Processing math: 68%

CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 10 - MCQExams.com

Let a=3ˆi+2ˆj+2ˆk,b=ˆi+2ˆj2ˆk. Then a unit vector perpendicular to both ab and a+b is :
  • 13(2ˆi+2ˆj+ˆk)
  • 13(2ˆi+2ˆjˆk)
  • 13(2ˆi2ˆj+ˆk)
  • 13(ˆi+ˆj+ˆk)
If a,b,c are three coplanar vectors, then v[2a+3b,2b5c,2c+3a] is 
  • 0
  • 1
  • 3
  • 3
If x and y be unit vectors and |z|=27 such that z+z×x=y, then the angle θ between x  and z can be 
  • 30
  • 60
  • 90
  • None of these
The position vector of point C with respect to B is  ˉi+ˉj . and that of B with respect to A is ˉi+ˉj.The position vector of C with respect to A is  ____________.
  • 2ˉi
  • 2ˉi
  • 2ˉj
  • 2ˉj
If the vectors 3¯p+¯q:5¯p3¯q and 2¯p+¯q;4¯p2¯q are pairs of mutually perpendicular vectors then sin(¯p¯q) is:

  • 554
  • 558
  • 316
  • 24716
Let ˆa and ˆb two unit vector such that (ˆa.ˆb)2|ˆa׈b| is maximum then |ˆa.ˆb| is equal to
  • 1
  • 13
  • 0
  • 13
The cartesian equation of the plane perpendicular to vector 3ˉi2ˉj2ˉk and passing through the point 2ˉi+3ˉjˉk is
  • 3x+2y+2z=2
  • 3x2y+2z=2
  • 3x+2y2z=2
  • 3x2y2z=2
The position vectors of two vertices and the centroid of a triangle are i+j,2ij+k and k respectively. The position vector of the third vertex of the triangle is :
  • 3i+2k
  • 3i2k
  • i+23k
  • none of these
Unit vector perpendicular to the plane of the triangle  ABC  with position vectors of the vertices  A,B,C,  is  ( where  Δ  is the area of the triangle  ABC ) .
  • (a×b+b×c+c×a)Δ
  • (a×b+¯b×c+c×a)2Δ
  • (a×b+b×c+c×a)3Δ
  • (a×b+b×c+c×a)4Δ
ˉa,ˉb and ˉc are unit vector such that ˉa+ˉbˉc=0. then the angle between ˉa and ˉb is :-
  • π6
  • π3
  • π2
  • 2π3
Let a=(1,2,3) and b=(2,7,4) then
  • a.b=0
  • a.b=9
  • a.b=4
  • a.b=4
If u, v, w are non-coplanar vector and p, q are real numbers, then the equality [3u pv pw][pv w qw][2w qv qu]=0 holds for 
  • Exactly two values of (p, q)
  • More than but not all values of (p, q)
  • All values of (p, q)
  • Exactly one values of (p, q)
If the vectors ¯AB=3ˆi+4ˆk and ¯AC=5ˆi2ˆj+4ˆk are the sides of a triangle ABC, then the length of the median through A is:
  • 18
  • 72
  • 33
  • 45
In the vectors ¯AB=3ˆi+4ˆk and ¯AC=5ˆi2ˆj+4ˆk are the series of a triangle ABC, then the length of the median through A is
  • 18
  • 72
  • 33
  • 45
Let a,b and  c be three non-zero vectors such that no two of them are collinear and (a×b)×c=13|b||c|a. If θ is the angle between vectors b and c, then a value of sinθ is
  • 23
  • 233
  • 223
  • 23
A unit vector d is equally inclined at an angle α with the vectors a=cosθ.i+sinθ.j,b=sinθ.i+cos=θ.j and c=k. Then α is equal to 
  • cos1(12)
  • cos1(13)
  • cos113
  • π2
The foot of the perpendicular drawn from a point with position vector ˆi+4ˆk on the line joining the points ˆj+3ˆk, 2ˆi3ˆj+ˆk is
  • 4ˆi+5ˆj+5ˆk
  • 13(ˆi+ˆj+^8k)
  • 4ˆi+4ˆj5ˆk
  • 4ˆi5ˆj+5ˆk
Let ABCD is a triangular pyramid with base vectors AB=2ˉi+3ˉjˉk and AC=ˉi2ˉk, If volume of the triangular pyramid is 150 unit then its height is
  • 10
  • 20
  • 18
  • 23
If |c| = 60 and c (ˆi + 2ˆj + 5ˆk) = 0 , then a value of c.(7ˆi + 2ˆi + 3ˆk) is :
  • 42
  • 12
  • 24
  • 122
For any vectors a, the value of (a׈i)2+(a׈j)2+(a׈k)2 is equal to?
