CBSE Questions for Class 12 Commerce Maths Three Dimensional Geometry Quiz 9 - MCQExams.com

A line with direction cosines proportional to 2 , 1, 2 meets each of the lines x = y + a = z and x + a = 2y = 2z. The co-ordinates of each of the point of intersection are given by ______________.
  • (3a, 3a, 3a), (a,a,a)
  • (3a,2a, 3a), (a,a,a)
  • (3a, 2a, 3a), (a, a, 2a)
  • (2a, 3a, 3a), (2a, a, a)
the points $$(\alpha ,\beta )(\gamma ,\delta ),(\alpha ,\delta )and (\gamma ,\beta )$$   where $$\alpha ,\beta ,\gamma ,\delta $$  are different real numbers, are 
  • Collinear
  • vertices of square
  • vertices of rhomubs
  • concyclic
The angle between the lines $$2x=3y=-z$$ and $$6x=-y=-4z$$ is?
  • $$0^o$$
  • $$45^o$$
  • $$90^o$$
  • $$30^o$$
A plane passes through the point $$(0, -1, 0)$$ and $$(0, 0, 1)$$ and makes an angle of $$\dfrac{\pi}{4}$$ with the plane $$y-z=0$$ then the point which satisfies the desired plane is?
  • $$(\sqrt{2}, -1, 4)$$
  • $$(\sqrt{2}, 1, 2)$$
  • $$(\sqrt{2}, 1, 4)$$
  • $$(\sqrt{2}, 2, 4)$$
The angle between two adjacent sides $$\vec { a } $$ and $$\vec { b } $$ of parallelogram is $$\cfrac{\pi}{6}$$. If $$\vec { a } =\left( 2,-2,1 \right) $$ and $$\left| \vec { b }  \right| =2\left| \vec { a }  \right| $$, then area of this parallelogram is ______
  • $$9$$
  • $$18$$
  • $$\cfrac{9}{2}$$
  • $$\cfrac{3}{4}$$
The equation of the plane passing through the point $$(-1, 2, 1)$$ and perpendicular to the line joining the points $$(-3, 1, 2)$$ and $$(2, 3, 4)$$ is ________.
  • $$\bar{r}\cdot (5\hat{i}+2\hat{j}+2\hat{k})=1$$
  • $$\bar{r}\cdot (5\hat{i}+2\hat{j}+2\hat{k})=-1$$
  • $$\bar{r}\cdot (5\hat{i}-2\hat{j}+2\hat{k})=-5$$
  • $$\bar{r}\cdot (5\hat{i}-2\hat{j}-2\hat{k})=1$$
The direction ratios of the line perpendicular to the lines

$$\dfrac {x - 7}{2} = \dfrac {y + 17}{-3} = \dfrac {z - 6}{1}$$ and, $$\dfrac {x + 5}{1} = \dfrac {y + 3}{2} = \dfrac {z - 4}{-2}$$ are proportional to
  • $$4, 5, 7$$
  • $$4, -5, 7$$
  • $$4, -5, -7$$
  • $$-4, 5, 7$$
The angle between the pair of lines $$\dfrac{x-2}{2} = \dfrac{y-1}{5} = \dfrac{z+3}{-3}$$ and $$\dfrac{x+2}{-1} = \dfrac{y-4}{8} = \dfrac{z-5}{4}$$ is
  • $$\cos^{-1} \left(\dfrac{21}{9\sqrt{38}}\right)$$
  • $$\cos^{-1} \left(\dfrac{23}{9\sqrt{38}}\right)$$
  • $$\cos^{-1} \left(\dfrac{24}{9\sqrt{38}}\right)$$
  • $$\cos^{-1} \left(\dfrac{26}{9\sqrt{38}}\right)$$
The projections of a line segment on $$X, Y$$ and $$Z$$ axes are $$12, 4$$ and $$3$$ respectively. The length and direction cosines of the line segment are
  • $$13; \dfrac {12}{13}, \dfrac {4}{13}, \dfrac {3}{13}$$
  • $$19; \dfrac {12}{19}, \dfrac {4}{19}, \dfrac {3}{19}$$
  • $$11; \dfrac {12}{11}, \dfrac {4}{11}, \dfrac {3}{11}$$
  • None of these
The Cartesian equation of a line are $$\cfrac{x-2}{2}=\cfrac{y+1}{3}=\cfrac{z-3}{-2}$$. What is its vector equation?
  • $$\vec { r } =\left(2 \hat { i } +3\hat { j } -2\hat { k } \right) +\lambda \left( 2\hat { i } -\hat { j } +3\hat { k } \right) $$
  • $$\vec { r } =\left(2 \hat { i } -\hat { j } +3\hat { k } \right) +\lambda \left( 2\hat { i } +3\hat { j } -2\hat { k } \right) $$
  • $$\vec { r } =\left(2 \hat { i } +3\hat { j } -2\hat { k } \right) $$
  • none of these
A line passes through the point $$A(-2,4,-5)$$ and is parallel to the line $$\cfrac{x+3}{3}=\cfrac{y-4}{5}=\cfrac{z+8}{6}$$. The vector equation of the line is
  • $$\vec { r } =\left( -3\hat { i } +4\hat { j } -8\hat { k } \right) +\lambda \left( -2\hat { i } +4\hat { j } -5\hat { k } \right) $$
  • $$\vec { r } =\left( -2\hat { i } +4\hat { j } -5\hat { k } \right) +\lambda \left( -3\hat { i } +5\hat { j } +6\hat { k } \right) $$
  • $$\vec { r } =\left( 3\hat { i } +5\hat { j } +6\hat { k } \right) +\lambda \left( -2\hat { i } +4\hat { j } -5\hat { k } \right) $$
  • $$\vec { r } =\left( -2\hat { i } +4\hat { j } -5\hat { k } \right) +\lambda \left( 3\hat { i } +5\hat { j } +6\hat { k } \right) $$
A line passes through the point $$A(5,-2,4)$$ and it is parallel to the vector $$\left(2 \hat { i } -\hat { j } +3\hat { k }  \right) $$. The vector equation of the line is
  • $$\vec { r } =\left( 2\hat { i } -\hat { j } +3\hat { k } \right) +\lambda \left( 5\hat { i } -2\hat { j } +4\hat { k } \right) $$
  • $$\vec { r } =\left( 5\hat { i } -2\hat { j } +4\hat { k } \right) +\lambda \left( 2\hat { i } -\hat { j } +3\hat { k } \right) $$
  • $$\vec { r } .\left( 5\hat { i } -2\hat { j } +4\hat { k } \right) =\sqrt{14}$$
  • none of these
The Cartesian equations of a line are $$\cfrac{x-1}{2}=\cfrac{y+2}{3}=\cfrac{z-5}{-1}$$. Its vector equation is
  • $$\vec { r } =\left( -\hat { i } +2\hat { j } -5\hat { k } \right) +\lambda \left( 2\hat { i } +3\hat { j } -\hat { k } \right) $$
  • $$\vec { r } =\left(2 \hat { i } +3\hat { j } -\hat { k } \right) +\lambda \left( \hat { i } -2\hat { j } +5\hat { k } \right) $$
  • $$\vec { r } =\left( \hat { i } -2\hat { j } +5\hat { k } \right) +\lambda \left( 2\hat { i } +3\hat { j } -\hat { k } \right) $$
  • none of these
If the points $$A(-1,3,2),B(-4,2,-2)$$ and $$C(5,5,\lambda)$$ are collinear then the value of $$\lambda$$ is
  • $$5$$
  • $$7$$
  • $$8$$
  • $$10$$
The direction cosines of the perpendicular from the origin to the plane $$\vec{r}\cdot (6\hat{i}-3\hat{j}+2\hat{k})+1=0$$ are?
  • $$\dfrac{6}{7}, \dfrac{3}{7}, \dfrac{-2}{7}$$
  • $$\dfrac{6}{7}, \dfrac{-3}{7}, \dfrac{2}{7}$$
  • $$\dfrac{-6}{7}, \dfrac{3}{7}, \dfrac{2}{7}$$
  • None of these
The direction consines of the line drawn from $$P\left ( -5,3,1 \right )\,to\,Q\left ( 1,5,-2 \right )$$ is
  • $$\left ( 6,2,-3 \right )$$
  • $$\left ( 2,-4,1 \right )$$
  • $$\left ( -4,8,-1 \right )$$
  • $$\left ( \dfrac {6}{7},\dfrac {2}{7},-\dfrac {3}{7} \right )$$
If a straight line makes an angle of $$60^\circ$$ with each of the X and Y axes, the angle which it makes with the Z axis is
  • $$\dfrac {\pi}{3}$$
  • $$\dfrac {\pi}{4}$$
  • $$\dfrac {\pi}{2}$$
  • $$\dfrac {3\pi}{4}$$
The points $$(p+1, 1), (2p+1, 3)$$ and $$(2p+2,2p)$$ are collinear if 
  • $$p=-1$$
  • $$p=1/2$$
  • $$p=2$$
  • $$p=-\dfrac{1}{2}$$
The equation of the plane which passes through the x-axis and perpendicular to the line $$\dfrac {(x - 1)}{cos\theta} = \dfrac {(y + 2)}{sin\theta} = \dfrac {(z - 3)}{0}$$ is
  • $$x\, tan\theta + y\,sec\theta = 0$$
  • $$x\, sec\theta + y\,tan\theta = 0$$
  • $$x\, cos\theta + y\,sin\theta = 0$$
  • $$x\, sin\theta - y\,cos\theta = 0$$
The direction cosines of the normal to the plane $$5y+4=0$$ are?
  • $$0, \dfrac{-4}{5}, 0$$
  • $$0, 1, 0$$
  • $$0, -1, 0$$
  • None of these
If O is the origin and $$P(1, 2, -3)$$ is a given point, then the equation of the plane through P and perpendicular to OP is?
  • $$x+2y-3z=14$$
  • $$x-2y+3z=12$$
  • $$x-2y-3z=14$$
  • None of these
 If the directions cosines of a line are $$ k, k, k, $$ then
  • $$ k>0 $$
  • $$ 0< k< 1 $$
  • $$ k=1 $$
  • $$ k=\dfrac{1}{\sqrt{3}} $$ or $$ -\dfrac{1}{\sqrt{3}} $$
What is the equation of the plane which passes through the z-axis and is perpendicular to the line  
$$\dfrac{x - a} {\cos \theta} = \dfrac{y +  2} {\sin \theta} = \dfrac{z - 3} {0} ?$$
  • $$x + y \tan \theta = 0$$
  • $$y + x \tan \theta = 0$$
  • $$x \cos \theta - y \sin \theta = 0$$
  • $$x \sin \theta - y \cos \theta = 0$$
If $$P_1 : \overrightarrow{r} \cdot \overrightarrow{n_1} - d_1 = 0, P_2 : \overrightarrow{r} \cdot \overrightarrow{n_2} - d_2 = 0$$ and $$P_3 : \overrightarrow{r} \cdot \overrightarrow{n_3} - d_3 = 0$$ are three planes and $$\overrightarrow{n_1}, \overrightarrow{n_2}$$ and $$\overrightarrow{n_3}$$ are three non-copllanar vectors, then three lines $$P_1 = 0, P_2 = 0; P_2 = 0, P_3 = 0$$ and $$P_3 = 0, P_1 = 0$$  are
  • parallel lines
  • coplanar lines
  • coincident lines
  • concurrent lines
If $$L_1 = 0$$ is the reflected ray, then its equation is
  • $$\frac{x + 10}{4} = \frac{y - 5}{4} = \frac{z + 2}{3}$$
  • $$\frac{x + 10}{3} = \frac{y + 15}{5} = \frac{z + 14}{5}$$
  • $$\frac{x + 10}{4} = \frac{y + 15}{5} = \frac{z + 14}{3}$$
  • none of these
State true or false.
The equation of a line, which is parallel to $$ 2 \hat{i}+\hat{j}+3 \hat{k} $$ and which passes through the point (5,-2,4) is $$ \dfrac{x-5}{2}=\dfrac{y+2}{-1}=\dfrac{z-4}{3} $$
  • True
  • False
State true or false.
The vector equation of the line $$ \dfrac{x-5}{3}=\dfrac{y-4}{7}=\dfrac{z-6}{2} $$ is $$ \vec{r}=5 \hat{i}-4 \hat{j}+6 \hat{k}+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k}) $$
  • True
  • False
State true or false.
The unit vector normal to the plane $$ x+2 y+3 z-6=0 $$ is $$ \dfrac{1}{\sqrt{14}} \hat{i}+\dfrac{2}{\sqrt{14}} \hat{j}+\dfrac{3}{\sqrt{14}} \hat{k} $$
  • True
  • False
If $$\alpha, \ \beta,\ \gamma$$ are direction angles of a line and $$\alpha = 60^{o},\ \beta=45^{o},\ \gamma =$$ ____.
  • $$30^o$$ or $$90^o$$
  • $$45^o$$ or $$60^o$$
  • $$90^o$$ or $$30^o$$
  • $$60^o$$ or $$120^o$$
If $$\cos {\alpha},\ \cos {\beta},\ \cos {\gamma}$$ are direction 
cosines of line, then the value of $$\sin^{2}\alpha + \sin^{2}\beta + 
\sin^{2}\gamma$$ is
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
If $$\cos {\alpha},\ \cos {\beta},\ \cos {\gamma}$$ are direction 
cosines of line, then the value of $$\sin^{2}\alpha + \sin^{2}\beta + 
\sin^{2}\gamma$$ is
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
The direction ratios of the line which is perpendicular to the two lines $$\dfrac{x-7}{2}=\dfrac{y+17}{-3}=\dfrac{z-6}{1}and\dfrac{x+5}{1}=\dfrac{y+3}{2}=\dfrac{z-6}{-2}$$ are
  • $$ 4 , 5 , 7 $$
  • $$4 , -5 , 7$$
  • $$4 , -5 , -7$$
  • $$-4 , 5 , 8 $$
The angle between the lines 2x = 3 y = - z  and 6 x = -y = -4 z is 
  • $$45^{\circ}$$
  • $$30^{\circ}$$
  • $$0^{\circ}$$
  • $$90^{\circ}$$
Te direction ratios of the line $$3x + 1 = 6 y - 2 = 1 -z $$ are 
  • $$ 2 , 1 , 6 $$
  • $$2 , 1 , -6 $$
  • $$2, -1 , 6 $$
  • $$-2 , 1, 6$$
Position vectors of two points are 
$$P(2\hat i+\hat j+3\hat k)$$ and $$Q(-4\hat i-2\hat j+\hat k)$$
Equation of plane passing through $$Q$$ and perpendicular of $$PQ$$ is 
  • $$\vec r.(6\hat i+3\hat j+2\hat k)=28$$
  • $$\vec r.(6\hat i+3\hat j+2\hat k)=32$$
  • $$\vec r.(6\hat i+3\hat j+2\hat k)+28=0$$
  • $$\vec r.(6\hat i+3\hat j+2\hat k)+32=0$$
which of the following group is not direction cosines of a line:
  • $$1,1,1$$
  • $$0,0,-1$$
  • $$-1,0,0$$
  • $$0,-1,0$$
Direction cosines of $$3i$$ be
  • $$3,0,0$$
  • $$1,0,0$$
  • $$-1,0,0$$
  • $$-3,0,0$$
$$A(1, 0,0), B(0, 2, 0), C(0, 0, 3)$$ form the triangle $$ABC$$. Then the direction ratios of the line joining orthocenter and circumcentre of $$ABC$$ are
  • $$58, 43, 36$$
  • $$59, - 44, - 37$$
  • $$59, - 44, - 111$$
  • None of these
Assertion ($$A$$): 
Three points with position vectors $$\vec{a},\vec{b},\ \vec{c}$$ are collinear if $$\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a}=\vec{0}$$

Reason ($$R$$):
Three points $${A}, {B},\ {C}$$ are collinear if $$\vec{AB}={t}\ \vec{BC}$$, where $${t}$$ is a scalar quantity.
  • Both $$A$$ and $$R$$ are individually true and $$R$$ is the correct explanation of $$A$$.
  • Both $$A$$ and $$R$$ are individually true and $$R$$ is NOT the correct explanation of $$A$$.
  • $$A$$ is true but $$R$$ is false.
  • $$A$$ is false but $$R$$ is true.
If a ray makes angles $$\alpha, \beta, \gamma$$ and $$\delta$$ with the four diagonals of a cube and
$$\mathrm{A}:\cos^{2}\alpha+\cos^{2}\beta+\cos^{2}\gamma+\cos^{2}\delta$$
$$\mathrm{B}:\sin^{2}\alpha+\sin^{2}\beta+\sin^{2}\gamma+\sin^{2}\delta$$
$$\mathrm{C}:\cos 2\alpha+\cos 2\beta+\cos 2\gamma+\cos 2\delta$$
Arrange $$A,B,C$$ in descending order
  • $$B,A,C$$
  • $$A,B,C$$
  • $$C,A,B$$
  • $$B,C,A$$
Find the angle between the pair of lines $$\overrightarrow { r } =3i+2j-4k+\lambda \left( i+2j+2k \right) $$ and $$\overrightarrow { r } =5i-2k+\mu \left( 3i+2j+6k \right) $$.
  • $$\displaystyle \cos ^{ -1 }{ \left( \dfrac { 19 }{ 21 }  \right)  } $$
  • $$\displaystyle \sin ^{ -1 }{ \left( \dfrac { 19 }{ 21 }  \right)  } $$
  • $$\displaystyle \cos ^{ -1 }{ \left( \dfrac { 20 }{ 21 }  \right)  } $$
  • $$\displaystyle \sin ^{ -1 }{ \left( \dfrac { 20 }{ 21 }  \right)  } $$
Statement-1  :  If a line makes acute angles $$\alpha, \beta, \gamma, \delta$$ with diagonals of a cube, then $$ \displaystyle \cos^2\alpha+\cos^2\beta+\cos^2\gamma+\cos^2\delta=\frac{4}{3}$$
Statement 2  :  If a line makes equal angle (acute) with the axes, then its direction cosine are $$ \displaystyle \frac{1}{\sqrt{3}} , \frac{1}{\sqrt{2}}$$ and $$\dfrac{1}{\sqrt{3}}$$
  • Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
  • Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
  • Statement-1 is True, Statement-2 is False
  • Statement-1 is False, Statement-2 is True
If the lines $$\dfrac{x-2}{1}=\dfrac{y-3}{1}=\dfrac{z-4}{-k}$$ and $$\dfrac{x-1}{k}=\dfrac{y-4}{2}=\dfrac{z-5}{1}$$ are coplanar, then $$k$$ can have 
  • exactly one value
  • exactly two values
  • exactly three values
  • any value
lf $$\alpha,\ \beta,\ \gamma$$ are the angles made by a line with the coordinate axes in the positive direction, then the range of $$\sin\alpha\sin\beta+\sin\beta\sin\gamma+\sin\gamma\sin\alpha$$ is
  • $$ \left[-\dfrac{1}{2},1 \right]$$
  • $$ \left[-1,2 \right]$$
  • $$ \left[-\dfrac{1}{2},\infty \right)$$
  • $$ \left[-1,\infty \right)$$

If the straight lines $$\displaystyle \dfrac{x-1}{2}=\dfrac{y+1}{K}=\dfrac{z}{2}$$ and $$\displaystyle \dfrac{x+1}{5}=\dfrac{y+1}{2}=\dfrac{z}{K}$$ are coplanar, then the plane(s) containing these two lines is(are)

  • $$y+2z=-1$$
  • $$y+z =-1$$
  • $$y-z=-1$$
  • $$y-2z =-1$$
The intercepts made on the axes by the plane which bisects the line joining the points $$(1,2,3)$$ and $$(-3,4,5)$$ at right angles are
  • $$\left (-\displaystyle \dfrac{9}{2},9,9\right)$$
  • $$\left (\displaystyle \dfrac{9}{2},9,9\right)$$
  • $$\left (9,-\displaystyle \dfrac{9}{2},9\right)$$
  • $$\left (9,\displaystyle \dfrac{9}{2},9\right)$$
lf a line makes angles $$60^{o}, 45^{o}, 45^{o}$$ and $$\theta$$ with the four diagonals of a cube, then $$\sin^{2}\theta =$$
  • $$\displaystyle \frac{1}{12}$$
  • $$\displaystyle \frac{11}{12}$$
  • $$\displaystyle \sqrt{\frac{11}{12}}$$
  • $$\displaystyle \frac{31}{12}$$
The direction ratios of the diagonal of a cube which joins the origin to the opposite corner are (when the three concurrent edges of the cube are coordinate axes)
  • $$\displaystyle \frac { 2 }{ \sqrt { 3 }  } ,\frac { 2 }{ \sqrt { 3 }  } ,\frac { 2 }{ \sqrt { 3 }  } $$
  • $$1,1,1$$
  • $$2,-2,1$$
  • $$1,2,3$$
The vector equation of the plane through the point $$\vec i+2\vec j-\vec k$$ and $$\bot$$ to the line of intersection of the plane $$\overrightarrow { r } .\left( 3\vec i-\vec j+\vec k \right) =1$$ and $$\overrightarrow { r } .\left(\vec  i+4\vec j-2\vec k \right) =2$$ is
  • $$\overrightarrow { r } .\left( 2\vec i+7\vec j-13\vec k \right) =1$$
  • $$\overrightarrow { r } .\left( 2\vec i-7\vec j-13k \right) =1$$
  • $$\overrightarrow { r } .\left( 2\vec i+7\vec j+13\vec k \right) =0$$
  • None of these
Equation of the line which passes through the point with p.v. (2, 1, 0) and perpendicular to the plane containing the vectors $$\widehat{i}+\widehat{j}\:and\: \widehat{j}+\widehat{k}$$ is
  • $$\vec{r}=(2, 1, 0)+ t(1,-1, 1)$$
  • $$\vec{r}=(2, 1, 0)+ t(-1,1, 1)$$
  • $$\vec{r}=(2, 1, 0)+ t(1,1, -1)$$
  • $$\vec{r}=(2, 1, 0)+ t(1,1, 1)$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers