Processing math: 67%

CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 11 - MCQExams.com

Let ABC be a triangle, the position vector of whose vertices are 7ˆj+10ˆk,ˆi+6ˆj+6ˆk and 4ˆi+9ˆj+6ˆk. Then ΔABC is
  • isosceles
  • equilateral
  • right-angled
  • none of these
Vector x is
  • 1|a×b|2[a×(a×b)]
  • γ|a×b|2[a×ba×(a×b)]
  • γ|a×b|2[a×b+b×(a×b)]
  • none of these
Vector z is
  • γ|a×b|2[a+b×(a×b)]
  • γ|a×b|2[a+ba×(a×b)]
  • γ|a×b|2[a×b+b×(a×b)]
  • none of these
Vector y is
  • a×bγ
  • a+a×bγ
  • a+b+a×bγ
  • none of these
Vectors A and B satisfying the vector equation A+B=a,A×B=b and A.a=1 where a and b are given vectors are
  • A=(a×b)aa2
  • B=(b×a)+a(a21)a2
  • A=(a×b)+aa2
  • B=(b×a)a(a21)a2
(P×B)×B is equal to
  • P
  • P
  • 2B
  • A
If side AB of an equilateral triangle ABC lying in the x - y plane is 3ˆi, then side CB can be
  • 32(ˆi3ˆj
  • 32(ˆi3ˆj)
  • 32(ˆi+3ˆj)
  • 32(ˆi3ˆj)
Given that a,b,p,q are four vectors such that a+b=μp,bq=0 and (b)2=1, where μ is scalar. Then (aq)p(pq)a is equal to
  • 2pq
  • (1/2)pq
  • p×q
  • pq
If r and s are non-zero constant vectors and the scalar b is chosen such that r+bs is minimum, then the value of bs2+r+bs2 is equal to
  • 2r2
  • r2/2
  • 3r2
  • r2
If ¯a and ¯b are adjacent sides of a rhombus, then ¯a.¯b=0.
  • True
  • False
Let ˆa and ˆb be mutually perpendicular unit vectors. Then for any arbitrary r.
  • r=(r.ˆa)ˆa+(r.ˆb)ˆb+(r.(ˆa׈b))(ˆa׈b)
  • r=(r.ˆa)(r.ˆb)ˆb+(r.(ˆa׈b)))(ˆa׈b)
  • r=(r.ˆa)ˆa(r.ˆb)ˆb+(r.(ˆa׈b))(ˆa׈b)
  • none of these
The vector with initial point P(2,3,5) and terminal point Q(3,4,7) is
  • ˆiˆj+2ˆk
  • 5ˆi7ˆj+12ˆk
  • ˆi+ˆj2ˆk
  • None of these
If XA=0,XB=0 and XC=0 for some non-zero vector X, then [ABC]=0
  • True
  • False
The position vector of the point which divides the join of points with position vectors a+b and 2ab in the ratio 1:2 is
  • 3a+2b3
  • a
  • 5ab3
  • 4a+b3
The projection of vector a=2ˆiˆj+ˆk along b=ˆi+2ˆj+2ˆk is
  • 23
  • 13
  • 2
  • 6
Position vector of a point P is a vector whose initial point is origin.
  • True
  • False
Let u,v and w be vectors such that u+v+w=0. If |u|=3,|v|=4 and |w|=5, then uv+vw+wu is
  • 47
  • 25
  • 0
  • 25
  • 50
Line r=a+λb will not meet the plane rn=q, if 
  • bn=0,an=q
  • bn0,anq
  • bn=0,anq
  • bn0,an=q
If α|=4 and 3λ2, then the range of |λα| is 
  • [0,8]
  • [12,8]
  • [0,12]
  • [8,12]
If a,b,c are unit vector such that a+b+c=0, then the value of ab+b.c+c.a is 
  • 1
  • 3
  • 32
  • None of these
The vector having initial and terminal points as (2,5,0) and (3,7,4), respectively is 
  • ˆi+12ˆj+4ˆk
  • 5ˆi+2ˆj4ˆk
  • 5ˆi+2ˆj+4ˆk
  • ˆi+ˆj+ˆk
If a,b,c are three vectors such that a+b+c=0 and |a|=2,|b|=3,|c|=5, then value of a.b+b.c+c.a is 
  • 0
  • 1
  • 19
  • 38
The position vector of the point which divides the join of points 2a3b and a+b in the ratio 3:1 is 
  • 3a2b2
  • 7a8b4
  • 3a4
  • 5a4
If |ˉa|=2, |ˉb|=3,|ˉc|=4 then [ˉa+ˉbˉb+ˉcˉcˉa] is 
  • 24
  • 24
  • 0
  • 448
If |ˉa|=3, |ˉb|=4, then the value of λ for which ˉa+λˉb, is
  • 916
  • 34
  • 32
  • 43
Let ˉp and ˉq be the position vectors of P 
and Q respectively, with respect to O and |ˉp|=p, |ˉq|=q. The points R and S divide PQ internally and externally in the ratio 2:3 
respectively. If OR and OS are perpendicular; then
  • 9p2=4q2
  • 4p2=9q2
  • 9p=4q
  • 4p=9q
The value of ˆi.(ˆj׈k)+ˆj.(ˆi׈k)+ˆk.(ˆi׈j) is
  • 0
  • 1
  • 1
  • 3
If a is non zero vector of magnitude 'a ' and λ a nonzero scalar then λa is unit vector
  • λ=1
  • λ=1
  • a=|λ|
  • a=1/|λ|
In triangle ABC , which of the following is not true.
1860549_16558d808f3a4366ab5aee7338ba81ba.png
  • ¯AB+¯BC+¯CA=ˉ0
  • ¯AB+¯BC¯AC=ˉ0
  • ¯AB+¯BC¯CA=ˉ0
  • ¯AB¯CB+¯CA=ˉ0
The value of ˆi.(ˆj׈k)+ˆj.(ˆi׈k)+ˆk.(ˆi׈j)
  • 0
  • 1
  • 1
  • 3
Three vectors of magnitudes a, 2a,3a meeting a point and three directions are along the diagonals of three adjacent faces of a cube. The magnitude of their resultant is
  • 3a
  • 5a
  • 2a
  • 4a
If x is a vector whose initial point divides the line joining 5ˆi, and 5ˆj in the ratio λ:1 and  the terminal point is the origin. Also given |x|37, then λ belongs to
  • [16,16]
  • (,6)(16,)
  • (,8)
  • (1,)
A scooterist follows a track on a ground that turns to his left by an angle 600 after every 400 m. Starting from the given point displacement of the scooterist at the third turn and eighth turn are :
  • 800m;0m
  • 800m, 8003m
  • 800m;4003m
  • 800;8003m
The vectors AB=3ˆi+4ˆk and AC=5ˆi2ˆj+4ˆk are the sides of a triangle ABC, then the  length of the median through A is:
  • 72
  • 33
  • 45
  • 18
ln a triangle OAB, E is the mid-point of OB and D is a point on AB such that AD: DB=2:1. lf OD and AE interesect at P, then the ratio OPPD is
  • 1:2
  • 3:2
  • 8:3
  • 4:3
In a quadrilateral PQRS, PQ=a,QR=b,SP=ab. M is the mid-point of QR and X is a point on SM such that SX=45SM, then PX is
  • 15PR
  • 35PR
  • 25PR
  • None of these
The position vectors of A and B are 2ˆi+2ˆj+ˆk and 2ˆi+4ˆj+4ˆk. The length of the internal bisector of BOA of the triangle AOB is
  • 1369
  • 1399
  • 203
  • 2179
ABCD is a quadrilateral, E is the point of intersection of the line joining the midpoints of the opposite sides. If O is any point and OA+OB+OC+OD=xOE, then x is equal to
  • 3
  • 9
  • 7
  • 4
If b is a vector whose initial point divides the join of 5ˆi and 5ˆj in the ratio k:1  and whose terminal point is the origin and |b|37, then k lies in the interval
  • [6,16]
  • (,6][16,)
  • [0,6]
  • None of these
If  a,b,c are three non-zero vectors such that a×b=c and b×c=a , then choose the incorrect option(s)
  • a.b=b.c=c.a=0
  • |b|=|c|
  • \vec{a} is a unit vector
  • \vec{c} is a unit vector
If the vectors \hat i - \hat j, \hat j + \hat k and \vec a form a triangle, then \vec a may be
  • - \hat i - \hat k
  • \hat i - 2 \hat j - \hat k
  • 2 \hat i + \hat j + \hat k
  • \hat i + \hat k
Vectors \vec a = \hat i + 2 \hat j + 3 \hat k, \vec b = 2 \hat i - \hat j + \hat k and \vec c = 3 \hat i + \hat j + 4 \hat k are so placed that the end point of one vector is the starting point of the next vector, then the vectors are
  • Not coplanar
  • Coplanar but cannot form a triangle
  • Coplanar and form a triangle
  • Coplanar and can form a right-angled triangle
ABCD a parallelogram, A_1 and B_1 are the midpoints of sides BC and CD, respectively. If \vec{AA_1} + \vec{AB_1} = \lambda \vec{AC}, then \lambda is equal to
  • \displaystyle \dfrac{1}{2}
  • 1
  • \displaystyle \dfrac{3}{2}
  • 2
L_{1}and L_{2} are two lines whose vector equations are

L_{1}:\vec{r}=\lambda \left ( (\cos \theta+\sqrt{3})\hat{i}+(\sqrt{2}\sin\theta)\hat{j}+(\cos \theta-\sqrt{3})\hat{k} \right )

L_{2}:\vec{r}=\mu \left ( a \hat{i}+b \hat{j}+c\hat{k} \right ),

Where \lambda\ and\ \mu are scalars and \alpha is the acute angle

between L_{1}\ and\ L_{2} . If the angle '\alpha'is independent

of \theta then the value of '\alpha ' is
  • \dfrac{\pi}{6}
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{3}
  • \dfrac{\pi}{2}
\overrightarrow{AR} is
  • \dfrac{1}{5}(2\vec {b}+\vec {c})
  • \dfrac{1}{6}(2\vec {b}+\vec {c})
  • \dfrac{1}{7}(\vec {b}+2\vec {c})
  • \dfrac{1}{7}(2\vec {b}+\vec {c})
In a parallelogram OABC, vectors \vec{a}, \vec{b}, \vec{c} are, respectively, the position vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side BC  which divides it in the ratio of 2 : 1. Also, the line segment  AE  intersects the line bisecting the angle \angleAOC internally at point P. If CP when extended meets AB  in point F,  then the position vector of point P  is
  • \displaystyle \dfrac{|\vec{a}| |\vec{c}|}{3 |\vec{c}| + 2 |\vec{a}|} \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right )
  • \displaystyle \dfrac{3|\vec{a}| |\vec{c}|}{3 |\vec{c}| + 2 |\vec{a}|} \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right )
  • \displaystyle \dfrac{2|\vec{a}| |\vec{c}|}{3 |\vec{c}| + 2 |\vec{a}|} \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right )
  • None of these
The ratio \displaystyle \dfrac{OX}{XC} is
120334.png
  • \dfrac{3}{4}
  • \dfrac{1}{3}
  • \dfrac{2}{5}
  • \dfrac{1}{2}
The projection of the line joining the points (3, 4, 5) and (4, 6, 3) on the line joining the points (-1, 2, 4) and (1, 0, 5) is
  • \dfrac{4}{3}
  • \dfrac{2}{3}
  • \dfrac{1}{3}
  • \dfrac{1}{2}
A parallelogram is constructed on the vectors \bar{\alpha } and \bar{\beta }. A vector which coincides with the altitude of the parallelogram and perpendicular to the side \bar{\alpha } expressed in terms of the vectors \bar{\alpha } and \bar{\beta } is
  • \displaystyle \bar{\beta }+\dfrac{\bar{\beta }-\bar{\alpha }}{\left ( \bar{\alpha } \right )^{2}}\bar{\alpha }
  • \displaystyle \dfrac{\left ( \bar{\alpha }\times \bar{\beta } \right )\times \bar{\alpha }}{\left ( \bar{\alpha } \right )^{2}}
  • \displaystyle \dfrac{\bar{\beta }\cdot \bar{\alpha }}{\left ( \alpha \right )^{2}}\bar{\alpha }+\bar{\beta }
  • \displaystyle \left | \bar{\beta } \right |\dfrac{\bar{\alpha }\times \left ( \bar{\alpha }\times \bar{\beta } \right )}{\left ( \alpha \right )^{2}}
\vec{a} = 2 \widehat{i} - \widehat{j} + \widehat{k}, \vec{b} = \widehat{i} + 2\widehat{j} - \widehat{k} and  \vec{c} = \widehat{i} + \widehat{j} - 2 \widehat{k}. A vector coplanar with \vec{b} and \vec{c} whose projection on \vec{a} is magnitude \displaystyle \sqrt{\dfrac{2}{3}} is
  • 2 \widehat{i} + 3 \widehat{j} - 3 \widehat{k}
  • - 2 \widehat{i} - \widehat{j} + 5 \widehat{k}
  • 2 \widehat{i} + 3 \widehat{j} + 3 \widehat{k}
  • 2 \widehat{i} + \widehat{j} + 5 \widehat{k}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers