CBSE Questions for Class 12 Commerce Maths Three Dimensional Geometry Quiz 3 - MCQExams.com

Find the direction cosines of vector $$\overrightarrow { r } $$ which is equally inclined to $$OX,OY$$ and $$OZ$$. Find total number of such vectors.
  • $$\displaystyle \dfrac { 1 }{ \sqrt { 3 }  } ,\dfrac { 1 }{ \sqrt { 3 }  } ,\dfrac { 1 }{ \sqrt { 3 }  } ;6$$

  • $$\displaystyle \dfrac { 1 }{ \sqrt { 3 }  } ,\pm \dfrac { 1 }{ \sqrt { 3 }  } ,\dfrac { 1 }{ \sqrt { 3 }  } ;8$$

  • $$\displaystyle \pm \dfrac { 1 }{ \sqrt { 3 }  } ,\pm \dfrac { 1 }{ \sqrt { 3 }  } ,\pm \dfrac { 1 }{ \sqrt { 3 }  } ;8$$

  • None of these
lf $$\theta $$ is the angle between two lines whose d.c.s are $$l_{1},m_{1},n_{1}$$ and $$l_{2}, m_{2}, n_{2}$$, then the d.cs of one of the angular bisectors of the two lines are
  • $$\displaystyle \dfrac{l_{1}+l_{2}}{2}, \displaystyle \dfrac{m_{1}+m_{2}}{2}, \displaystyle \dfrac{n_{1}+n_{2}}{2}$$

  • $$\displaystyle \dfrac{l_{1}+l_{2}}{2\cos(\dfrac{\theta}{2})},\dfrac{m_{1}+m_{2}}{2\cos(\dfrac{\theta}{2})},\dfrac{n_{1}+n_{2}}{2\cos(\dfrac{\theta}{2})}$$

  • $$\displaystyle \dfrac{l_{1}+l_{2}}{\cos (\dfrac{\theta}{2})},\dfrac{m_{1}+m_{2}}{\cos(\dfrac{\theta}{2})},\dfrac{n_{1}+n_{2}}{\cos(\dfrac{\theta}{2})}$$

  • $$\displaystyle \dfrac{l_{\mathrm{I}}+l_{2}}{2\sin(\dfrac{\theta}{2})}\dfrac{m_{1}+m_{2}}{2\sin(\dfrac{\theta}{2})}\dfrac{n_{]}+n_{2}}{2\sin(\dfrac{\theta}{2})}$$

If $$l_{1},m_{1},n_{1}$$ and $$1_{2},m_{2},n_{2}$$ are the direction cosines of two lines, then $$(l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2})^{2}+\displaystyle\sum(m_{1}n_{2}-m_{2}n_{1})^{2}=$$
  • $$0$$
  • $$-1$$
  • $$1$$
  • $$2$$
The coordinates of a point P are $$(3,12,4)$$ w.r.t origin O, then the direction cosines of $$OP$$ are
  • $$3,12,4$$
  • $$\displaystyle \dfrac{1}{4}, \dfrac{1}{3}, \dfrac{1}{2}$$

  • $$\displaystyle \dfrac{3}{\sqrt{13}},\dfrac{1}{\sqrt{13}},\dfrac{2}{\sqrt{13}}$$

  • $$\displaystyle \dfrac{3}{13},\dfrac{12}{13},\dfrac{4}{13}$$

$$ox, oy$$ are positive $$\mathrm{x}$$-axis, positive $${y}$$-axis respectively where $${O}=(0, 0,0)$$ . The $${d.c.}$$s of the llne which bisects $$\angle xoy$$ are
  • $$1, 1, 0$$
  • $$\displaystyle \dfrac{1}{\sqrt{2}}, \displaystyle \dfrac{1}{\sqrt{2}},0$$
  • $$\displaystyle \dfrac{1}{\sqrt{2}},0, \displaystyle \dfrac{1}{\sqrt{2}}$$
  • $$0, 0, 1$$
If $$(2, 1, 3)$$ and $$(-1, 2, 4)$$ are the extremities of a diagonal of a rhombus then the d.rs of the other diagonal are
  • $$2, 3, -9$$
  • $$-2, 3, -9$$
  • $$1, -2, 4$$
  • $$2, 3,1$$
$$A = (1, 2, 3), B = (4, 5, 7), C = (-4, 3, -6), D =(2, k, 2)$$ are four points. If the lines $$AB$$ and $$CD$$ are parallel, then $$k =$$
  • $$0$$
  • $$-9$$
  • $$9$$
  • $$2$$
lf a line makes angles $$\alpha, \beta,\gamma$$ with $$OX, OY, OZ$$ respectively where $${O}=(0,0,0)$$, then $$\cos 2\alpha+\cos 2 \beta+\cos 2 \gamma=$$
  • $$1$$
  • $$0$$
  • $$2$$
  • $$-1$$
The direction cosines of the line passing through $$\mathrm{P}(2,3,-1)$$ and the origin are
  • $$\displaystyle \dfrac{2}{\sqrt{14}},\dfrac{3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}$$

  • $$\displaystyle \dfrac{2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}$$

  • $$\displaystyle \dfrac{-2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}$$

  • $$\displaystyle \dfrac{2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{-1}{\sqrt{14}}$$

If $$A$$ is $$(2, 4, 5),$$ and $$B$$ is $$(-7, -2, 8)$$, then which of the following is collinear with$$A$$ and $$B$$ is
  • $$(1, 2, 6)$$
  • $$(2, -1,6)$$
  • $$(-1, 2, 6)$$
  • $$(2, 6, -1)$$

lf a line makes $$\dfrac{\pi }{3},\dfrac{\pi }{4}$$ with the $$x$$-axis, $${y}$$-axis respectively, then the angle made by that line with the $$z$$- axis is
  • $$\displaystyle \frac{\pi}{2}$$
  • $$\displaystyle \frac{\pi}{3}$$
  • $$\displaystyle \frac{\pi}{4}$$
  • $$\displaystyle \frac{5\pi}{12}$$
If $$l, m, n$$ are the d.cs of the line joining $$(5, -3, 8)$$ and $$(6, -1, 6)$$ then $$l + m + n=$$
  • $$1$$
  • $$\displaystyle \dfrac{1}{3}$$
  • $$-1$$
  • $$\displaystyle \dfrac{5}{3}$$
If $$\dfrac{1}{2}, \displaystyle \dfrac{1}{2}$$, $$n(n<0)$$ are the dcs of a line, then the angle made by that line with $$OZ$$ where $$O=(0,0,0)$$ is
  • $$\displaystyle \dfrac{-1}{\sqrt{2}}$$
  • $$45^{o}$$
  • $$60^{o}$$
  • $$135^{o}$$
If the direction ratios of two lines are given by $$3lm-4ln+mn=0$$ and $$l+2m+3n=0$$, then the angle between the lines is
  • $$\displaystyle \dfrac { \pi  }{ 6 } $$
  • $$\displaystyle \dfrac { \pi  }{ 4 } $$
  • $$\displaystyle \dfrac { \pi  }{ 3 } $$
  • $$\displaystyle \dfrac { \pi  }{ 2 } $$
If $$P = (3, 4, 5)$$, $$Q= (4, 6, 3)$$, $$R= (-1, 2, 4)$$ and $$S=(1, 0, 5)$$ are four points, then the projection of $$RS$$ on $$PQ$$ is
  • $$\displaystyle \dfrac{8}{3}$$
  • $$\displaystyle \dfrac{4}{3}$$
  • $$4$$
  • $$0$$
If the projections of the line segment $$AB$$ on the coordinate axes are $$2, 3, 6$$, then the square of the sine of the angle made by $$AB$$ with $$x=0$$, is
  • $$\displaystyle \dfrac{3}{7}$$
  • $$\displaystyle \dfrac{3}{49}$$
  • $$\displaystyle \dfrac{4}{7}$$
  • $$\displaystyle \dfrac{40}{49}$$
If the d.rs of $$OA$$ and $$OB$$ are $$1, -1, -1$$ and $$2, -1, 1$$, then the d.cs of the line perpendicular to both $$OA$$ and $$OB$$ are
  • $$0,1, -1$$
  • $$-2, -3,1$$
  • $$\displaystyle \dfrac{-2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}$$

  • $$\displaystyle \dfrac{2}{\sqrt{41}},\dfrac{3}{\sqrt{41}},\dfrac{-1}{\sqrt{41}}$$

The projection of the line segment joining $$(0, 0, 0)$$ and $$(5, 2, 4)$$ on the line whose direction ratios are $$2, -3, 6$$ is
  • $$28$$
  • $$4$$
  • $$\displaystyle \dfrac{40}{7}$$
  • $$\sqrt{45}$$
lf $${P}(x,y,z)$$ is a point on the line segment  joining $${A}(2,2,4)$$ and $${B}(3,5,6)$$ such that projection of $$\overline{OP}$$ on axes are $$\displaystyle \dfrac{13}{5},\dfrac{19}{5},\dfrac{26}{5}$$ respectively, then $${P}$$ divide $${A}{B}$$ in the ratio
  • $$3: 2$$
  • $$2 : 3$$
  • $$1 : 2$$
  • $$1 : 3$$
The projections of a line segment on $$x,y\ and\ z$$ axes are respectively $$\sqrt{2},3,5$$. The length of the line segment is
  • $$6$$
  • $$11$$
  • $$8$$
  • $$5$$
If the d.rs of two lines are $$1, -2, 3$$ and $$2, 0, 1$$, then the d.rs of the line perpendicular to both the given lines is
  • $$-2,5, 4$$
  • $$2,-5,4$$
  • $$2,5,-4$$
  • $$1,5,-4$$
lf $${A}=(3,1, -2), {B}=(-1,0,1)$$ and $$l,m$$ are the projections of $${A}{B}$$ on the $${y}$$-axis, $$zx$$-plane respectively, then $$3l^{2}-m+1=$$
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$9$$
If the projections of the line segment $$AB$$ on the coordinate axes are $$12, 3, k$$ and $$AB = 13$$, then $$k^{2}-2k+3$$ is equal to:
  • $$0$$
  • $$1$$
  • $$11$$
  • $$27$$
The d.rs of the lines $$x=  ay + b$$, $$z= cy + d$$ are:
  • $$1, a, c$$
  • $$a, 1, c$$
  • $$b, 1, c$$
  • $$c, a, 1$$
Find the angles between the lines, whose direction cosines are give by the equation $${ l }^{ 2 }-{ m }^{ 2 }+{ n }^{ 2 }=0,l+m+n=0$$
  • $$0$$
  • $$\displaystyle \frac{\pi}{6}$$
  • $$\displaystyle \frac{\pi}{4}$$
  • $$\displaystyle \frac{\pi}{3}$$
lf $$AB \perp BC$$, then the value of $$\lambda$$ equal, where $$ A(2k,2,3), B(k,1,5),C(3+k,2,1)$$
  • $$3$$
  • $$\displaystyle \dfrac{1}{3}$$
  • $$-3$$
  • $$-\displaystyle \dfrac{1}{3}$$
If the projections of the line segment $$AB$$ on the coordinate axes are $$2, 3, 6$$, then the sum of the d.cs of the line $$AB$$ is
  • $$11$$
  • $$1$$
  • $$\displaystyle \frac{11}{49}$$
  • $$\displaystyle \frac{11}{7}$$
lf the $$\mathrm{D.R}$$s of two lines are given by the equations $$l+m+n=0$$ and $$l^{2}+m^{2}-n^{2}=0$$, then the angle between the two lines is:
  • $$60^{o}$$
  • $$30^{o}$$
  • $$45^{o}$$
  • $$90^{o}$$
lf the projections ofthe line segment$${A}{B}$$ on the $$yz$$-plane, $$zx$$-plane, $$xy$$-plane are $$\sqrt{160}, \sqrt{153},5$$ respectively, then the projection of $${A}{B}$$ on the $${z}$$-axis is
  • $$\sqrt{12}$$
  • $$\sqrt{13}$$
  • $$12$$
  • $$144$$
A line OP where O $$=$$ $$(0, 0, 0)$$ makes equal angles with ox, oy, oz. The point on OP, which is at a distance of $$6$$ units from O is:
  • $$(\displaystyle \dfrac{6}{\sqrt{3}}, \dfrac{6}{\sqrt{3}}, \dfrac{6}{\sqrt{3}})$$

  • $$(2\sqrt{3}, -2\sqrt{3},2\sqrt{3})$$
  • $$-(2\sqrt{3},2\sqrt{3},2\sqrt{3})$$
  • $$(6\sqrt{3},6\sqrt{3},6\sqrt{3})$$
A point $$P$$ lies on a line whose ends are $$A(1,2,3)$$ and $$B(2,10,1).$$ If $$z$$ component of $$P$$ is $$7,$$ then the coordinates of $$P$$ are
  • $$(-1,-14,7)$$
  • $$(1,-14,7)$$
  • $$(-1,14,7)$$
  • $$(1,14,7)$$
If $$l,m,n$$ are the d.cs of a line and $$l=\displaystyle \dfrac{1}{3}$$, then the maximum value of $$l\times m\times n $$ is
  • $$4$$
  • $$\displaystyle \dfrac{4}{9}$$
  • $$\displaystyle \dfrac{27}{4}$$
  • $$\displaystyle \dfrac{4}{27}$$
lf the direction ratios of two lines are given by the equations $$2l+2m-n=0$$ and $$ml+nl+lm=0$$, then the angle between the two lines is
  • $$60^{o}$$
  • $$30^{o}$$
  • $$45^{o}$$
  • $$90^{o}$$
The angle between the lines $$2x=3y=-z$$ and $$6x=-y=-4z$$ is 
  • $$0^{0}$$
  • $$90^{0}$$
  • $$45^{0}$$
  • $$30^{0}$$
If OA is equally inclined to OX, OY and OZ and if A is $$\sqrt{3} $$ units from the origin, then A is
  • $$(3, 3, 3)$$
  • $$( 1, -1, -1)$$
  • $$( -1, 1, -1)$$
  • $$(1,1,1)$$
If the d.rs of two lines are given by the equations $$l+m+n=0$$ and $$2lm-mn+2nl=0$$, then the angle between the two lines is
  • $$120^{o}$$
  • $$45^{o}$$
  • $$90^{\mathrm{o}}$$
  • $$30^{\mathrm{o}}$$
The line passing through the points $$(5,1,a)$$ and $$(3,b,1)$$ crosses the $$yz$$-plane at the point $$\left (0,\dfrac {17}{2}, \dfrac {-13}{2}\right)$$, then 
  • $$a=11,\ b=4$$
  • $$a=8,\ b=2$$
  • $$a=2,\ b=8$$
  • $$a=4,\ b=6$$

Assertion $$({A})$$ . The direction ratios of the line joining origin and point $$(x,y, z)$$ must be $$x, y, {z}$$

Reason (R): lf $$P(x, y, z)$$ is a point in space and $$|{OP}|={r},$$ then the direction cosines of $${O}{P}$$ are $$\displaystyle \dfrac{x}{r}$$ , $$\displaystyle \dfrac{y}{r}$$ , $$\displaystyle \dfrac{z}{r}$$

  • Both A and R are individually true and R is the correct explanation of A
  • Both A and R individually true but R is not the correct explanation of A
  • A is true but R is false
  • A is false but R is true
The projection of a directed line segment on the co-ordinate axes are $$12,4,3$$, then the direction cosines of the line are
  • $$\displaystyle \dfrac{-12}{13},\dfrac{-4}{13},\dfrac{-3}{13}$$
  • $$\displaystyle \dfrac{12}{13},\dfrac{4}{13},\dfrac{3}{13}$$
  • $$\displaystyle \dfrac{12}{13},\dfrac{-4}{13},\dfrac{3}{13}$$
  • $$\displaystyle \dfrac{12}{13},\dfrac{4}{13},\dfrac{-3}{13}$$

For waht value of $$\lambda$$ , the three numbers $$2\lambda  - 1 , \frac{1}{4}, \lambda -\frac{1}{2}$$ can be the direction cosines of a straight line?

  • $$\displaystyle \frac{1}{2} \pm \frac{{\sqrt 3 }}{4}$$
  • $$\displaystyle \frac{3}{4}$$
  • $$\displaystyle \pm \frac{3}{4}$$
  • $$\displaystyle \frac{{\sqrt 3 }}{2} \pm \frac{1}{4}$$
The direction ratios of a normal to the plane through $$(1, 0, 0)$$ and $$(0, 1, 0)$$, which makes an angle of $$\dfrac {\pi}{4}$$ with the plane $$x+y=3$$, are:
  • $$< 1, \sqrt 2, 1 >$$
  • $$< 1, 1, \sqrt 2 >$$
  • $$< 1, 1, 2 >$$
  • $$< \sqrt 2, 1, 1 >$$
What is the equation of the plane which passes through the z-axis and its perpendicular to the line $$\dfrac {x-a}{cos\theta}=\dfrac {y+2}{sin\theta}=\dfrac {z-3}{0} ?$$
  • $$x+y tan\theta=0$$
  • $$y+xtan\theta=0$$
  • $$x cos\theta-y sin\theta=0$$
  • $$x sin\theta-y cos\theta=0$$
If points $$\hat i + \hat j, \hat i - \hat j$$ and $$p \hat i + q \hat j + r \hat k$$ are collinear, then
  • $$p = 1$$
  • $$r = 0$$
  • $$q \in R$$
  • $$q \neq 1$$
If a line makes an angle of $$\dfrac {\pi}{4}$$ with the positive direction of each of $$x$$-axis and $$y$$-axis, then the angle that the line makes with the positive direction of $$z$$-axis is-
  • $$\dfrac {\pi}{3}$$
  • $$\dfrac {\pi}{4}$$
  • $$\dfrac {\pi}{2}$$
  • $$\dfrac {\pi}{6}$$
The equation of the plane passing through the lines $$\frac {x-4}{1}=\frac {y-3}{1}=\frac {z-2}{2}$$ and $$\frac {x-3}{1}=\frac {y-2}{-4}=\frac {z}{5}$$ is-
  • $$11x-y-3z=35$$
  • $$11x+y-3z=35$$
  • $$11x-y+3z=35$$
  • None of these.
A line makes an angle $$\theta$$ with each of the $$x$$- and $$z$$- axes. If the angle $$\beta$$, which it makes with the $$y$$-axis, is such that $$\sin^2\beta=3 \sin^2\theta$$, then $$\cos^2\theta$$ equals-
  • $$\dfrac {2}{3}$$
  • $$\dfrac {1}{5}$$
  • $$\dfrac {3}{5}$$
  • $$\dfrac {2}{5}$$
If the foot of the perpendicular from the origin to a plane is $$P(a, b, c)$$, the equation of the plane is-
  • $$\dfrac {x}{a}+\dfrac {y}{b}+\dfrac {z}{c}=3$$
  • $$ax+by+cz=3$$
  • $$ax+by+cz=a^2+b^2+c^2$$
  • $$ax+by+cz=a+b+c$$
A straight line $$L$$ on the $$xy$$-plane bisects the angle between $$OX$$ and $$OY$$. What are the direction cosines of$$ L$$?
  • $$ (1/\sqrt 2, 1/\sqrt 2, 0) $$
  • $$( 1/2, \sqrt 3/2, 0 )$$
  • $$(0, 0, 1) $$
  • $$(2/3, 2/3, 1/3) $$
If the points $$(-1, 3, 2), (-4, 2, -2)$$ and $$(5, 5, \lambda)$$ are collinear, then $$\lambda$$ is equal to
  • $$-10$$
  • $$5$$
  • $$-5$$
  • $$10$$
If the points $$(0, 1, -2), (3, \lambda, -1)$$ and $$(\mu, -3, -4)$$ are collinear, the point on the same line is
  • $$(12, 9, 2)$$
  • $$(1, -1, -2)$$
  • $$(5, -3, 4)$$
  • $$(0, 0, 0)$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers