Explanation
Given:
Let the equation of plane passing through (1,2,3) and perpendicular to OA.
A=ˆi+2ˆj−3ˆk
→n=→OA=ˆi+2ˆj−3ˆk
a=|ˆi+2ˆj−3ˆk|=√1+4+9=√14
ˆn=ˆi+2ˆj−3ˆk√14
The equation of the required plane is →r⋅→n=a
⇒→r⋅(ˆi+2ˆj−3ˆk√14)=√14
⇒→r⋅(ˆi+2ˆj−3ˆk)=14
⇒x+2y−3z=14
Thus, the equation of the plane is x+2y−3z=14.
We know that, cos2α+cos2β+cos2γ=1
But given that,
α =β = γ
cos2α+cos2α+cos2α=1
3cos2α=1
cosα=±1√3
Hence, direction cosine are (±1√3,±1√3,±1√3)
We know that ,
The direction cosines of a line making angle α with x-axis, β with y- axis and γ with z-axis are l,m,n.
Then,
l=cosα,m=cosβ,n=cosγ
Given that α=900,β=600andγ=600
So, direction cosines of a line
l=cos900,m=cos600,n=cos600
l=0,m=12,n=12
Therefore direction cosines are (0,12,12).
According to question.................
⇒l+m+n=0−−−−(i)l=−(m+n)⇒l2=m2+n2−−−(ii)⇒(−(m+n))2=m2+n2⇒(m+n)2=m2+n2⇒m2+n2+2mn=m2+n2⇒2mn=0∴mn=0therearetwocase:m=0,n=0case1:(m=0)l=−n|usingequ:l+m+n=0−−−−(i)suppose:l=k,m=o,n=−k⇒l2+m2+n2=1⇒k2+0+k2=1⇒k=1√2Apply,⇒l=1√2,m=o,n=−1√2(weAsume:l1=1√2,m1=o,n1=−1√2case2:(n=0)l=−m|usingequ:l+m+n=0−−−−(i)suppose:⇒l=k,m=−k,n=0(then,l2+m2+n2=1k2+k2+0=1k=1√2apply,⇒l=1√2,m=−1√2,n=0(weAssume:l2=1√2,m2=−1√2,n2=0Anglebetween2lines=θcosθ=(l1+m1+n1).(l2+m2+n2)√(l12+m12+n12).(l22+m22+n22)=l1l2+m1m2+n1n2√(l12+m12+n12)(l22+m22+n22)=1√2.1√2+0.−1√2+−1√2.0√(12+12+0)(12+12 +0)=12√1cosθ=12,∴θ=π3
So,that the correct option is B.
We have,
Given points are (3,4,7)and(5,1,6).
We know that,
Vector equation of a line passing through the two points with position vectors →a and →b is
→r=→a+λ(→b−→a)
Let the given points are A(3,4,7)and(5,1,6)
Now,
Equation of vector,
→r=(3→i+4→j+7→k)+λ(5→i+→j+6→k−3→i−4→j−7→k)
→r=(3→i+4→j+7→k)+λ(2→i−3→j−→k)
Hence, this is the answer.
Please disable the adBlock and continue. Thank you.