  • 3a2
  • a2
  • 2a2
  • None of these
The distance of the point P with position vector  3ˆi+6ˆj+8ˆk from y - axis 
  • 62
  • 10
  • 35
  • 73
The adjacent sides of a parallelogram are A=2ˆi3ˆj+ˆk and B=2ˆi+4ˆjˆk What is the area of the parallelogram?
  • 4 units
  • 7 units
  • 5 units
  • 8 units
If  a,b,c  are unit vectors such that  a+b+c=0,  the value of  ab+bc+ca  is
  • 1
  • 3
  • 32
  • None of these
If (ˉaˉb)=¯(a)=¯(b) where ˉa and ˉb are non zero vectors then the angle between ˉaˉb
  • 1200
  • 450
  • 600
  • 900
If the vectors 2ˆi+3ˆj,5ˆi+6ˆj,8ˆi+ λj have their initial point at (1,1)thenthevalueofλ$ so that the vectors terminated on one line is
  • 5
  • 9
  • 4
  • 0
If ¯OP=2ˆi+3ˆjˆk and ¯OQ=3ˆi4ˆj2ˆk then the modulus ¯PQ is
  • 13
  • 51
  • 39
  • 67
From the figure the correct relation is :
1473404_320fae6fd4334bae904853f3976635c7.png
  • ˉA+ˉB+ˉE=ˉ0
  • ˉC+ˉD=¯A
  • ˉB+ˉE+ˉC=¯D
  • All of these
Line passing through (3,4,5) and (4,5,6) has direction ratios
  • 1,1,1
  • 3,3,3
  • 13,13,13
  • 7,9,11
let ˉa,ˉb,ˉc are three mutually perpendicular unit vectors and a unit vector ˉr satisfying the equation (ˉbˉc)×(ˉr×ˉa)+(ˉcˉa)×(ˉr×ˉb)+(ˉaˉb)×(ˉr×ˉc)=0 then ˉr is __________________.
  • 13(ˉa+ˉb+ˉc)
  • 114(2ˉa+3ˉb+ˉc)
  • 114(2ˉa+3ˉb+ˉc)
  • 13(ˉa+ˉb+ˉc)
IfˉA=2ˆi+ˆj+ˆk and ˉB=ˆi+ˆj+ˆk  two vectors,then the unit vector is 
  • Perpendicular to ˉA is ˆj+ˆk2
  • Parallel to ˉA is 2+ˆj+ˆk6
  • Parallel to ˉB is ˆj+ˆk2
  • Parallel to ˆi+ˆj+ˆk3
If x is a vector in the direction of (2,2,1) of magnitude 6 and y is a vector in the direction of (1,1,1) of magnitude 3, then |x+2y|=...
  • 40
  • 35
  • 17
  • 210
The position vector of a point P is r=xi+yj+xk, Where x,y,z,ϵN and a=i+j+k. If r.a=10, then the number of possible positions of P is ___________.
  • 30
  • 72
  • 66
  • 36
Let ¯a=4ˆi+3ˆjˆk and¯b=2ˆi6ˆj3ˆk. Then a unit vector to both ¯a and ¯bis.
  • 17(3ˆi2ˆj+3ˆk)
  • 17(3ˆi+2ˆj6ˆk)
  • 17(3ˆi+2ˆj6ˆk)
  • 17(3ˆi+2ˆj6ˆk)
If a=ˆi+2ˆj+2ˆk and b=2ˆi+ˆj+2ˆk. Find the projection vector of b on a.
  • 89(ˆi+2ˆj+2ˆk)
  • 89(2ˆi+ˆj+2ˆk)
  • 98(ˆi+2ˆj+2ˆk)
  • 98(2ˆi+ˆj+2ˆk)
Unit vector perpendicular to vector  A=3ˆi2ˆj3ˆk  and  B=2ˆi+4ˆj+6ˆk  both is
  • 3ˆj2ˆk13
  • 3ˆk2ˆj13
  • ˆj+2ˆk13
  • ˆi+3ˆjˆk13
If the position vector a of point (12,n) is such that |a|=13, then find the value (s) of n.
  • ±6
  • ±4
  • ±5
  • ±7
Express AB in terms of unit vectors ˆi and ˆj, when the points are:
A(4,-1), B(1,3)
Find |AB| in each case.
  • AB=3ˆi4ˆj,|AB|=5
  • AB=+3ˆi+4ˆj,|AB|=5
  • AB=3ˆi+4ˆj,|AB|=5
  • none of these
What is the scalar projection of 
\vec{a}=\hat{i}+2\hat{j}+\hat{k} on \vec{b}=4\hat{i}+4\hat{j}+7\hat{k} ?
  • \dfrac{\sqrt{6}}{9}
  • \dfrac{19}{9}
  • \dfrac{9}{19}
  • \dfrac{\sqrt{6}}{19}
If a, b, c are vectors such that a+b+c = 0 and |a| = 7, |b| = 5, |c| = 3, then the angle between c and b is
  • \dfrac{\pi}{3}
  • \dfrac{\pi}{6}
  • \dfrac{\pi}{4}
  • \pi
If a unit vector \vec{a} makes an angle \dfrac{\pi }{3} with \hat{i},\dfrac{\pi }{4} with \hat{j} and an accute angle \theta with \hat{k}, then find \theta and hence, the components of \vec{a} .

  • \dfrac{\pi }{3};\,\vec{a}=\dfrac{1}{2}\hat{i}-\dfrac{1}{\sqrt{2}}\hat{j}+\dfrac{1}{2}\hat{k}
  • \dfrac{\pi }{3};\,\vec{a}=\dfrac{-1}{2}\hat{i}+\dfrac{1}{\sqrt{2}}\hat{j}+\dfrac{1}{2}\hat{k}
  • \dfrac{\pi }{3};\,\vec{a}=\dfrac{1}{2}\hat{i}+\dfrac{1}{\sqrt{2}}\hat{j}+\dfrac{1}{2}\hat{k}
  • \dfrac{\pi }{3};\,\vec{a}=\dfrac{1}{2}\hat{i}+\dfrac{1}{\sqrt{2}}\hat{j}-\dfrac{1}{2}\hat{k}
The adjacent sides of a parallelogram are represented by the vectors \vec{a} = \hat{i}+\hat{j}+\hat{k} and \vec{b} = 2\hat{i}+\hat{j}+2\hat{k}. Find unit vectors parallel to the diagonals of the parallelogram.


  • \dfrac{1}{\sqrt{2}}(-\hat{i}+2\hat{j}+\hat{k}),\dfrac{1}{\sqrt{6}}(\hat{i}+\hat{k})
  • \dfrac{1}{\sqrt{2}}(-\hat{i}+2\hat{j}+\hat{k}),\dfrac{1}{\sqrt{6}}(\hat{i}-\hat{k})
  • \dfrac{1}{\sqrt{22}}(3\hat{i}+2\hat{j}+3\hat{k}),\dfrac{1}{\sqrt{2}}(\hat{i}+\hat{k})
  • \dfrac{1}{\sqrt{2}}(+\hat{i}+2\hat{j}+\hat{k}),\dfrac{1}{\sqrt{6}}(\hat{i}-\hat{k})
The unit vector normal to the plane containing \vec{a}=(\hat{i}-\hat{j}-\hat{k}) and \vec{b}=(\hat{i}+\hat{j}+\hat{k}) is?
  • (\hat{j}-\hat{k})
  • (-\hat{j}+\hat{k})
  • \dfrac{1}{\sqrt{2}}(-\hat{j}+\hat{k})
  • \dfrac{1}{\sqrt{2}}(-\hat{i}+\hat{k})
Let \vec{a}=2\hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2\hat{j}-\hat{k} and \vec{c}=\hat{i}+\hat{j}-2\hat{k} be three vectors. A vector in the plane of \vec{b} and \vec{c} whose projection on \vec{a} is of magnitude \sqrt{(2/3)} is
  • 2\hat{i}+3\hat{j}-3\hat{k}
  • 2\hat{i}+3\hat{j}+3\hat{k}
  • -2\hat{i}-\hat{j}+5\hat{k}
  • 2\hat{i}+\hat{j}+5\hat{k}
If \bar{a} and \bar{b} = 3 \hat{i} + 6 \hat{j} + 6 \hat{k} are collinear and \bar{a} . \bar{b} = 27, then \bar{a} is equal to 
  • 3 (\hat{i} + \hat{j} + \hat{k})
  • \hat{i} + 2\hat{j} + 2 \hat{k}
  • 2 \hat{i} + 2\hat{j} + 2 \hat{k}
  • \hat{i} + 3\hat{j} + 3 \hat{k}
  • \hat{i} - 3 \hat{j} + 2 \hat{k}
Let O be the circumcentre, G be the centroid and O be the orthocentre of a \triangle ABC. Three vectors are taken through O and are represented by \vec{a}=\vec{OA}, \vec{b}=\vec{OB} and \vec{c}=\vec{OC} then \vec{a}+\vec{b}+\vec{c} is
  • \vec{OG}
  • 2\vec{OG}
  • \vec{OO}
  • None of them
If (\vec a\times \vec b)^2 +(\vec a. \vec b)^2 =144 and |\vec a|=4, then |\vec b|=
  • 16
  • 8
  • 3
  • 12
A parallelogram is constructed on the vectors
\vec{a}=3\vec{\alpha}-\vec{\beta}, \vec{b}=\vec{\alpha}+3\vec{\beta} if |\vec{\alpha}|=|\vec{\beta}|=2 and angle between \vec{\alpha} and \vec{\beta} is \pi/3 then the length of a diagonal of the parallelogram is
  • 4\sqrt{5}
  • 4\sqrt{3}
  • 4\sqrt{7}
  • None\ of\ these
A, B, C and D have position vectors \vec{a}, \vec{b}, \vec{c} and \vec{d} respectively, such that \vec{a} - \vec{b} = 2 (\vec{d} - \vec{c}). Then
  • AB and CD bisect each other
  • BD and AC bisect each other
  • AB and CD trisect each other
  • BD and AC trisect each other
p\hat{i}+3\hat{j}+4\hat{k} and \sqrt{q}\hat{i}+4\hat{k} are two vectors, where p,q>0 are two scalars, then the length of the vectors is equal to
  • All value of (p,q)
  • Only finite number of values of (p,q)
  • Infinite number of values of (p,q)
  • No value fo (p,q)
(\vec r. \hat i)(\vec r \times \hat i)+ (\vec r. \hat j)(\vec r \times \hat j) +(\vec r. \hat k)(\vec r \times \hat k) is equal to
  • 3\ \vec r
  • \vec r
  • \vec 0
  • None\ of\ these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers