Explanation
If equation of the plane through the straight line x−12=y+2−3=z5 and perpendicular to the plane x−y+z+2=0isax−by+cz+4=0, then find the value of a2+b2+c
If l1,m1,n1 and l2,m2,n2 are D.C.s of two lines then,
l1l2+m1m2+n1n2=cosθ
The direction ratios of the internal angle bisector are l1+l2,m1+m2,n1+n2.
Hence, the direction cosines of the internal angle bisector are l1+l2√∑(l1+l2)2,m1+m2√∑(l1+l2)2,n1+n2√∑(l1+l2)2
where, ∑(l1+l2)2=(l1+l2)2+(m1+m2)2+(n1+n2)2=(l12+m12+n12)+(l22+m22+n22)+2(l1l2+m1m2+n1n2)=1+1+2cosθ=2+2cosθ=4cos2θ2
Hence direction cosines of internal angle bisector are l1+l22cosθ2,m1+m22cosθ2,n1+n22cosθ2
Similarly , D.R.s of external angle bisector are l1−l2,m1−m2,n1−n2
So, the direction cosines of the external angle bisector are l1−l2∑(l1−l2)2,m1−m2∑(l1−l2)2,n1−n2∑(l1−l2)2
where, ∑(l1−l2)2=(l1−l2)2+(m1−m2)2+(n1−n2)2=(l12+m12+n12)+(l22+m22+n22)−2(l1l2+m1m2+n1n2)=1+1−2cosθ=2−2cosθ=4sin2θ2.
Hence, direction cosines of external angle bisector are l1−l22sinθ2,m1−m22sinθ2,n1−n22sinθ2
Hence, options 'B' and 'D' are correct.
Please disable the adBlock and continue. Thank you.