CBSE Questions for Class 12 Commerce Maths Three Dimensional Geometry Quiz 7 - MCQExams.com

The acute angle between two lines such that the direction cosines l,m,n of each of them satisfy the equations $$l+m+n=0$$ and $${ l }^{ 2 }+{ m }^{ 2 }-{ n }^{ 2 }=0$$ is :-

  • $$30$$
  • $$45$$
  • $$60$$
  • $$15$$
Find in a symmetrical form, the equations of the line formed by the planes $$x+y+z+1=0, 4x+y-2z+2=0$$ and find its direction-cosines.
  • $$\dfrac{x-\frac{1}{3}}{1}=\dfrac{y+\frac{2}{3}}{-2}=\dfrac{z-0}{1}; -\dfrac{1}{\sqrt 6},\dfrac{2}{\sqrt{6}},\dfrac{1}{\sqrt 6}$$
  • $$\dfrac{x-\frac{1}{3}}{-1}=\dfrac{y-\frac{2}{3}}{2}=\dfrac{z-0}{1}; \dfrac{1}{\sqrt 6},\dfrac{2}{\sqrt{6}},-\dfrac{1}{\sqrt 6}$$
  • $$\dfrac{x+\frac{1}{3}}{-1}=\dfrac{y+\frac{2}{3}}{2}=\dfrac{z+0}{-1}; -\dfrac{1}{\sqrt 6},\dfrac{2}{\sqrt{6}},-\dfrac{1}{\sqrt 6}$$
  • $$\dfrac{x+\frac{1}{3}}{1}=\dfrac{y-\frac{2}{3}}{2}=\dfrac{z+0}{1}; \dfrac{1}{\sqrt 6}, -\dfrac{2}{\sqrt{6}},\dfrac{1}{\sqrt 6}$$
The equation of plane passing through $$(4, 5, -1)$$ having normal $$3\hat{i}-\hat{j}+\hat{k}$$ is ___________.
  • $$4x-5y+z=6$$
  • $$3x-y+z=6$$
  • $$3x+y+z=6$$
  • $$4x+5y-z=6$$
Vector equation of line $$\dfrac{3-x}{3}=\dfrac{2y-3}{5}=\dfrac{z}{2}$$ is __________ $$k\in R$$.
  • $$\bar{r}=(3, 5, 2)+k(3, 3, 0)$$
  • $$\bar{r}=\left(3, \dfrac{3}{2}, 0\right)+k(-6, 5, 4)$$
  • $$\bar{r}=(3, 3, 0)+k(3, 5, 2)$$
  • $$\bar{r}=(-6, 5, 4)+$$ $$k\left( 3, \dfrac{3}{2}, 0\right)$$
The vector equation of the plane which is at distance of $$10$$ unit from the origin and perpendicular to the vector $$4i+4j-2k$$ is
  • $$r.(4i+4j-2k)=10$$
  • $$r.(4i+4j-2k)=20$$
  • $$r.(4i+4j-2k)=30$$
  • $$r.(4i+4j-2k)=60$$
A line making angles $$45^o$$ and $$60^o$$ with the positive direction of $$x-$$ axis and $$y-$$ axis respectively. Then the angle made by the line with positive direction of $$z-$$ axis is 
  • $$60^o$$
  • $$120^o$$
  • $$60^o$$ or $$120^o$$
  • $$None\ of\ these$$
If the direction cosine of a directed line be $$a, 3a, 7a$$ then $$a =$$
  • $$\pm 1/\sqrt{59}$$
  • $$\pm 1/9$$
  • $$\pm 2/7$$
  • None of these
The direction ratios of the line $$6x - 2 = 3y + 1 = 2z - 2$$ are 
  • $$\dfrac{1}{\sqrt{3}} , \dfrac{1}{\sqrt{3}} ,\dfrac{1}{\sqrt{3}}$$
  • $$\dfrac{1}{\sqrt{14}} , \dfrac{2}{\sqrt{14}} , \dfrac{3}{\sqrt{14}}$$
  • $$1, 2, 3$$
  • None of these
If O is the origin and the coordinates of P is $$(1, 2, -3)$$, then find the equation of the plane passing through P and perpendicular to OP.
  • $$x-2y-3z=-15$$
  • $$x+2y-3z=14$$
  • $$x-2y+3z=15$$
  • $$x-2y-3z=15$$
The direction cosines of two lines are related by $$l+m+n=0$$ and $$al^2+bm^2+cn^2=0$$. The lines are parallel if
  • $$a+b+c=0$$
  • $$a^{-1}+b^{-1}+c^{-1}=0$$
  • $$a=b=c$$
  • $$None\ of\ these$$
The direction cosines of a line segment AB are $$ - \dfrac{2}{{\sqrt {17} }},\dfrac{3}{{\sqrt {17} }}, - \dfrac{2}{{\sqrt {17} }}$$. If $$AB=\sqrt {17} $$ and the coordinates of A are $$(3,-6,10)$$, then the coordinates of B are 
  • $$(1,-2,4)$$
  • $$(2,5,8)$$
  • $$(-1,3,-8)$$
  • $$(1,-3,8)$$
The foot of the perpendicular drawn from the origin to a plane is $$(1, 2, -3)$$. Find the equation of the plane.
  • $$x-2y-3z=14$$
  • $$x-2y+3z=14$$
  • $$x+2y-3z=14$$
  • $$x+2y+3z=14$$
If $$l,m,n$$ are d.c's of vector $$\overline {OP}$$ then maximum value of $$lmn$$ is
  • $$\dfrac{1}{{\sqrt 3 }}$$
  • $$\dfrac{1}{{2\sqrt 3 }}$$
  • $$\dfrac{1}{{3\sqrt 3 }}$$
  • $$\dfrac{2}{{\sqrt 3 }}$$
If a  line has the direction ratios $$4, -12,18$$ then find its direction cosines.
  • $$-\dfrac{2}{11},-\dfrac{6}{11},-\dfrac{9}{11}$$
  • $$-\dfrac{2}{11},\dfrac{6}{11},-\dfrac{9}{11}$$
  • $$\dfrac{2}{11},-\dfrac{6}{11},\dfrac{9}{11}$$
  • $$\dfrac{2}{11},\dfrac{6}{11},\dfrac{9}{11}$$
A mirror and a source of light are situated at the origin $${\rm O}$$ and at a point on $${\rm O}X$$, respectively. A ray of light from the source strikes the mirror and is reflected. If the direction ratios of the normal to the plane are $$1,\, - 1,\,1$$, then find the DCs of the reflected ray.
  • $$\dfrac {1}{3},\dfrac {2}{3},\dfrac {2}{3}$$
  • $$-\dfrac {1}{3},\dfrac {2}{3},\dfrac {2}{3}$$
  • $$-\dfrac {1}{3},-\dfrac {2}{3},-\dfrac {2}{3}$$
  • $$-\dfrac {1}{3},-\dfrac {2}{3},\dfrac {2}{3}$$
The direction`cosines of a line equally inclined to three mutually perpendicular lines having D.C.'s as $${\ell _1}{m_1}{n_1}:{\ell _2}{m_2}{n_2}:{\ell _3}{m_3}{n_3}\,\,$$ are 
  • $${l _1} + {l _2} + {l _3},\,{m_1} + {m_2} + {m_3},\,{n_1} + {n_2} + {n_3}$$
  • $$\left( \pm \dfrac{1}{\sqrt{3}},\pm \dfrac{1}{\sqrt{3}},\pm \dfrac{1}{\sqrt{3}} \right)$$
  • $$\left( \pm \dfrac{1}{\sqrt{2}},\pm \dfrac{1}{\sqrt{3}},\pm \dfrac{1}{\sqrt{4}} \right)$$
  • none of these
$$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are three non-zero vectors, no two of which are collinear and the vector $$ \overrightarrow a + \overrightarrow b $$ is collinear with $$\overrightarrow c $$, $$ \overrightarrow b + \overrightarrow a$$ is collinear with $$\overrightarrow a $$, then $$\overrightarrow a + \overrightarrow b + \overrightarrow c $$ is equal to -
  • $$\overrightarrow a $$
  • $$\overrightarrow b $$
  • $$\overrightarrow c $$
  • none
 $$\dfrac{2}{\sqrt{3}}, \dfrac{-2}{\sqrt{3}}, \dfrac{-1}{\sqrt{3}}$$ can be the direction ratios of a directed line.
  • True
  • False
A line passes through the point $$(6,-7, -1)$$ and $$(2,-3,1)$$. if the angle $$\alpha$$ which the line makes with the positive direction of x-axis is acute, the direction cosines of the line are,
  • $$2/3, -2/3 , -1/3$$
  • $$2/3 , 2/3 , -1/3$$
  • $$2/3, -2/3 , 1/3$$
  • $$2/3 , 2/3, 1/3$$
In a line $$OP$$ through the origin $$O$$ makes angles of $${90^ \circ },\,{60^ \circ }\,and\,{60^ \circ }$$ with $$x, y$$ and $$z$$ axis respectively then the direction cosines of $$OP$$ are  
  • $$\left( A \right)\,\,\dfrac{1}{2},\dfrac{1}{{\sqrt 2 }},\dfrac{{\sqrt 3 }}{2}$$
  • $$\left( B \right)\,\,\sqrt 2 ,\,2\,\sqrt 6 $$
  • $$\left( C \right)\,\,\dfrac{{\sqrt 3 }}{2},\,\dfrac{1}{{\sqrt 2 }},\,\dfrac{1}{2}$$
  • None of these
The direction cosines of the line which is perpendicular to the lines with direction cosines proportional to $$(1, -2, -2)$$ & $$(0, 2, 1)$$ are
  • $$\left( {\dfrac{2}{3}, - \dfrac{1}{3},\dfrac{2}{3}} \right)$$
  • $$\left( {\dfrac{2}{3},\dfrac{1}{3},\dfrac{2}{3}} \right)$$
  • $$\left( {\dfrac{2}{3},\dfrac{1}{3},\dfrac{{ - 2}}{3}} \right)$$
  • $$\left( {\dfrac{{ - 2}}{3},\dfrac{1}{3},\dfrac{2}{3}} \right)$$
The projection of the join of the points $$(3,4,2),(5,1,8)$$ on the line whose d.c's are $$\left( {\frac{2}{7},\frac{3}{7},\frac{6}{7}} \right)$$ is 
  • $$7$$
  • $$\frac{{31}}{{7}}$$
  • $$\frac{{42}}{{13}}$$
  • $$\frac{{38}}{{13}}$$
Direction ratios of the normal to the plane passing through the points $$(0, 1, 1),(1, 1, 2)$$ and $$(-1, 2, -2)$$ are
  • $$(1, 1, 1)$$
  • $$(2, 1, -1)$$
  • $$(1, 2, -1)$$
  • $$(1, -2, -1)$$
A lines makes angles $$\dfrac{\alpha }{2},\dfrac{\beta }{2},\dfrac{\gamma }{2}$$ with positive direction of coordinate axes, then $$\cos \alpha  + \cos \beta  + \cos \gamma $$ is equal to
  • $$-1$$
  • $$1$$
  • $$2$$
  • $$3$$
State whether the following statement is true or false.
If l, m, n are the direction cosines of a line, then $$l^2+m^2+n^2=1$$. 
  • True
  • False
A vector $$\vec{V}$$ is inclined at equal angles to axes OX, OY and OZ. If the magnitude of $$\vec{V}$$ is $$6$$ units, then $$\vec{V}$$ is?
  • $$2\sqrt{3}(\hat{i}+\hat{j}+\hat{k})$$
  • $$2\sqrt{3}(\hat{i}-\hat{j}+\hat{k})$$
  • $$\sqrt{2}(\hat{i}+\hat{j}+\hat{k})$$
  • $$2\sqrt{3}(\hat{i}+\hat{j}-\hat{k})$$
 The points with position vectors $$\vec {a}=\hat {i}-2\hat {j}+3\hat {k}, \vec {b}=2\hat {i}+3\hat {j}-4\hat {k}$$ & $$-7\hat {j}+10\hat {k}$$ are collinear.
  • True
  • False
A point at a distance of $$\sqrt6$$ from the origin which lies on the straight line $$\frac{x-1}{1}=\frac{y-2}{2}=\frac{z+1}{3}$$ will be
  • $$(1, -1, 2)$$
  • $$(1, 2, -1)$$
  • $$\left( \frac{5}{7}, \frac{10}{7}, \frac{-13}{7}\right)$$
  • $$\left( \frac{5}{7}, \frac{2}{7}, \frac{-6}{7}\right)$$
The angle between the lines whose direction cosines satisfy the equations $$l+m+n=0$$ and $$l^{2}+m^{2}+n^{2}$$ is
  • $$\dfrac{\pi}{2}$$
  • $$\dfrac{\pi}{3}$$
  • $$\dfrac{\pi}{4}$$
  • $$\dfrac{\pi}{6}$$
A line passes through the points $$(6,-7,-1)$$ and $$(2,-3, 1)$$. If the angle a which the line makes with the positive direction of x-axis is acute, the direction cosines of the line are.
  • $$(2/3),(-2/3),(-1/3)$$
  • $$(2/3),(2/3), (-1/3)$$
  • $$(2/3), (-7/3), (1/3)$$
  • $$(8/3), (2/3), (1/3)$$
The equation to the altitude of the altitude triangle formed by $$\left( {1,1,1} \right).\left( {1,2,3} \right),\left( {2, - 1,1} \right)$$ through $$\left( {1,1,1} \right)$$  is 
  • $$\bar r = \left( {\bar i + \bar j + \bar k} \right) + t\left( {\bar i - \bar j - 2\bar k} \right)$$
  • $$\bar r = \left( {\bar i - \bar j + \bar k} \right) + t\left( {\bar i + \bar j - 2\bar k} \right)$$
  • $$\bar r = \left( {\bar i + \bar j + \bar k} \right) + t\left( {\bar i - \bar j + 2\bar k} \right)$$
  • $$\bar r = \left( {\bar i - \bar j - \bar k} \right) + t\left( {\bar i + \bar j - 2\bar k} \right)$$
Equation of pair of lines passing through origin and making and angle $${\tan ^{ - 1}}2$$ with the lines $$4x-3y+7=0$$.
  • $$
    {\left( {4x - 3y} \right)^2} - 4{\left( {3x + 4y} \right)^2} = 0$$
  • $${\left( {4x - 3y} \right)^2} - {\left( {3x + 4y} \right)^2} = 0$$
  • $${\left( {4x - 3y} \right)^2} - 3{\left( {3x + 4y} \right)^2} = 0$$
  • $$4{\left( {4x - 3y} \right)^2} - {\left( {3x + 4y} \right)^2} = 0$$
Prove that the points $$A=(1,2,3),B(3,4,7),C(-3,-2,-5)$$ are collinear & find the ratio in which $$B$$ divides $$AC$$. 
  • $$2:5$$
  • $$2:3$$
  • $$2:8$$
  • $$2:7$$
If $$\vec { a } ,\vec { b } ,\vec { c } $$ are three non-zero vectors, no two of which are collinear and the vector $$\vec { a } +\vec { b } $$ is collinear with $$\vec { c }, \vec { b } +\vec { c } $$ is collinear with $$\vec {a},$$ then $$\vec { a } +\vec { b } +\vec { c }$$ is equal to -
  • $$\vec {a}$$
  • $$\vec {b}$$
  • $$\vec {c}$$
  • $$none\ of\ these$$
Find the equation of the plane if the foot of the perpendicular from origin to the plane is $$ (2, 3, -5 ) $$
  • $$2x+3y+5y=38$$
  • $$2x+3y-5y=38$$
  • $$2x-3y-5y=38$$
  • None of these
If the points with position vectors $$10\hat { i } +\lambda \hat { j } ,3\hat { i } -\hat { j } $$ and $$4\hat { i } +5\hat { j } $$ are collinear then $$\lambda$$ is 
  • $$41$$
  • $$-41$$
  • $$42$$
  • $$-42$$
If the points with position vectors $$60\hat{i}+3\hat{j}, 40\hat{i}-8\hat{j}$$ and $$a\hat{i}-52j$$ are collinear, then $$a=?$$
  • $$-40$$
  • $$-20$$
  • $$20$$
  • $$40$$
If $$A ( 2 \overline{i} - \overline{j} - 3 \overline{k} , B ( 4 \overline {i} + \overline{j} - \overline{k} )$$ and $$ D( \overline{i} - \overline{j} - 2 \overline{k})$$ then the vector equation of the plane parallel to $$ \overline{ABC} $$ and passing through the centroid of the tetrahedron $$ABCD$$ is :
  • $$ \overline{r} = ( 2 \overline{i} - \overline{j} - \overline{k} + s ( 2 \overline{i} + 2 \overline{j} + 2 \overline{k} ) + t (\overline{i} - \overline{k} )$$
  • $$ \overline{r} = ( 2 \overline{i} - \overline{j} -3 \overline{k})+ s ( \overline{i} + \overline{j} + \overline{k} ) + t (\overline{i} - \overline{k} )$$
  • $$ \overline{r} = ( 2 \overline{i} - \overline{j} - \overline{k} )+ s ( \overline{i} + \overline{j} + \overline{k} ) + t (\overline{i} + \overline{j} -5 \overline{k} )$$
  • $$ \overline{r} = ( 2 \overline{i} - \overline{j} - \overline{k} )+ s ( \overline{i} + \overline{j} + \overline{k} ) + t (\overline{i} + \overline{j} +5 \overline{k} )$$
The distance of the point $$3\hat{i}+5\hat{k}$$ from the line parallel to the vector $$6\hat{i}+\hat{j}-2\hat{k}$$ and passing through the point $$8\hat{i}+3\hat{j}+\hat{k}$$ is 
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
$$A=(-1, 2, -3), B=(5, 0, -6), C=(0, 4, -1)$$ are the vertices of a triangle. The d.c's of the internal bisector of $$\angle$$BAC are?
  • $$\left(\dfrac{25}{\sqrt{714}}, \dfrac{-8}{\sqrt{714}}, \dfrac{-5}{\sqrt{714}}\right)$$
  • $$\left(\dfrac{5}{\sqrt{74}}, \dfrac{6}{\sqrt{74}}, \dfrac{8}{\sqrt{74}}\right)$$
  • $$\left(\dfrac{25}{\sqrt{714}}, \dfrac{8}{\sqrt{714}}, \dfrac{5}{\sqrt{714}}\right)$$
  • $$\left(\dfrac{-5}{\sqrt{74}}, \dfrac{6}{\sqrt{74}}, \dfrac{-8}{\sqrt{74}}\right)$$
Let $$\overrightarrow{p}=3a{x}^{2}\hat{i}-2\left(x-1\right)\hat{j}$$ and $$\overrightarrow{q}=b\left(x-1\right)\hat{i}+x\hat{j}$$. If $$ab<0$$ then $$\overrightarrow{p}$$ and $$\overrightarrow{q}$$ are parallel for 
  • atleast one $$x$$ is $$\left(0,1\right)$$
  • atleast one $$x$$ is $$\left(-1,0\right)$$
  • atleast one $$x$$ is $$\left(1,2\right)$$
  • none of these
If $$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$$ are non-coplanar and $$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\alpha\overrightarrow{d}$$ ,  $$\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d}=\beta\overrightarrow{a}$$ then $$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d}=$$
  • $$0$$
  • $$\alpha\overrightarrow{a}$$
  • $$\beta\overrightarrow{b} $$
  • $$\left(\alpha+\beta\right)\overrightarrow{c}$$
If the angle between the line $$ x = \dfrac { y - 1 } { 2 } = \dfrac { z - 3 } { \lambda } $$ and the plane $$ x + 2 y + 3 z = 4 \text { is } \cos ^ { - 1 } \left( \sqrt { \frac { 5 } { 14 } } \right) $$, then $$ \lambda $$ equals:-
  • $$ \frac{2}{5} $$
  • $$ \frac{5}{3} $$
  • $$ \frac{2}{3} $$
  • $$ \frac{3}{2} $$
If the points whose position vectors are $$2i+j+k, 6i-j+2k$$ and $$14i-5j+pk$$ are collinear, then the value of p is?
  • $$2$$
  • $$4$$
  • $$6$$
  • $$8$$
The projection of a vector on three coordinate axes are $$ 6,-3, 2$$ respectively. The direction cosines of the vector are
  • $$\left(6,-3,2\right) $$
  • $$\left(\dfrac{6}{5},\dfrac{-5}{5},\dfrac{2}{5} \right) $$
  • $$\left(\dfrac{6}{7},\dfrac{-3}{7},\dfrac{2}{7}\right) $$
  • $$\left(\dfrac{-6}{7},\dfrac{-3}{7},\dfrac{2}{7}\right) $$
If a line makes angles $$\alpha ,\beta$$ & $$\gamma$$ with $$OX,OY$$ & $$OZ$$ respectively then $$\cos ^{ 2 }{ \alpha  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \gamma  } =-1$$
  • True
  • False
The vector form of the equation of the line passing through points $$(3,4, 7)$$ and $$(5,1,6)$$ is-
  • $$\vec { r } =(3\hat { i } +4\hat { j } -7\hat { k } )+\lambda (2\hat { i } -3\hat { j } +13\hat { k } )$$
  • $$\vec { r } =(3\hat { i } +4\hat { j } -7\hat { k } )+\lambda (8\hat { i } +5\hat { j } -\hat { k } )$$
  • $$\vec { r } =(3\hat { i } +4\hat { j } +7\hat { k } )+\lambda (2\hat { i } -3\hat { j } -\hat { k } )$$
  • $$\vec { r } =(3\hat { i } +4\hat { j } -7\hat { k } )+\lambda (2\hat { i } -3\hat { j } -13\hat { k } )$$
The line perpendicular to the plane $$2x-y+5z=4$$ passing through the point $$(-1,0,1)$$ is ?
  • $$\dfrac{x+1}{2}=-y=\dfrac{z-1}{-5}$$
  • $$\dfrac{x+1}{-2}=y=\dfrac{z-1}{-5}$$
  • $$\cfrac{x+1}{2}=-y=\cfrac{z-1}{5}$$
  • $$\dfrac{x+1}{2}=y=\dfrac{z-1}{-5}$$
If a straight line makes an angle $${ cos }^{ -1 }\left( \frac { 1 }{ \sqrt { 3 }  }  \right) $$  with each of the positive $$x, y$$ and $$z$$-axis, a vector parallel to that line is
  • $$\overset { - }{ i } $$
  • $$\overline { i } +\overline { j } $$
  • $$\overline { j } +\overline { k } $$
  • $$\overline { i } +\overline { j } +\overline { k } $$
A line makes angles $$\alpha, \beta, \gamma$$ with the positive direction of the axes of reference. The value of $$\cos{2\alpha}+\cos{2\beta}+\cos{2\gamma}$$ is
  • $$1$$
  • $$3$$
  • $$-1$$
  • $$0$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers