Processing math: 3%

CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 11 - MCQExams.com

Let ABC be a triangle, the position vector of whose vertices are 7ˆj+10ˆk,ˆi+6ˆj+6ˆk and 4ˆi+9ˆj+6ˆk. Then ΔABC is
  • isosceles
  • equilateral
  • right-angled
  • none of these
Vector x is
  • 1|a×b|2[a×(a×b)]
  • γ|a×b|2[a×ba×(a×b)]
  • γ|a×b|2[a×b+b×(a×b)]
  • none of these
Vector \vec{z}  is
  • \dfrac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b} \times(\vec{a} \times \vec{b})]
  • \dfrac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b}-\vec{a} \times(\vec{a} \times \vec{b})]
  • \dfrac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}+\vec{b} \times(\vec{a} \times \vec{b})]
  • none of these
Vector \vec{y}  is
  • \dfrac{\vec{a} \times \vec{b}}{\gamma}
  • \vec{a}+\dfrac{\vec{a} \times \vec{b}}{\gamma}
  • \vec{a}+\vec{b}+\dfrac{\vec{a} \times \vec{b}}{\gamma}
  • none of these
Vectors \vec{A} \space and \space \vec{B} satisfying the vector equation \vec{A} + \vec{B} = \vec{a}, \vec{A} \times \vec{B} = \vec{b} \space and \space \vec{A} . \vec{a} = 1 where \vec{a} \space and \space \vec{b} are given vectors are
  • \vec{A} = \frac{(\vec{a} \times \vec{b}) - \vec{a}}{a^2}
  • \vec{B} = \frac{(\vec{b} \times \vec{a}) + \vec{a}(a^2 - 1)}{a^2}
  • \vec{A} = \frac{(\vec{a} \times \vec{b}) + \vec{a}}{a^2}
  • \vec{B} = \frac{(\vec{b} \times \vec{a}) - \vec{a}(a^2 - 1)}{a^2}
(\vec{P} \times \vec{B}) \times \vec{B}  is equal to
  • \vec{P}
  • -\vec{P}
  • 2 \vec{B}
  • \vec{A}
If side \vec{AB} of an equilateral triangle ABC lying in the x - y plane is 3\hat{i}, then side \vec{CB} can be
  • -\frac{3}{2}(\hat{i} - \sqrt{3}\hat{j}
  • \frac{3}{2}(\hat{i} - \sqrt{3}\hat{j})
  • -\frac{3}{2}(\hat{i} + \sqrt{3}\hat{j})
  • \frac{3}{2}(\hat{i} - \sqrt{3} \hat{j})
Given that \vec a, \vec b, \vec p, \vec q are four vectors such that \vec a + \vec b = \mu \vec p, \vec b \cdot \vec q = 0 and (\vec b)^2 = 1, where \mu is scalar. Then \mid (\vec a \cdot \vec q) \vec p - (\vec p \cdot \vec q)\vec a \mid is equal to
  • 2 \mid \vec p \cdot \vec q \mid
  • (1/2) \mid \vec p \cdot \vec q \mid
  • \mid \vec p \times \vec q \mid
  • \mid \vec p \cdot \vec q \mid
If \vec r and \vec s are non-zero constant vectors and the scalar b is chosen such that \mid \vec r + b \vec s \mid is minimum, then the value of \mid b \vec s \mid^2 + \mid \vec r + b \vec s \mid^2 is equal to
  • 2 \mid \vec r \mid^2
  • \mid \vec r \mid^2/2
  • 3 \mid \vec r \mid^2
  • \mid \vec r \mid^2
If \overline a and \overline b are adjacent sides of a rhombus, then \overline a.\overline b=0.
  • True
  • False
Let \hat{a} \space and \space \hat{b} be mutually perpendicular unit vectors. Then for any arbitrary \vec{r}.
