0),f(1)=6. Let there exist a real number c in (0,1) such that f(c)=2g(c), then the value of g(1) must be 
  • 1
  • 3
  • 2.5
  • 1
For set A,B and C, let f:AB,g:BC be functions such that gof is surjective.
Then g is surjective function.
  • True
  • False
Let A be a finite set. Then, each injective function from A into itself is not surjective.
  • True
  • False
For set A,B and C, let f:AB,g:BC be functions such that gof is Injective.
Then f is injective.
  • True
  • False
If g is the inverse of function f and f(x)=11+x, then the value of g'(x) is equal to:
  • 1+x7
  • 11+[g(x)]7
  • 1+[g(x)]7
  • 7x6
Computers use
  • decimal system
  • binary system
  • base 5 system
  • base 6 system
From  ] \dfrac{- \pi}{2} , \dfrac{- \pi}{2}[ which of the following is one - one onto function defined in R
  • f(x) = \tan x
  • f(x) = \sin x
  • f(x) = \cos x
  • f(x) = e^{x} + r^{-x}
Which of the following in one -one function defined from R to R
  • f(x) = |x|
  • f(x) = \cos x
  • f(x) =e^{x}
  • f(x) = x^{2}
Subtraction is an operation on Z, which is 
  • commutative and associative
  • associative but not commutative
  • neither commutative and nor associative
  • commutative but not associative
Let f: [ -1,1] \rightarrow [0,2] be a linear function which is onto then f(x) is/are 
  • 1 - x
  • 1 + x
  • x - 1
  • x - 2
If n \geq 2 then the number of surjections that can be defined from \{1, 2, 3, .......  n\} onto \{1, 2\} is
  • 2n
  • ^nP_2
  • 2^n
  • 2^{n}-2
Let f : X\rightarrow Y, f (x) = \sin x+ \cos x + 2\sqrt2 is invertible, then X\rightarrow Y is/are
  • \left [\displaystyle \frac{\pi }{4},\frac{5\pi}{4} \right ]\rightarrow \left [ \sqrt{2},3\sqrt{2} \right ]
  • \left [ -\displaystyle \frac{\pi }{4},\frac{3\pi}{4} \right ]\rightarrow \left [ \sqrt{2},3\sqrt{2} \right ]
  • \left [\displaystyle \frac{\pi }{4},\frac{3\pi}{4} \right ]\rightarrow \left [ \sqrt{2},3\sqrt{2} \right ]
  • \left [ -\displaystyle \frac{3\pi }{4},\frac{\pi}{4} \right ]\rightarrow \left [ \sqrt{2},3\sqrt{2} \right ]
If f(x) = x^{2}, -1\leq x \leq 4 , g(x) = sec^{-1}x, x\geq 1 then


  • Domain of gof(x) is [1, 4] \cup {-1}
  • Domain of gof(x) is [1, 4]
  • Range of gof(x) is [0, sec^{-1}16]
  • Range of fog(x) is \left ( 0,\frac{\pi^{2}}{4} \right )
If f(x) = x^3- 4x + 1 \forall x > 0 and g(x) is image of f(x) with respect to line y = x then
  • g(1) = 2
  • g'(1)=\displaystyle \frac{1}{8}
  • f''(g(1))=12
  • g''(1)=-\displaystyle \frac{3}{16}
Consider the function f (x)=\dfrac{x}{x-1}. Which of the following statements are correct ?

75367.jpg
  • f has the same domain and range
  • f has its own inverse
  • f is not injective
  • f is neither odd nor even
Let \displaystyle \mathrm{f}:\mathrm{R}\rightarrow \left[0,\frac{\pi}{2}\right) be defined by \mathrm{f}(\mathrm{x})=\mathrm{t}\mathrm{a}\mathrm{n}^{-1}(\mathrm{x}^{2}+\mathrm{x}+\mathrm{a}). Then the set of values of '\mathrm{a}' for which \mathrm{f} is onto is
  • [0,\infty)
  • [2, 1]
  • \displaystyle \left\{ \frac{1}{4}\right\}
  • \displaystyle \left[ \frac{1}{4}, \infty\right)
Let \displaystyle {f}({x})=\frac{{a}{x}+{b}}{{c}{x}+{d}}, then fof(x)={x}, provided
  • d = -a
  • d = a
  • a = b = c = d = 1
  • a = b = 1
Which of the following functions is/are injective map(s) ?
  • f(x)=x^2+2, x \in (-\infty,\infty)
  • f(x)=|x+2|, x \in [-2,\infty)
  • f(x)=(x-4)(x-5), x \in (-\infty,\infty)
  • f(x)=\dfrac{4x^2 + 3x -5}{4+3x-5x^2}, x\in(-\infty, \infty)
Which of the following functions is not injective ?
  • f:R \rightarrow R, f(x)=2x+7
  • f:[0,\pi]\rightarrow[-1,1],f(x)=\cos x
  • f:\left [ -\dfrac{\pi}{2},\dfrac{\pi}{2} \right ]\rightarrow R, f(x)=2 \sin x +3
  • f:R\rightarrow [-1,1],f(x)=\sin x
Let f(x)=max\left\{1+\sin x,1,1-\cos x \right\}, x\in \left [ 0,2\pi  \right ]  and g(x)=max\left\{ 1,\left | x-1 \right |\right\},x\in R , then
  • g(f(0))=1
  • g(f(1))=1
  • f(g(1))=1
  • f(g(0))=\sin 1
If f\left( x \right)=\sqrt { 3\left| x \right| -x-2 } and g(x)=\sin(x), then the domain of the definition of f\circ g\left( x \right) is
  • \displaystyle \left\{ 2n\pi +\frac { \pi  }{ 2 }  \right\}
  • \displaystyle \left( 2n\pi +\frac { 7\pi  }{ 6 } ,2n\pi +\frac { 11\pi  }{ 6 }  \right)
  • \displaystyle \left\{ 2n\pi +\frac { 7\pi  }{ 6 }  \right\}
  • \displaystyle \left( 2n\pi +\frac { 7\pi  }{ 6 } ,2n\pi +\frac { 11\pi  }{ 6 }  \right) \bigcup _{ n,m\in I }^{  }{ \left( 2n\pi +\frac { \pi  }{ 2 }  \right)  }
Let \displaystyle a > 1 be a real number and \displaystyle f\left ( x \right ) = \log _{a} x^{2} for \displaystyle x > 0. If \displaystyle f^{-1} is the inverse function of f and b and c are real numbers then \displaystyle f^{-1} \left ( b+c \right ) is equal to
  • \displaystyle f^{-1}\left ( b \right ) . f^{-1}\left ( c \right )
  • \displaystyle f^{-1}\left ( b \right ) + f^{-1}\left ( c \right )
  • \displaystyle \frac {1}{f\left ( b+c \right )}
  • \displaystyle \frac {1}{f^{-1}\left ( b \right ) + f^{-1} \left ( c \right )}
Suppose f(x)=ax+b and g(x)=bx+a, where a and b are positive integers. If  f\left ( g(50) \right )-g\left ( f(50) \right )=28 then the product (ab) can have the value equal to
  • 12
  • 48
  • 180
  • 210
Which one of the following functions is not one-one?
  • f:(-1,\infty )\rightarrow R given by f(x)={ x }^{ 2 }+2x\quad
  • g:(2,\infty )\rightarrow R given by g(x)={ e }^{ { x }^{ 3 }-3x+2 }\quad
  • h:R\rightarrow R given by h(x)={ 2 }^{ { x }(x-1) }\quad
  • \phi :(-\infty ,0)\rightarrow R given by \phi (x)=\cfrac { { x }^{ 2 } }{ { x }^{ 2 }+1 }
If f:R\rightarrow \left [\dfrac {\pi}{6}, \dfrac {\pi}{2}\right ), f(x)=\sin^{-1}\left (\dfrac {x^2-a}{x^2+1}\right ) is a onto function, then set of values of a is
  • \left \{-\dfrac {1}{2}\right \}
  • \left [-\dfrac {1}{2}, -1\right )
  • (-1, \infty)
  • none of these
If f (x) = x + 2, g (x) = 2 x +3, then find gof
  • 2x -7
  • 7x + 2
  • 2x + 7
  • 7 + 2x
Which of the function defined below are one-one function(s)?
  • f(x)=x+1,(x\geq-1)
  • g(x)=x+\dfrac1x,(x\geq0)
  • h(x)=x^2+4x-5,(x>0)
  • f(x)=e^{-x},(x\geq0)
f(x)=x^3+3x^2+4x+b \sin x+c \cos x, \forall x\in R is a one-one function, then the value of b^2+c^2 is
  • \geq 1
  • \geq 2
  • \leq 1
  • none of these
If f(x)=2x+|x|, g(x)=\dfrac {1}{3}(2x-|x|) and h(x)=f(g(x)), then domain of \sin^{-1}\underset {\text {n times}}{\underbrace {(h(h(h(h.....h(x).....))))}} is
  • [-1, 1]
  • \left [-1, -\dfrac {1}{2}\right ]\cup \left [\dfrac {1}{2}, 1\right ]
  • \left [-1, -\dfrac {1}{2}\right ]
  • \left [\dfrac {1}{2}, 1\right ]
Let f:{x, y, z}\rightarrow (a, b, c) be a one-one function. It is known that only one of the following statements is true:
(i) f(x)\neq b
(ii)f(y)=b
(iii)f(z)\neq  a
  • f=\{(x, a), (y, b), (z, c)\}
  • f=\{(x, b), (y, a), (z, c)\}
  • f=\{(x, b), (y, c), (z, c)\}
  • f=\{(x, b), (y, c), (z, a)\}
The inverse of the function \displaystyle y= \frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}} is
  • \displaystyle \log_{e}\left ( \frac{1+2x}{1-2x} \right )
  • \displaystyle \frac{1}{4}\log_{e}\left ( \frac{1-x}{1+x} \right )
  • \displaystyle \frac{1}{4}\log_{e}\left ( \frac{1+x}{1-x} \right )
  • an odd function
Let \displaystyle f(x)=\begin{cases}x^{2} & \mbox{if}  \quad0< x< 2\\2x-3 & \mbox{if}  \quad2\leq x< 3 \\ x+2 & \mbox{if}\quad  x\geq 3\end{cases}.
Then 
  • \displaystyle f\left \{ f\left ( f\left ( \frac{3}{2} \right ) \right ) \right \}=f\left ( \frac{3}{2} \right )
  • \displaystyle 1+f\left \{ f\left ( f\left ( \frac{5}{2} \right ) \right ) \right \}=f\left ( \frac{5}{2} \right )
  • \displaystyle f\left \{ f(0) \right \}=f\left ( 1 \right )=1
  • none of these
The function f is one to one and the sum of all the intercepts of the graph is 5. The sum of all the intercept of the graph \displaystyle y = f^{-1} \left ( x \right ) is
  • 5
  • \dfrac15
  • \dfrac25
  • -5
Suppose \displaystyle  f\left ( x \right )=\left ( x+1 \right )^{2} for \displaystyle x\geq -1. If \displaystyle g(x) is the function whose graph is the reflection of the graph of \displaystyle f(x) with respect to the line y=x , then \displaystyle g(x) is equal to
  • \displaystyle -\sqrt{x}-1 for \displaystyle x\geq 0
  • \displaystyle \frac{1}{\left ( x+1 \right )^{2}} for \displaystyle x > -1
  • \displaystyle \sqrt{x+1} for \displaystyle x > -1
  • \displaystyle \sqrt{x}-1 for \displaystyle x\geq 0
Let f\left( x \right) =\left\{ \begin{matrix} 1+|x|,\; x<-1 \\ \left[ x \right] ,\; x\ge -1 \end{matrix} \right.  where [\cdot] denotes the greatest integer function. Then \displaystyle f\left \{f(-2.3) \right\} is equal to 
  • 4
  • 2
  • -3
  • 3
The inverse function of the function \displaystyle f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} is 
  • \displaystyle \frac{1}{2}\log\frac{1+x}{1-x}
  • \displaystyle \frac{1}{2}\log\frac{2+x}{2-x}
  • \displaystyle \frac{1}{2}\log\frac{1-x}{1+x}
  • none of these
If \displaystyle f \left ( x \right ) = px + q and \displaystyle f \left ( f\left ( f\left ( x \right ) \right ) \right ) = 8x + 21, where p and q are real numbers, the p + q equals
  • 3
  • 5
  • 7
  • 11
K(x) is a function such that K(f(x))=a+b+c+d,
Where,
$$a=\begin{cases}
0 & \text{ if f(x) is even}  \\ 
-1 & \text{ if f(x) is odd} \\ 
2 & \text{ if f(x) is neither even nor odd} 
\end{cases}$$
$$b=\begin{cases}
3 & \text{ if  f(x) is periodic} \\ 
4 & \text{  if  f(x) is  aperiodic}
\end{cases}$$
$$c=\begin{cases}
5 & \text{ if  f(x) is  one one} \\ 
6 & \text{  if  f(x) is many one}
\end{cases}$$
$$d=\begin{cases}
7 & \text{ if  f(x) is onto} \\ 
8 & \text{  if  f(x) is into}
\end{cases}$$ 
h:R\rightarrow R,h(x)=\left ( \displaystyle \frac{e^{2x}+e^{x}+1}{e^{2x}-e^{x}+1} \right ) 

On the basis of above information, answer the following questions.K(\phi(x))
  • 15
  • 16
  • 17
  • 18
The total number of injective mappings from a set with m elements to a set with n elements, m \leq n is 
  • \displaystyle m^{n}
  • \displaystyle n^{m}
  • \displaystyle \frac{n!}{(n-m)!}
  • n!
If f:R\rightarrow R and g:R\rightarrow R are given by f(x)=|x| and g(x)=[x] for each x\in R, then \left\{ x\in R:g\left( f\left( x \right) \right) \le f\left( g\left( x \right) \right)  \right\} =
  • Z\cup \left( -\infty ,0 \right)
  • \left( -\infty ,0 \right)
  • Z
  • R
Let \displaystyle f:\left[-\frac{\pi}{3},\frac{2\pi}{3}\right]\rightarrow [0,4] be a function defined by \displaystyle f(x)=\sqrt 3 \sin x-\cos x+2 then \displaystyle f^{-1}(x) equals
  • \displaystyle \frac{2\pi}{3}-\cos ^{-1}\left(\frac{x-2}{2}\right)
  • \displaystyle \sin ^{-1}\left ( \frac{x-2}{2} \right )+\frac{\pi}{3}
  • \displaystyle \sin ^{-1}\left ( \frac{x-2}{2} \right )
  • \displaystyle \sin ^{-1}\left ( \frac{x+2}{2} \right )+\frac{\pi}{6}
Let f and g be increasing and decreasing functions respectively from \displaystyle \left ( 0,\infty  \right ) to \left ( 0,\infty  \right ) and let h\left ( x \right )=f\left [ g\left ( x \right ) \right ]. If h\left ( 0 \right )=0 then  h\left ( x \right )-h\left ( 1 \right ) is
  • always zero
  • always negative
  • always positive
  • strictly increasing
  • None of these
If \displaystyle f\left ( x \right )= \frac{3x+2}{5x-3} , then
  • \displaystyle f\left ( f{}'\left ( x \right ) \right )=f^{-1}\left ( x \right )
  • \displaystyle f^{-1}\left ( x \right )=f\left ( x \right )
  • \displaystyle f\left ( f{}'\left ( x \right ) \right )=f'\left ( x \right )
  • \displaystyle f\left ( f\left ( x \right ) \right )=-x^{2}
If \displaystyle f\left ( x \right )+f\left ( \dfrac1x \right )=0,\; f(e)=1; g\left ( x \right )=f^{-1}\left ( x \right ) then \displaystyle g{}'\left ( x \right ) equals
  • \displaystyle e^{x}
  • \displaystyle x
  • \displaystyle x^{2}
  • \displaystyle e^{-x}
If f:[1,\infty )\rightarrow [2,\infty ) is given by \displaystyle f\left( x \right)=x+\frac { 1 }{ x } , then f^{-1}(x) equals
  • \displaystyle \frac { x+\sqrt { { x }^{ 2 }-4 }  }{ 2 }
  • \displaystyle \frac { x }{ 1+{ x }^{ 2 } }
  • \displaystyle \frac { x-\sqrt { { x }^{ 2 }-4 }  }{ 2 }
  • 1+\sqrt{x^2-4}
Let \displaystyle f\left ( x \right )=\frac{ax^{2}+2x+1}{2x^{2}-2x+1}, the value of a for which \displaystyle f:R\rightarrow \left [ -1,2 \right ] is onto , is
  • \displaystyle \left [ 2,5 \right ]
  • \displaystyle \left [ -5,-2 \right ]
  • \displaystyle \left [ 0,5 \right ]
  • None of these.
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers