Explanation
Given:
Let the equation of plane passing through $$\left ( 1, 2, 3 \right ) $$ and perpendicular to $$ OA $$.
$$ A = \hat{i}+2\hat j-3\hat k $$
$$\vec{n} = \overrightarrow{OA}=\hat i+2\hat j-3\hat k $$
$$a=|\hat i+2\hat j-3\hat k|=\sqrt{1+4+9}=\sqrt{14}$$
$$\hat{n}=\dfrac{\hat i+2\hat j-3\hat k}{\sqrt{14}}$$
The equation of the required plane is $$ \vec{r}\cdot \vec{n}=a$$
$$\Rightarrow \vec{r}\cdot \left (\dfrac{\hat i+2\hat j-3\hat k}{\sqrt{14}} \right ) =\sqrt{14}$$
$$\Rightarrow \vec{r} \cdot \left (\hat i+2\hat j-3\hat k \right ) =14 $$
$$\Rightarrow x + 2y - 3z = 14 $$
Thus, the equation of the plane is $$ x + 2y - 3z = 14 $$.
We know that, $${{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +{{\cos }^{2}}\gamma =1$$
But given that,
$$ \alpha$$ =$$\beta$$ = $$\gamma$$
$$ {{\cos }^{2}}\alpha +{{\cos }^{2}}\alpha +{{\cos }^{2}}\alpha =1 $$
$$ 3{{\cos }^{2}}\alpha =1 $$
$$ \cos \alpha =\pm \dfrac{1}{\sqrt{3}} $$
Hence, direction cosine are $$\left( \pm \dfrac{1}{\sqrt{3}},\pm \dfrac{1}{\sqrt{3}},\pm \dfrac{1}{\sqrt{3}} \right)$$
We know that ,
The direction cosines of a line making angle $$\alpha $$ with x-axis, $$\beta $$ with y- axis and $$\gamma $$ with z-axis are $$l,m,n.$$
Then,
$$l=\cos \alpha ,\,\,\,m=\cos \beta ,\,\,\,n=\cos \gamma $$
Given that $$\alpha ={{90}^{0}},\,\,\,\,\beta ={{60}^{0}}\,and\,\,\,\,\gamma ={{60}^{0}}$$
So, direction cosines of a line
$$l=\cos {{90}^{0}},\,\,\,m=\cos {{60}^{0}},\,\,\,n=\cos {{60}^{0}}$$
$$l=0,\,\,\,m=\dfrac{1}{2},\,\,\,n=\dfrac{1}{2}$$
Therefore direction cosines are $$\left( 0,\dfrac{1}{2},\dfrac{1}{2} \right)$$.
According to question.................
$$\begin{array}{l} \Rightarrow l+m+n=0----(i) \\ \, \, \, \, \, \, l=-\, (m+n) \\ \, \Rightarrow { l^{ 2 } }={ m^{ 2 } }+{ n^{ 2 } }---(ii) \\ \, \, \, \, \, \, \, \, \Rightarrow \, { \left( { -\, (m+n) } \right) ^{ 2 } }={ m^{ 2 } }+{ n^{ 2 } } \\ \, \, \, \, \, \, \, \, \, \Rightarrow { (m+n)^{ 2 } }={ m^{ 2 } }+{ n^{ 2 } } \\ \, \, \, \, \, \, \Rightarrow { m^{ 2 } }+{ n^{ 2 } }+2mn={ m^{ 2 } }+{ n^{ 2 } } \\ \, \, \, \, \, \, \, \, \, \, \, \Rightarrow 2mn=0 \\ \, \, \, \, \, \, \, \, \, \, \, \therefore \, \, \, \, mn=0 \\ there\, \, are\, \, two\, \, \, case:\, \, \, m=0,n=0 \\ case\, \, 1:\, \, (m=0) \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, l=-n\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left| { u{ { sing } }\, equ\, :l+m+n=0----(i) } \right. \\ \, suppose: \\ \, l=k,\, \, m=o,\, \, n=-k \\ \Rightarrow { l^{ 2 } }+{ m^{ 2 } }+{ n^{ 2 } }=1 \\ \Rightarrow { k^{ 2 } }+0+{ k^{ 2 } }=1 \\ \Rightarrow k=\dfrac { 1 }{ { \sqrt { 2 } } } \, \, \\ Apply, \\ \Rightarrow l=\dfrac { 1 }{ { \sqrt { 2 } } } \, ,\, \, \, \, m=o,\, \, \, \, n=\dfrac { { -1 } }{ { \sqrt { 2 } } } \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, (we\, Asume:\, { l_{ 1 } }=\dfrac { 1 }{ { \sqrt { 2 } } } \, ,\, \, \, \, { m_{ 1 } }=o,\, \, \, \, { n_{ 1 } }=\dfrac { { -1 } }{ { \sqrt { 2 } } } \, \\ case\, \, 2:\, \, \, (n=0) \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, l=-m\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left| { u{ { sing } } } \right. \, \, equ:l+m+n=0----(i) \\suppose:\, \, \\ \, \, \Rightarrow \, \, l=k,\, \, \, \, \, m=-k,\, \, \, n=0\, \, \, \, \, \, \, ( \\ \, then, \\ { l^{ 2 } }+{ m^{ 2 } }+{ n^{ 2 } }=1 \\ { k^{ 2 } }+{ k^{ 2 } }+0=1 \\ k=\dfrac { 1 }{ { \sqrt { 2 } } } \\ apply, \\ \Rightarrow l=\dfrac { 1 }{ { \sqrt { 2 } } } \, ,\, \, m=\dfrac { { -1 } }{ { \sqrt { 2 } } } ,\, \, n=0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, (we\, Assume:{ l_{ 2 } }=\dfrac { 1 }{ { \sqrt { 2 } } } \, ,\, \, { m_{ 2 } }=\dfrac { { -1 } }{ { \sqrt { 2 } } } ,\, \, { n_{ 2 } }=0\, \, \\ Angle\, \, between\, \, \, 2\, lines=\theta \\ \cos \theta =\dfrac { { \, \, \, \, \, \, \, ({ l_{ 1 } }+{ m_{ 1 } }+{ n_{ 1 } })\, .({ l_{ 2 } }+{ m_{ 2 } }+{ n_{ 2 } })\, \, \, \, } }{ { \sqrt { ({ l_{ 1 } }^{ 2 }+{ m_{ 1 } }^{ 2 }+{ n_{ 1 } }^{ 2 })\, .\, \, ({ l_{ 2 } }^{ 2 }+{ m_{ 2 } }^{ 2 }+{ n_{ 2 } }^{ 2 })\, } } } \\ \, \, \, =\dfrac { { { l_{ 1 } }\, { l_{ 2 } }+{ m_{ 1 } }{ m_{ 2 } }+{ n_{ 1 } }{ n_{ 2 } } } }{ { \sqrt { ({ l_{ 1 } }^{ 2 }+{ m_{ 1 } }^{ 2 }+{ n_{ 1 } }^{ 2 })\, \, (\, { l_{ 2 } }^{ 2 }+{ m_{ 2 } }^{ 2 }+{ n_{ 2 } }^{ 2 }) } } } \\ \, =\dfrac { { \dfrac { 1 }{ { \sqrt { 2 } } } . \dfrac { 1 }{ { \sqrt { 2 } } } + 0 .\dfrac { { -1 } }{ { \sqrt { 2 } } } +\dfrac { { -1 } }{ { \sqrt { 2 } } } . 0 } }{ { \sqrt { \left( { \dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 } +0} \right) \, \, \left( { \dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 } \ +0 } \right) } } } =\dfrac { { \dfrac { 1 }{ 2 } } }{ { \sqrt { 1 } } } \\ \cos \theta =\dfrac { 1 }{ 2 } ,\, \, \, \, \, \, \, \, \therefore \, \, \, \theta =\dfrac { \pi }{ 3 } \end{array}$$
So,that the correct option is B.
We have,
Given points are $$\left( 3,4,7 \right)\,\,and\,\,\left( 5,1,6 \right)$$.
We know that,
Vector equation of a line passing through the two points with position vectors $$\overrightarrow{a}$$ and $$\overrightarrow{b}$$ is
$$\overrightarrow{r}=\overrightarrow{a}+\lambda \left( \overrightarrow{b}-\overrightarrow{a} \right)$$
Let the given points are $$A\left( 3,4,7 \right)\,\,and\,\,\left( 5,1,6 \right)$$
Now,
Equation of vector,
$$ \overrightarrow{r}=\left( 3\overrightarrow{i}+4\overrightarrow{j}+7\overrightarrow{k} \right)+\lambda \left( 5\overrightarrow{i}+\overrightarrow{j}+6\overrightarrow{k}-3\overrightarrow{i}-4\overrightarrow{j}-7\overrightarrow{k} \right) $$
$$ \overrightarrow{r}=\left( 3\overrightarrow{i}+4\overrightarrow{j}+7\overrightarrow{k} \right)+\lambda \left( 2\overrightarrow{i}-3\overrightarrow{j}-\overrightarrow{k} \right) $$
Hence, this is the answer.
Please disable the adBlock and continue. Thank you.