  • \vec{r} = (\vec{r} . \hat{a})\hat{a} + (\vec{r} . \hat{b})\hat{b} + (\vec{r} . (\hat{a} \times \hat{b})) (\hat{a} \times \hat{b})
  • \vec{r} = (\vec{r} . \hat{a}) - (\vec{r} . \hat{b})\hat{b} + (\vec{r} . (\hat{a} \times \hat{b}))) (\hat{a} \times \hat{b})
  • \vec{r} = (\vec{r} . \hat{a})\hat{a} - (\vec{r} . \hat{b})\hat{b} + (\vec{r} . (\hat{a} \times \hat{b})) (\hat{a} \times \hat{b})
  • none of these
The vector with initial point P(2,-3,5) and terminal point Q(3,-4,7) is
  • \hat i-\hat j+2\hat k
  • 5\hat i-7\hat j+12\hat k
  • \hat i+\hat j-2\hat k
  • None\ of\ these
If \vec{X} \cdot \vec{A}=0, \vec{X} \cdot \vec{B}=0 and \vec{X} \cdot \vec{C}=0 for some non-zero vector \vec{X}, then [\vec{A} \vec{B} \vec{C}]=0
  • True
  • False
The position vector of the point which divides the join of points with position vectors \vec a +\vec b and 2\vec a-\vec b in the ratio 1:2 is
  • \dfrac {3\vec a+2\vec b}{3}
  • \vec a
  • \dfrac {5\vec a-\vec b}{3}
  • \dfrac {4\vec a+\vec b}{3}
The projection of vector \vec a=2\hat i-\hat j+\hat k along \vec b=\hat i+2\hat j+2\hat k is
  • \dfrac {2}{3}
  • \dfrac {1}{3}
  • 2
  • \sqrt 6
Position vector of a point P is a vector whose initial point is origin.
  • True
  • False
Let \vec{u}, \vec{v} and \vec{w} be vectors such that \vec{u}+\vec{v}+\vec{w}=0 . If |\vec{u}|=3,|\vec{v}|=4 and |\vec{w}|=5, then \vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u} is
  • 47
  • -25
  • 0
  • 25
  • 50
Line \overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b} will not meet the plane \overrightarrow{r} \cdot \overrightarrow{n} = q, if 
  • \overrightarrow{b} \cdot \overrightarrow{n} = 0, \overrightarrow{a} \cdot \overrightarrow{n} = q
  • \overrightarrow{b} \cdot \overrightarrow{n} \neq 0, \overrightarrow{a} \cdot \overrightarrow{n} \neq q
  • \overrightarrow{b} \cdot \overrightarrow{n} = 0, \overrightarrow{a} \cdot \overrightarrow{n} \neq q
  • \overrightarrow{b} \cdot \overrightarrow{n} \neq 0, \overrightarrow{a} \cdot \overrightarrow{n} = q
If \vec \alpha | =4 and -3 \le \lambda \le 2, then the range of | \lambda \vec \alpha | is 
  • [0, 8]
  • [-12, 8]
  • [0, 12]
  • [8, 12]
If \vec a, \vec b, \vec c are unit vector such that \vec a +\vec b +\vec c=\vec 0, then the value of \vec a \vec b+\vec b. \vec c+\vec c. \vec a is 
  • 1
  • 3
  • -\dfrac 32
  • None\ of\ these
The vector having initial and terminal points as (2, 5, 0) and (-3, 7, 4), respectively is 
  • -\hat i +12 \hat j +4\hat k
  • 5\hat i+2\hat j-4\hat k
  • -5\hat i +2\hat j+4\hat k
  • \hat i+\hat j+ \hat k
If \vec a, \vec b, \vec c are three vectors such that \vec a +\vec b+ \vec c=\vec 0 and | \vec a| =2, | \vec b|=3, | \vec c| =5, then value of \vec a. \vec b+ \vec b. \vec c+ \vec c. \vec a is 
  • 0
  • 1
  • -19
  • 38
The position vector of the point which divides the join of points 2 \vec a -3\vec b and \vec a+\vec b in the ratio 3:1 is 
  • \dfrac{3\vec a-2\vec b}{2}
  • \dfrac{7\vec a-8\vec b}{4}
  • \dfrac{3\vec a}{4}
  • \dfrac{5\vec a}{4}
If \left| \bar { a }  \right|  =2,\ \left| \bar { b }  \right|  = 3, \left| \bar { c }  \right|  =4 then \left[ \begin{matrix} \bar { a } +\bar { b }  & \bar { b } +\bar { c }  & \bar { c } -\bar { a }  \end{matrix} \right] is 
  • 24
  • -24
  • 0
  • 448
If \left| \bar { a }  \right| =3,\ \left| \bar { b }  \right| =4, then the value of \lambda for which \bar { a }+\lambda \bar { b }, is
  • \dfrac{9}{16}
  • \dfrac{3}{4}
  • \dfrac{3}{2}
  • \dfrac{4}{3}
Let \bar { p } and \bar { q } be the position vectors of P 
and Q respectively, with respect to O and \left| \bar { p }   \right| =p,\ \left| \bar { q }  \right| =q. The points R and S divide PQ internally and externally in the ratio 2:3 
respectively. If OR and OS are perpendicular; then
  • 9p^2=4q^2
  • 4p^2=9q^2
  • 9p=4q
  • 4p=9q
The value of \hat { i }. (\hat { j } \times \hat { k }) + \hat { j }. (\hat {  i } \times \hat { k })+\hat { k }. (\hat { i } \times \hat { j }) is
  • 0
  • -1
  • 1
  • 3
If \overrightarrow {a} is non zero vector of magnitude 'a ' and \lambda a nonzero scalar then \lambda \overrightarrow {a} is unit vector
  • \lambda =1 
  • \lambda = -1
  • a = | \lambda|
  • a = 1 / | \lambda |
In triangle ABC , which of the following is not true.
1860549_16558d808f3a4366ab5aee7338ba81ba.png
  • \bar {AB} + \bar {BC} + \bar {CA} = \bar {0}
  • \bar {AB} + \bar {BC} - \bar {AC} = \bar {0}
  • \bar {AB} + \bar {BC} - \bar {CA} = \bar {0}
  • \bar {AB} - \bar {CB} + \bar {CA} = \bar {0}
The value of \hat {i} .( \hat {j} \times \hat {k}) + \hat {j} . ( \hat {i} \times  \hat {k})  + \hat {k} .( \hat {i} \times  \hat {j})
  • 0
  • -1
  • 1
  • 3
Three vectors of magnitudes a,\ 2a,3a meeting a point and three directions are along the diagonals of three adjacent faces of a cube. The magnitude of their resultant is
  • 3a
  • 5a
  • 2a
  • 4a
If \vec {x} is a vector whose initial point divides the line joining 5\hat{i}, and  5\hat{j} in the ratio \lambda :1 and  the terminal point is the origin. Also given \left | \vec {x} \right |\leq \sqrt{37}, then \lambda belongs to
  • \left [ -\dfrac{1}{6} ,\dfrac{1}{6}\right ]
  • (-\infty ,-6)\cup \left ( -\dfrac{1}{6} ,\infty \right )
  • (-\infty ,-8)
  • (1,\infty )
A scooterist follows a track on a ground that turns to his left by an angle 60^{0} after every 400 m. Starting from the given point displacement of the scooterist at the third turn and eighth turn are :
  • 800\mathrm{ m}; 0\mathrm{ m}
  • 800\mathrm{m},\ 800\sqrt{3}\mathrm{m}
  • 800\mathrm{m};400\sqrt{3}\mathrm{m}
  • 800; 800\sqrt{3}\mathrm{m}
The vectors \overrightarrow{AB} = 3\hat{i} + 4\hat{k} and \overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k} are the sides of a triangle ABC, then the  length of the median through A is:
  • \sqrt{72}
  • \sqrt{33}
  • \sqrt{45}
  • \sqrt{18}
\mathrm{l}\mathrm{n} a triangle O\mathrm{A}\mathrm{B},\ \mathrm{E} is the mid-point of \mathrm{O}\mathrm{B} and \mathrm{D} is a point on \mathrm{A}\mathrm{B} such that \mathrm{A}\mathrm{D}: \mathrm{D}\mathrm{B}=2: 1. lf \mathrm{O}\mathrm{D} and \mathrm{A}\mathrm{E} interesect at \mathrm{P}, then the ratio \displaystyle\frac{OP}{PD} is
  • 1:2
  • 3:2
  • 8:3
  • 4:3
In a quadrilateral PQRS,\ \vec{PQ}=\vec{a}, \vec{QR}=\vec{b}, \vec{SP}=\vec{a} - \vec{b}.\ M is the mid-point of QR and X is a point on SM such that \vec{SX}=\dfrac{4}{5}\vec{SM}, then \vec{PX} is
  • \dfrac{1}{5}\vec{PR}
  • \dfrac{3}{5}\vec{PR}
  • \dfrac{2}{5}\vec{PR}
  • None of these
The position vectors of A and B are 2\hat{i}+2\hat{j}+\hat{k} and 2\hat{i}+4\hat{j}+4\hat{k}. The length of the internal bisector of \angle BOA of the triangle AOB is
  • \displaystyle \sqrt { \dfrac { 136 }{ 9 }  }
  • \displaystyle \sqrt { \dfrac { 139 }{ 9 }  }
  • \displaystyle \dfrac { 20 }{ 3 }
  • \displaystyle \sqrt { \dfrac { 217 }{ 9 }  }
ABCD is a quadrilateral, E is the point of intersection of the line joining the midpoints of the opposite sides. If O is any point and \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = \vec{x OE}, then x is equal to
  • 3
  • 9
  • 7
  • 4
If \overrightarrow{b} is a vector whose initial point divides the join of 5\widehat{i} and 5\widehat{j} in the ratio k : 1  and whose terminal point is the origin and |\vec b| \leq \sqrt{37}, then k lies in the interval
  • \left[-6, -\dfrac{1}{6}\right]
  • \left(- \infty, -6 \right] \cup \left[-\dfrac{1}{6}, \infty \right)
  • \left[0, 6 \right]
  • None of these
If  \vec{a},\vec{b},\vec{c} are three non-zero vectors such that \vec{a}\times \vec{b}=\vec{c} and \vec{b}\times \vec{c}=\vec{a} , then choose the incorrect option(s)
  • \vec{a}. \vec{b}=\vec{b}. \vec{c}=\vec{c} . \vec{a}=0
  • \left | \vec{b} \right |=\left | \vec{c} \right |
  • \vec{a} is a unit vector
  • \vec{c} is a unit vector
If the vectors \hat i - \hat j, \hat j + \hat k and \vec a form a triangle, then \vec a may be
  • - \hat i - \hat k
  • \hat i - 2 \hat j - \hat k
  • 2 \hat i + \hat j + \hat k
  • \hat i + \hat k
Vectors \vec a = \hat i + 2 \hat j + 3 \hat k, \vec b = 2 \hat i - \hat j + \hat k and \vec c = 3 \hat i + \hat j + 4 \hat k are so placed that the end point of one vector is the starting point of the next vector, then the vectors are
  • Not coplanar
  • Coplanar but cannot form a triangle
  • Coplanar and form a triangle
  • Coplanar and can form a right-angled triangle
ABCD a parallelogram, A_1 and B_1 are the midpoints of sides BC and CD, respectively. If \vec{AA_1} + \vec{AB_1} = \lambda \vec{AC}, then \lambda is equal to
  • \displaystyle \dfrac{1}{2}
  • 1
  • \displaystyle \dfrac{3}{2}
  • 2
L_{1}and L_{2} are two lines whose vector equations are

L_{1}:\vec{r}=\lambda \left ( (\cos \theta+\sqrt{3})\hat{i}+(\sqrt{2}\sin\theta)\hat{j}+(\cos \theta-\sqrt{3})\hat{k} \right )

L_{2}:\vec{r}=\mu \left ( a \hat{i}+b \hat{j}+c\hat{k} \right ),

Where \lambda\ and\ \mu are scalars and \alpha is the acute angle

between L_{1}\ and\ L_{2} . If the angle '\alpha'is independent

of \theta then the value of '\alpha ' is
  • \dfrac{\pi}{6}
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{3}
  • \dfrac{\pi}{2}
\overrightarrow{AR} is
  • \dfrac{1}{5}(2\vec {b}+\vec {c})
  • \dfrac{1}{6}(2\vec {b}+\vec {c})
  • \dfrac{1}{7}(\vec {b}+2\vec {c})
  • \dfrac{1}{7}(2\vec {b}+\vec {c})
In a parallelogram OABC, vectors \vec{a}, \vec{b}, \vec{c} are, respectively, the position vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side BC  which divides it in the ratio of 2 : 1. Also, the line segment  AE  intersects the line bisecting the angle \angleAOC internally at point P. If CP when extended meets AB  in point F,  then the position vector of point P  is
  • \displaystyle \dfrac{|\vec{a}| |\vec{c}|}{3 |\vec{c}| + 2 |\vec{a}|} \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right )
  • \displaystyle \dfrac{3|\vec{a}| |\vec{c}|}{3 |\vec{c}| + 2 |\vec{a}|} \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right )
  • \displaystyle \dfrac{2|\vec{a}| |\vec{c}|}{3 |\vec{c}| + 2 |\vec{a}|} \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right )
  • None of these
The ratio \displaystyle \dfrac{OX}{XC} is
120334.png
  • \dfrac{3}{4}
  • \dfrac{1}{3}
  • \dfrac{2}{5}
  • \dfrac{1}{2}
The projection of the line joining the points (3, 4, 5) and (4, 6, 3) on the line joining the points (-1, 2, 4) and (1, 0, 5) is
  • \dfrac{4}{3}
  • \dfrac{2}{3}
  • \dfrac{1}{3}
  • \dfrac{1}{2}
A parallelogram is constructed on the vectors \bar{\alpha } and \bar{\beta }. A vector which coincides with the altitude of the parallelogram and perpendicular to the side \bar{\alpha } expressed in terms of the vectors \bar{\alpha } and \bar{\beta } is
  • \displaystyle \bar{\beta }+\dfrac{\bar{\beta }-\bar{\alpha }}{\left ( \bar{\alpha } \right )^{2}}\bar{\alpha }
  • \displaystyle \dfrac{\left ( \bar{\alpha }\times \bar{\beta } \right )\times \bar{\alpha }}{\left ( \bar{\alpha } \right )^{2}}
  • \displaystyle \dfrac{\bar{\beta }\cdot \bar{\alpha }}{\left ( \alpha \right )^{2}}\bar{\alpha }+\bar{\beta }
  • \displaystyle \left | \bar{\beta } \right |\dfrac{\bar{\alpha }\times \left ( \bar{\alpha }\times \bar{\beta } \right )}{\left ( \alpha \right )^{2}}
\vec{a} = 2 \widehat{i} - \widehat{j} + \widehat{k}, \vec{b} = \widehat{i} + 2\widehat{j} - \widehat{k} and  \vec{c} = \widehat{i} + \widehat{j} - 2 \widehat{k}. A vector coplanar with \vec{b} and \vec{c} whose projection on \vec{a} is magnitude \displaystyle \sqrt{\dfrac{2}{3}} is
  • 2 \widehat{i} + 3 \widehat{j} - 3 \widehat{k}
  • - 2 \widehat{i} - \widehat{j} + 5 \widehat{k}
  • 2 \widehat{i} + 3 \widehat{j} + 3 \widehat{k}
  • 2 \widehat{i} + \widehat{j} + 5 \widehat{k}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers