Explanation
If equation of the plane through the straight line $$\displaystyle \dfrac{x -1}{2}=\dfrac{y +2}{-3}=\dfrac{z}{5}$$ and perpendicular to the plane $$x - y + z + 2 = 0 \: $$is$$ \:ax- by + cz + 4 = 0,$$ then find the value of $$ a^2 + b^2 + c$$
If $$l_1,\; m_1, n_1$$ and $$l_2,\; m_2, n_2$$ are D.C.s of two lines then,
$$l_1l_2+m_1m_2+n_1n_2= \cos \theta$$
The direction ratios of the internal angle bisector are $$l_1+l_2,\; m_1+m_2, \; n_1+n_2$$.
Hence, the direction cosines of the internal angle bisector are $$ \displaystyle \dfrac { { l }_{ 1 }+{ l }_{ 2 } }{ \sqrt { \sum { { \left( { l }_{ 1 }+{ l }_{ 2 } \right) }^{ 2 } } } } ,\dfrac { { m }_{ 1 }+{ m }_{ 2 } }{ \sqrt { \sum { { \left( { l }_{ 1 }+{ l }_{ 2 } \right) }^{ 2 } } } } ,\dfrac { { n }_{ 1 }+{ n }_{ 2 } }{ \sqrt { \sum { { \left( { l }_{ 1 }+{ l }_{ 2 } \right) }^{ 2 } } } } $$
where, $$\sum { { \left( { l }_{ 1 }+{ l }_{ 2 } \right) }^{ 2 } } \\ ={ \left( { l }_{ 1 }+{ l }_{ 2 } \right) }^{ 2 }+{ \left( { m }_{ 1 }+{ m }_{ 2 } \right) }^{ 2 }+{ \left( { n }_{ 1 }+{ n }_{ 2 } \right) }^{ 2 }\\ =\left( { { l }_{ 1 } }^{ 2 }+{ { m }_{ 1 } }^{ 2 }+{ { n }_{ 1 } }^{ 2 } \right) +\left( { { l }_{ 2 } }^{ 2 }+{ { m }_{ 2 } }^{ 2 }+{ { n }_{ 2 } }^{ 2 } \right) +2\left( { l }_{ 1 }{ l }_{ 2 }+{ m }_{ 1 }{ m }_{ 2 }+{ n }_{ 1 }{ n }_{ 2 } \right) \\ =1+1+2\cos { \theta } =2+2\cos { \theta } =4\cos^{2} { \dfrac { \theta }{ 2 } } $$
Hence direction cosines of internal angle bisector are $$ \displaystyle \dfrac { { l }_{ 1 }+{ l }_{ 2 } }{ 2\cos { \dfrac { \theta }{ 2 } } } ,\dfrac { { m }_{ 1 }+{ m }_{ 2 } }{ 2\cos { \dfrac { \theta }{ 2 } } } ,\dfrac { { n }_{ 1 }+{ n }_{ 2 } }{ 2\cos { \dfrac { \theta }{ 2 } } } $$
Similarly , D.R.s of external angle bisector are $${ l }_{ 1 }-{ l }_{ 2 },\; { m }_{ 1 }-{ m }_{ 2 },\; { n }_{ 1 }-{ n }_{ 2 }$$
So, the direction cosines of the external angle bisector are $$ \displaystyle \dfrac { { l }_{ 1 }-{ l }_{ 2 } }{ \sum { { \left( { l }_{ 1 }-{ l }_{ 2 } \right) }^{ 2 } } } ,\dfrac { { m }_{ 1 }-{ m }_{ 2 } }{ \sum { { \left( { l }_{ 1 }-{ l }_{ 2 } \right) }^{ 2 } } } ,\dfrac { { n }_{ 1 }-{ n }_{ 2 } }{ \sum { { \left( { l }_{ 1 }-{ l }_{ 2 } \right) }^{ 2 } } } $$
where, $$\sum { { \left( { l }_{ 1 }-{ l }_{ 2 } \right) }^{ 2 } } \\ ={ \left( { l }_{ 1 }-{ l }_{ 2 } \right) }^{ 2 }+{ \left( { m }_{ 1 }-{ m }_{ 2 } \right) }^{ 2 }+{ \left( { n }_{ 1 }-{ n }_{ 2 } \right) }^{ 2 }\\ =\left( { { l }_{ 1 } }^{ 2 }+{ { m }_{ 1 } }^{ 2 }+{ { n }_{ 1 } }^{ 2 } \right) +\left( { { l }_{ 2 } }^{ 2 }+{ { m }_{ 2 } }^{ 2 }+{ { n }_{ 2 } }^{ 2 } \right) -2\left( { l }_{ 1 }{ l }_{ 2 }+{ m }_{ 1 }{ m }_{ 2 }+{ n }_{ 1 }{ n }_{ 2 } \right) \\ =1+1-2\cos { \theta } =2-2\cos { \theta } =4\sin ^{ 2 }{ \dfrac { \theta }{ 2 } } $$.
Hence, direction cosines of external angle bisector are $$ \displaystyle \dfrac { { l }_{ 1 }-{ l }_{ 2 } }{ 2\sin { \dfrac { \theta }{ 2 } } } ,\dfrac { { m }_{ 1 }-{ m }_{ 2 } }{ 2\sin { \dfrac { \theta }{ 2 } } } ,\dfrac { { n }_{ 1 }-{ n }_{ 2 } }{ 2\sin { \dfrac { \theta }{ 2 } } } $$
Hence, options 'B' and 'D' are correct.
Please disable the adBlock and continue. Thank you.