$$\displaystyle \dfrac { 1 }{ \sqrt { 3 } } ,\dfrac { 1 }{ \sqrt { 3 } } ,\dfrac { 1 }{ \sqrt { 3 } } ;6$$
$$\displaystyle \dfrac { 1 }{ \sqrt { 3 } } ,\pm \dfrac { 1 }{ \sqrt { 3 } } ,\dfrac { 1 }{ \sqrt { 3 } } ;8$$
$$\displaystyle \pm \dfrac { 1 }{ \sqrt { 3 } } ,\pm \dfrac { 1 }{ \sqrt { 3 } } ,\pm \dfrac { 1 }{ \sqrt { 3 } } ;8$$
Explanation
Let $$l,m,n$$ be the direction cosines of $$\overrightarrow { r } $$.
Since $$\overrightarrow { r } $$ is equally inclined with $$x,y$$ and $$z$$ axis, $$l=m=n$$
$$\displaystyle \therefore { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }\Rightarrow 3{ l }^{ 3 }=1\Rightarrow l=\pm \dfrac { 1 }{ \sqrt { 3 } } $$
$$\therefore$$ direction cosines of $$\overrightarrow { r } $$ are $$\displaystyle \pm \dfrac { 1 }{ \sqrt { 3 } } ,\pm \dfrac { 1 }{ \sqrt { 3 } } ,\pm \dfrac { 1 }{ \sqrt { 3 } } $$
Now, $$\displaystyle \overrightarrow { r } =\left| \overrightarrow { r } \right| \left( li+mj+nk \right) =\overrightarrow { r } =\left| \overrightarrow { r } \right| \left( \pm \dfrac { 1 }{ \sqrt { 3 } } i\pm \dfrac { 1 }{ \sqrt { 3 } } j\pm \dfrac { 1 }{ \sqrt { 3 } } k \right) $$
Since $$+$$ and $$-$$ signs can be arranged at three places,
$$\Rightarrow$$ there are eight vectors, i.e $$2\times 2\times 2$$ which are equally inclined to axes.
$$\displaystyle \dfrac{l_{1}+l_{2}}{2}, \displaystyle \dfrac{m_{1}+m_{2}}{2}, \displaystyle \dfrac{n_{1}+n_{2}}{2}$$
$$\displaystyle \dfrac{l_{1}+l_{2}}{2\cos(\dfrac{\theta}{2})},\dfrac{m_{1}+m_{2}}{2\cos(\dfrac{\theta}{2})},\dfrac{n_{1}+n_{2}}{2\cos(\dfrac{\theta}{2})}$$
$$\displaystyle \dfrac{l_{1}+l_{2}}{\cos (\dfrac{\theta}{2})},\dfrac{m_{1}+m_{2}}{\cos(\dfrac{\theta}{2})},\dfrac{n_{1}+n_{2}}{\cos(\dfrac{\theta}{2})}$$
$$\displaystyle \dfrac{l_{\mathrm{I}}+l_{2}}{2\sin(\dfrac{\theta}{2})}\dfrac{m_{1}+m_{2}}{2\sin(\dfrac{\theta}{2})}\dfrac{n_{]}+n_{2}}{2\sin(\dfrac{\theta}{2})}$$
Let the direction cosines of the line be $$l_{1},m_{1},n_{1}$$.
Hence, $$l_{1}=\cos\alpha$$, $$m_{1}=\cos\beta$$, $$n_{1}=\cos\gamma$$
Similarly, for another line
$$l_{2}=\cos\alpha'$$, $$m_{2}=\cos\beta'$$, $$n_{2}=\cos\gamma'$$
Now the direction cosines of the angle bisector will be,
$$\displaystyle \cos\left(\dfrac{\alpha-\alpha'}{2}+\alpha'\right),\cos \left(\dfrac{\beta-\beta'}{2}+\beta' \right),\cos\left(\dfrac{\gamma-\gamma'}{2}+\gamma'\right)$$
$$=\cos\left(\dfrac{\alpha+\alpha'}{2}\right),\cos\left(\dfrac{\beta+\beta'}{2}\right),\cos\left(\dfrac{\gamma+\gamma'}{2}\right)$$
$$=l,m,n$$
Now consider $$\cos\left(\dfrac{\alpha+\alpha'}{2}\right)$$
Multiplying and dividing by $$\displaystyle 2\cos\left(\dfrac{\alpha-\alpha'}{2}\right)$$, we get
$$\displaystyle \dfrac{2\cos\left(\dfrac{\alpha-\alpha'}{2}\right)\cos\left(\dfrac{\alpha+\alpha'}{2}\right)}{2\cos\left(\dfrac{\alpha-\alpha'}{2}\right)}$$
$$=\displaystyle \dfrac{\cos\alpha+\cos\alpha'}{2\cos(\dfrac{\alpha-\alpha'}{2})}$$
$$=\displaystyle \dfrac{l_{1}+l_{2}}{2\cos(\dfrac{\alpha-\alpha'}{2})}$$
$$=l$$
Hence, $$ l = \dfrac{l_1+l_2}{2 \cos \left(\dfrac{\theta}{2} \right) }$$
Similarly,
$$m=\displaystyle \dfrac{m_{1}+m_{2}}{2\cos(\dfrac{\beta-\beta'}{2})}$$
$$n=\displaystyle \dfrac{n_{1}+n_{2}}{2\cos(\dfrac{\gamma-\gamma'}{2})}$$
Hence, option B is correct.
$$\displaystyle \dfrac{1}{4}, \dfrac{1}{3}, \dfrac{1}{2}$$
$$\displaystyle \dfrac{3}{\sqrt{13}},\dfrac{1}{\sqrt{13}},\dfrac{2}{\sqrt{13}}$$
$$\displaystyle \dfrac{3}{13},\dfrac{12}{13},\dfrac{4}{13}$$
$$\displaystyle \dfrac{2}{\sqrt{14}},\dfrac{3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}$$
$$\displaystyle \dfrac{2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}$$
$$\displaystyle \dfrac{-2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}$$
$$\displaystyle \dfrac{2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{-1}{\sqrt{14}}$$
We have, $$\left (\cos\left (\dfrac {\pi}{3}\right)\right)^{2}+\left (\cos\left (\dfrac {\pi}{4}\right)\right)^{2}+(\cos(\gamma))^{2}=1$$$$\Rightarrow \cos^{2}\gamma = \dfrac {1}{4}$$
$$ \displaystyle \Rightarrow \cos \gamma = \pm \frac{1}{2}$$$$\Rightarrow \gamma=\dfrac {\pi}{3}$$ or $$ \dfrac {2 \pi}{3}$$
Given $$3lm-4ln+mn=0$$ ...$$(1)$$
and $$l+2m+3n=0$$ ....$$(2)$$
From equation $$(2)$$, $$l=-(2m+3n)$$, putting in equation $$(1)$$, we get
$$-3\left( 2m+3n \right) m+4\left( 2m+3n \right) n+mn=0\\ \Rightarrow -6{ m }^{ 2 }+12{ n }^{ 2 }=0\Rightarrow m=\pm \sqrt { 2 } n$$
Now, $$m=\pm \sqrt { 2 } n\Rightarrow l=-\left( 2\sqrt { 2 } n+3n \right) =-\left( 2\sqrt { 2 } +3 \right) n$$
$$\therefore l:m:n=-\left( 3+2\sqrt { 2 } \right) n:\sqrt { 2 } n:n=-\left( 3+2\sqrt { 2 } \right) :-\sqrt { 2 } :1$$
Also, $$m=-\sqrt { 2 } n\Rightarrow l=-\left( -2\sqrt { 2 } +3 \right) n$$
$$\therefore l:m:n=-\left( 3-2\sqrt { 2 } \right) n:-\sqrt { 2 } n:n=-\left( 3-2\sqrt { 2 } \right) :-\sqrt { 2 } :1$$
$$\displaystyle \Rightarrow \cos { \theta } =\dfrac { \left( 3+2\sqrt { 2 } \right) \left( 3-2\sqrt { 2 } \right) +\left( \sqrt { 2 } \right) \left( -\sqrt { 2 } \right) +1.1 }{ \sqrt { { \left( 3+2\sqrt { 2 } \right) }^{ 2 }+{ \left( \sqrt { 2 } \right) }^{ 2 }+{ 1 }^{ 2 } } \sqrt { { \left( 3-2\sqrt { 2 } \right) }^{ 2 }+{ \left( -\sqrt { 2 } \right) }^{ 2 }+{ 1 }^{ 2 } } } $$
$$\displaystyle \Rightarrow \theta =\dfrac { \pi }{ 2 } $$
Let $$P(3,4,5)$$ $$Q(4,6,3)$$ $$R(-1,2,4)$$ and $$S(1,0,5)$$ be any four points.
The dr's of the line $$PQ$$ are $$(1,2,-2)$$
The dr's of the line $$RS$$ are $$(2,-2,1)$$
The projection of $$RS$$ on $$PQ$$ will be $$RS \times \cos \theta $$
$$RS \cos\theta$$ $$=$$ $$\displaystyle \dfrac{PQ \times RS}{|PQ|}$$
$$=$$ $$\displaystyle \dfrac{(i+2j-2k).(2i-2j+k)}{3}$$ $$=$$ $$\displaystyle \dfrac{4}{3}$$
$$\displaystyle \dfrac{2}{\sqrt{41}},\dfrac{3}{\sqrt{41}},\dfrac{-1}{\sqrt{41}}$$
Lines are $$l+m+n=0\Rightarrow -l=\left( m+n \right) $$
and $${ l }^{ 2 }-{ m }^{ 2 }+{ n }^{ 2 }=0\Rightarrow { l }^{ 2 }={ m }^{ 2 }-{ n }^{ 2 }$$
Solving them gives,
$${ \left( -\left( m+n \right) \right) }^{ 2 }={ m }^{ 2 }+{ n }^{ 2 }+2mn={ m }^{ 2 }-{ n }^{ 2 }\Rightarrow 2n\left( n+m \right) =0$$
Now, For $$n=0$$
$$m=-l$$, so d.c's $$\displaystyle \left( \dfrac { 1 }{ \sqrt { 2 } } ,-\dfrac { 1 }{ \sqrt { 2 } } ,0 \right) $$
And for $$n=-m$$
$$l=0$$ so d.c's $$\displaystyle \left( 0,\dfrac { 1 }{ \sqrt { 2 } } ,-\dfrac { 1 }{ \sqrt { 2 } } \right) $$
Angle between the lines $$\displaystyle \left| \cos { \theta } \right| =\left| \dfrac { 1 }{ 2 } \right| \Rightarrow \theta =\dfrac { \pi }{ 3 } $$
$$(\displaystyle \dfrac{6}{\sqrt{3}}, \dfrac{6}{\sqrt{3}}, \dfrac{6}{\sqrt{3}})$$
Assertion $$({A})$$ . The direction ratios of the line joining origin and point $$(x,y, z)$$ must be $$x, y, {z}$$
Reason (R): lf $$P(x, y, z)$$ is a point in space and $$|{OP}|={r},$$ then the direction cosines of $${O}{P}$$ are $$\displaystyle \dfrac{x}{r}$$ , $$\displaystyle \dfrac{y}{r}$$ , $$\displaystyle \dfrac{z}{r}$$
$$x=12,y=4,z=3$$
Direction cosines $$\displaystyle =\dfrac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} ,\displaystyle \dfrac{y}{\sqrt{x^{2}+y^{2}+z^{2}}},\dfrac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} $$
$$\displaystyle = \dfrac{12}{13},\dfrac{4}{13},\dfrac{3}{13}$$
Hence, option 'B' is correct.
For waht value of $$\lambda$$ , the three numbers $$2\lambda - 1 , \frac{1}{4}, \lambda -\frac{1}{2}$$ can be the direction cosines of a straight line?
$$ {\textbf{Step - 1: Find direction ratio}} $$
$$ {\text{Let the foot of the perpendicular be P(a,b,c)}}{\text{.}} $$
$$ {\text{Then, direction ratios of OP are }} {\text{a - 0,b - 0,c - 0 }}\;{\text{i}}{\text{.e}}{\text{ a,b,c}} $$
$$ {\textbf{Step - 2: Make equation}} $$
$$ {\text{So, the equation of the plane passing through P(a,b,c), }} $$
$$ {\text{the direction ratios of the normal to which are a,b,c is}} $$
$$ {\text{a(x - a) + b(y - b) + c(z - c) = 0}} $$
$$ \Rightarrow {\text{ax + by + cz = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + }}{{\text{c}}^2}{\text{.}} $$
$$ {\textbf{Hence,correct answer is option C}}{\text{.}} $$
Please disable the adBlock and continue. Thank you.