Processing math: 3%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 11 - MCQExams.com
CBSE
Class 12 Commerce Maths
Vector Algebra
Quiz 11
Let
A
B
C
be a triangle, the position vector of whose vertices are
7
ˆ
j
+
10
ˆ
k
,
−
ˆ
i
+
6
ˆ
j
+
6
ˆ
k
and
−
4
ˆ
i
+
9
ˆ
j
+
6
ˆ
k
. Then
Δ
A
B
C
is
Report Question
0%
isosceles
0%
equilateral
0%
right-angled
0%
none of these
Explanation
We have,
→
A
B
=
−
ˆ
i
−
ˆ
j
−
4
ˆ
k
,
→
B
C
=
−
3
ˆ
i
+
3
ˆ
j
and
→
C
A
=
4
ˆ
i
−
2
ˆ
j
+
4
ˆ
k
. Therefore,
∣
→
A
B
∣=∣
→
B
C
∣=
3
√
2
and
∣
→
C
A
∣=
6
Clearly,
∣
→
A
B
∣
2
=∣
→
B
C
∣
2
=∣
→
A
C
∣
2
Hence, the triangle s right-angled isosceles triangle.
Vector
→
x
is
Report Question
0%
1
|
→
a
×
→
b
|
2
[
→
a
×
(
→
a
×
→
b
)
]
0%
γ
|
→
a
×
→
b
|
2
[
→
a
×
→
b
−
→
a
×
(
→
a
×
→
b
)
]
0%
γ
|
→
a
×
→
b
|
2
[
→
a
×
→
b
+
→
b
×
(
→
a
×
→
b
)
]
0%
none of these
Explanation
Given
→
x
×
→
y
=
→
a
(
i
)
→
y
×
→
z
=
→
b
(
i
i
)
→
x
⋅
→
b
=
γ
(
i
i
i
)
→
x
⋅
→
y
=
1
(
i
v
)
→
y
⋅
→
z
=
1
(
v
)
From (ii),
→
x
⋅
(
→
y
×
→
z
)
=
→
x
⋅
→
b
=
γ
⇒
[
→
x
→
y
→
z
]
=
γ
From (i) and (ii),
(
→
x
×
→
y
)
×
(
→
y
×
→
z
)
=
→
a
×
→
b
\therefore[\vec{x} \vec{y} \vec{z}] \vec{y}-[\vec{y} \vec{y} \vec{z}] \vec{x}=\vec{a} \times \vec{b} \Rightarrow \vec{y}=\dfrac{\vec{a} \times \vec{b}}{\gamma}
\qquad (vi)
Also from (i), we get
(\vec{x} \times \vec{y}) \times \vec{y}=\vec{a} \times \vec{y}
\Rightarrow(\vec{x} \cdot \vec{y}) \vec{y}-(\vec{y} \cdot \vec{y}) \vec{x}=\vec{a} \times \vec{y} \Rightarrow \vec{x}=\left(1 /|\vec{y}|^{2}\right)(\vec{y}-\vec{a} \times \vec{y})=\dfrac{\gamma^{2}}{|\vec{a} \times \vec{b}|^{2}}\left[\dfrac{\vec{a} \times \vec{b}}{\gamma}-\dfrac{\vec{a} \times(\vec{a} \times \vec{b})}{\gamma}\right]
\begin{array}{l}\Rightarrow \vec{x}=\dfrac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}-\vec{a} \times(\vec{a} \times \vec{b})] \end{array}
Vector
\vec{z}
is
Report Question
0%
\dfrac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b} \times(\vec{a} \times \vec{b})]
0%
\dfrac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b}-\vec{a} \times(\vec{a} \times \vec{b})]
0%
\dfrac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}+\vec{b} \times(\vec{a} \times \vec{b})]
0%
none of these
Explanation
Given
\vec{x} \times \vec{y}=\vec{a}
\qquad (i)
\vec{y} \times \vec{z}=\vec{b}
\qquad (ii)
\vec{x} \cdot \vec{b}=\gamma
\qquad (iii)
\vec{x} \cdot \vec{y}=1
\qquad (iv)
\vec{y} \cdot \vec{z}=1
\qquad (v)
\begin{array}{l} \text { Also from (ii), }(\vec{y} \times \vec{z}) \times \vec{y}=\vec{b} \times \vec{y} \Rightarrow|\vec{y}|^{2} \vec{z}-(\vec{z} \cdot \vec{y}) \vec{y}=\vec{b} \times \vec{y} \\\Rightarrow \vec{z}=\dfrac{1}{|\vec{y}|^{2}}[\vec{y}+\vec{b} \times \vec{y}]=\dfrac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}+\vec{b} \times(\vec{a} \times \vec{b})]\end{array}
Vector
\vec{y}
is
Report Question
0%
\dfrac{\vec{a} \times \vec{b}}{\gamma}
0%
\vec{a}+\dfrac{\vec{a} \times \vec{b}}{\gamma}
0%
\vec{a}+\vec{b}+\dfrac{\vec{a} \times \vec{b}}{\gamma}
0%
none of these
Explanation
Given
\vec{x} \times \vec{y}=\vec{a}
\qquad (i)
\vec{y} \times \vec{z}=\vec{b}
\qquad (ii)
\vec{x} \cdot \vec{b}=\gamma
\qquad (iii)
\vec{x} \cdot \vec{y}=1
\qquad (iv)
\vec{y} \cdot \vec{z}=1
\qquad (v)
From (ii),
\vec{x} \cdot(\vec{y} \times \vec{z})=\vec{x} \cdot \vec{b}=\gamma \Rightarrow[\vec{x} \vec{y} \vec{z}]=\gamma
From (i) and (ii),
(\vec{x} \times \vec{y}) \times(\vec{y} \times \vec{z})=\vec{a} \times \vec{b}
\therefore[\vec{x} \vec{y} \vec{z}] \vec{y}-[\vec{y} \vec{y} \vec{z}] \vec{x}=\vec{a} \times \vec{b} \Rightarrow \vec{y}=\dfrac{\vec{a} \times \vec{b}}{\gamma}
Vectors
\vec{A} \space and \space \vec{B}
satisfying the vector equation
\vec{A} + \vec{B} = \vec{a}, \vec{A} \times \vec{B} = \vec{b} \space and \space \vec{A} . \vec{a} = 1
where
\vec{a} \space and \space \vec{b}
are given vectors are
Report Question
0%
\vec{A} = \frac{(\vec{a} \times \vec{b}) - \vec{a}}{a^2}
0%
\vec{B} = \frac{(\vec{b} \times \vec{a}) + \vec{a}(a^2 - 1)}{a^2}
0%
\vec{A} = \frac{(\vec{a} \times \vec{b}) + \vec{a}}{a^2}
0%
\vec{B} = \frac{(\vec{b} \times \vec{a}) - \vec{a}(a^2 - 1)}{a^2}
(\vec{P} \times \vec{B}) \times \vec{B}
is equal to
Report Question
0%
\vec{P}
0%
-\vec{P}
0%
2 \vec{B}
0%
\vec{A}
Explanation
\vec{P} \times \vec{B}=\vec{A}-\vec{P}
and
|\vec{A}|=|\vec{B}|=1
and
\vec{A} \cdot \vec{B}=0
is given
Now
\vec{P} \times \vec{B}=\vec{A}-\vec{P}
\qquad (i)
(\vec{P} \times \vec{B}) \times \vec{B}=(\vec{A}-\vec{P}) \times \vec{B}
(taking cross product with
\vec{B}
on both sides)
\begin{array}{l}\Rightarrow(\vec{P} \cdot \vec{B}) \vec{B}-(\vec{B} \cdot \vec{B}) \vec{P}=\vec{A} \times \vec{B}-\vec{P} \times \vec{B} \\\Rightarrow(\vec{P} \cdot \vec{B}) \vec{B}-\vec{P}=\vec{A} \times \vec{B}-\vec{A}+\vec{P} \\\Rightarrow 2 \vec{P}=\vec{A}-\vec{A} \times \vec{B}-(\vec{P} \cdot \vec{B}) \vec{B} \\\Rightarrow \vec{P}=\dfrac{\vec{A}-\vec{A} \times \vec{B}-(\vec{P} \cdot \vec{B}) \vec{B}}{2}\end{array}
\qquad (ii)
Taking dot product with
\vec{B}
on both sides of (i), we get
\begin{array}{l}\vec{P} \cdot \vec{B}=\vec{A} \cdot \vec{B}-\vec{P} \cdot \vec{B} \\\Rightarrow \vec{P} \cdot \vec{B}=0 \qquad \qquad (iii) \\\Rightarrow \vec{P}=\dfrac{\vec{A}+\vec{B} \times \vec{A}}{2}\end{array}
Now
(\vec{P} \times \vec{B}) \times \vec{B}=(\vec{P} \cdot \vec{B}) \vec{B}-(\vec{B} \cdot \vec{B}) \vec{P}=-\vec{P}
If side
\vec{AB}
of an equilateral triangle ABC lying in the x - y plane is
3\hat{i}
, then side
\vec{CB}
can be
Report Question
0%
-\frac{3}{2}(\hat{i} - \sqrt{3}\hat{j}
0%
\frac{3}{2}(\hat{i} - \sqrt{3}\hat{j})
0%
-\frac{3}{2}(\hat{i} + \sqrt{3}\hat{j})
0%
\frac{3}{2}(\hat{i} - \sqrt{3} \hat{j})
Given that
\vec a, \vec b, \vec p, \vec q
are four vectors such that
\vec a + \vec b = \mu \vec p, \vec b \cdot \vec q = 0
and
(\vec b)^2 = 1,
where
\mu
is scalar. Then
\mid (\vec a \cdot \vec q) \vec p - (\vec p \cdot \vec q)\vec a \mid
is equal to
Report Question
0%
2 \mid \vec p \cdot \vec q \mid
0%
(1/2) \mid \vec p \cdot \vec q \mid
0%
\mid \vec p \times \vec q \mid
0%
\mid \vec p \cdot \vec q \mid
Explanation
\vec a + \vec b = \mu \vec p,
\vec b \cdot \vec q = 0
,
(\vec b)^2 = 1,
\because \vec a + \vec b = \mu \vec p
\Rightarrow (\vec a + \vec b) \times \vec a = \mu \vec p \times \vec a, \vec b \times \vec a = \mu \vec p \times \vec a \Rightarrow \vec q \times (\vec b \times \vec a) = \mu \vec q \times (\vec p \times \vec q)
\Rightarrow (\vec q \cdot \vec a) \vec b - (\vec q \cdot \vec b) \vec a = \mu \vec q \times (\vec p \times \vec a) \Rightarrow (\vec q \cdot \vec a) \vec b = \mu \vec q \times (\vec p \times \vec a)
\because \vec a + \vec b = \mu \vec p
\Rightarrow \vec q \cdot (\vec a + \vec b) = \mu \vec q \cdot \vec p
\Rightarrow \vec q \cdot \vec a + \vec q \cdot \vec b = \mu \vec p \cdot \vec q
\mu = \dfrac{\vec q \cdot \vec a}{\vec p \cdot \vec q}
\Rightarrow (\vec q \cdot \vec a) \vec b = \dfrac{\vec q \cdot \vec a}{\vec p \cdot \vec q} [(\vec q \cdot \vec a) \cdot \vec p - (\vec q \cdot \vec p)\vec a]
\Rightarrow \mid (\vec q \cdot \vec a)\vec p - (\vec q \cdot \vec p)\vec a \mid = \mid (\vec p \cdot \vec q) \vec b \mid = \mid (\vec p \cdot \vec q)\mid \cdot \mid \vec b\mid
\Rightarrow \mid (\vec q \cdot \vec a)\vec p - (\vec q \cdot \vec p) \vec a \mid = \mid \vec p \cdot \vec q \mid
If
\vec r
and
\vec s
are non-zero constant vectors and the scalar
b
is chosen such that
\mid \vec r + b \vec s \mid
is minimum, then the value of
\mid b \vec s \mid^2 + \mid \vec r + b \vec s \mid^2
is equal to
Report Question
0%
2 \mid \vec r \mid^2
0%
\mid \vec r \mid^2/2
0%
3 \mid \vec r \mid^2
0%
\mid \vec r \mid^2
Explanation
For minimum value
\mid \vec r + b \vec s \mid = 0
Let
\vec r
and
\vec s
are anti parallel so
b \vec s = - \vec r
so
\mid b \vec s\mid^2 + \mid \vec r + b \vec s \mid^2 = \mid - \vec r \mid^2 + \mid \vec r - \vec r \mid^2 = \mid \vec r \mid^2
If
\overline a
and
\overline b
are adjacent sides of a rhombus, then
\overline a.\overline b=0
.
Report Question
0%
True
0%
False
Explanation
If
\overline a.\overline b=0
, then $$\overline a . \overline b=|\overline
a| . |\overline b| \cos 90^o$$
Hence, angle between
\overline a
and
\overline b
is
90^o
, which is not possible in a rhombus.
Since, angle between adjacent sides in a rhombus is not equal to
90^o
.
Let
\hat{a} \space and \space \hat{b}
be mutually perpendicular unit vectors. Then for any arbitrary
\vec{r}
.
Report Question
0%
\vec{r} = (\vec{r} . \hat{a})\hat{a} + (\vec{r} . \hat{b})\hat{b} + (\vec{r} . (\hat{a} \times \hat{b})) (\hat{a} \times \hat{b})
0%
\vec{r} = (\vec{r} . \hat{a}) - (\vec{r} . \hat{b})\hat{b} + (\vec{r} . (\hat{a} \times \hat{b}))) (\hat{a} \times \hat{b})
0%
\vec{r} = (\vec{r} . \hat{a})\hat{a} - (\vec{r} . \hat{b})\hat{b} + (\vec{r} . (\hat{a} \times \hat{b})) (\hat{a} \times \hat{b})
0%
none of these
The vector with initial point
P(2,-3,5)
and terminal point
Q(3,-4,7)
is
Report Question
0%
\hat i-\hat j+2\hat k
0%
5\hat i-7\hat j+12\hat k
0%
\hat i+\hat j-2\hat k
0%
None\ of\ these
Explanation
(A)
is the correct answer.
Required vector
=|\vec{AB}|=(3-2) \hat i+(-4+3)\hat j+(7-5)\hat k
=\hat i-\hat j+2\hat k
If
\vec{X} \cdot \vec{A}=0, \vec{X} \cdot \vec{B}=0
and
\vec{X} \cdot \vec{C}=0
for some non-zero vector
\vec{X},
then
[\vec{A} \vec{B} \vec{C}]=0
Report Question
0%
True
0%
False
The position vector of the point which divides the join of points with position vectors
\vec a +\vec b
and
2\vec a-\vec b
in the ratio
1:2
is
Report Question
0%
\dfrac {3\vec a+2\vec b}{3}
0%
\vec a
0%
\dfrac {5\vec a-\vec b}{3}
0%
\dfrac {4\vec a+\vec b}{3}
Explanation
(D)
is the correct answer. Applying section formula, the position vector of the required point is
\dfrac {2(\vec a+\vec b)+1(2\vec a-\vec b)}{2+1}=\dfrac {4\vec a+\vec b}{3}
Since, the position vector of a point
R
divides the line segment joining the points
P
and
Q
, whose position vectors are
\vec p
and
\vec q
in the ration
m:n
internally, is given by
\dfrac{m\vec q +n\vec p}{m+n}
The projection of vector
\vec a=2\hat i-\hat j+\hat k
along
\vec b=\hat i+2\hat j+2\hat k
is
Report Question
0%
\dfrac {2}{3}
0%
\dfrac {1}{3}
0%
2
0%
\sqrt 6
Explanation
(A)
is the correct answer. Projection of a vector
\vec a
on
\vec b
is
\dfrac {\vec a \vec b}{|b|}=\dfrac {(2\hat i-\hat j+\hat k)(\hat i+2\hat j+2\hat k)}{\sqrt {1+4+4}}=\dfrac 23
Position vector of a point
P
is a vector whose initial point is origin.
Report Question
0%
True
0%
False
Explanation
Since,
\overline P=\overline{OP}
displacement of vector
\overline P
from origin.
Let
\vec{u}, \vec{v}
and
\vec{w}
be vectors such that
\vec{u}+\vec{v}+\vec{w}=0 .
If
|\vec{u}|=3,|\vec{v}|=4
and
|\vec{w}|=5,
then
\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u}
is
Report Question
0%
47
0%
-25
0%
0
0%
25
0%
50
Line
\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}
will not meet the plane
\overrightarrow{r} \cdot \overrightarrow{n} = q
, if
Report Question
0%
\overrightarrow{b} \cdot \overrightarrow{n} = 0, \overrightarrow{a} \cdot \overrightarrow{n} = q
0%
\overrightarrow{b} \cdot \overrightarrow{n} \neq 0, \overrightarrow{a} \cdot \overrightarrow{n} \neq q
0%
\overrightarrow{b} \cdot \overrightarrow{n} = 0, \overrightarrow{a} \cdot \overrightarrow{n} \neq q
0%
\overrightarrow{b} \cdot \overrightarrow{n} \neq 0, \overrightarrow{a} \cdot \overrightarrow{n} = q
Explanation
Given line is
\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}
Substitute it in plane equation
\overrightarrow{r} \cdot \overrightarrow{n} = q
,
( \overrightarrow{a} + \lambda \overrightarrow{b}).\overrightarrow{n}=q
( \overrightarrow{a}. \overrightarrow{n}+ \lambda \overrightarrow{b}.\overrightarrow{n})=q
We must have
\overrightarrow{b} \cdot \overrightarrow{n} = 0
and
\overrightarrow{a} \cdot \overrightarrow{n} \neq q
(as point
\overrightarrow{a}
on the line should not lie on the plane.
If
\vec \alpha | =4
and
-3 \le \lambda \le 2
, then the range of
| \lambda \vec \alpha |
is
Report Question
0%
[0, 8]
0%
[-12, 8]
0%
[0, 12]
0%
[8, 12]
Explanation
We have,
| \vec \alpha | =4
and
-3 \le \lambda \le 2
\therefore | \lambda \vec a| =|-3| 4=12
, at
\lambda =-3
| \lambda \vec a| =|0|4=0
, at
\lambda =0
And
| \lambda \vec \alpha | |2| 4=8
, at
\lambda =2
So, the range of
| \lambda \vec \alpha |
is
[0, 12]
.
Alternate Method
Since,
-3 \le \lambda \le 2
0 \le || \lambda | \le 3
\Rightarrow 0 \le 4 | \lambda | \le 12
| \lambda \vec a| \in [ 0, 12]
If
\vec a, \vec b, \vec c
are unit vector such that
\vec a +\vec b +\vec c=\vec 0
, then the value of
\vec a \vec b+\vec b. \vec c+\vec c. \vec a
is
Report Question
0%
1
0%
3
0%
-\dfrac 32
0%
None\ of\ these
Explanation
We have,
\vec a+ \vec b+ \vec c= \vec 0
, and
\vec a^2=1, \vec b^2 =1, \vec c^2 =1 | \vec a|=1, | \vec b|=1, | \vec c| =1
\because ( \vec a+ \vec b +\vec c)( \vec a+ \vec b +\vec c)=0
\Rightarrow \vec a^2 + \vec a. \vec b + \vec a. \vec c+ \vec +\vec b . \vec a + \vec b^2 + \vec b. \vec c+ \vec c. \vec a+ \vec c. \vec b +\vec c^2=0
\Rightarrow \vec a^2 +\vec b^2.+\vec c^2 +2( \vec a. \vec b+ \vec b. \vec c+ \vec c. \vec a)=0
[ \because \vec a. \vec b =\vec b. \vec a, \vec b. \vec c= \vec c. \vec b
and
\vec c. \vec a= \vec a. \vec c]
\Rightarrow 1+1+1+2( \vec a. \vec b + \vec b. \vec c + \vec c. \vec a)=0
\Rightarrow \vec a. \vec b+ \vec b. \vec c+ \vec c. \vec a=-\dfrac 32
The vector having initial and terminal points as
(2, 5, 0)
and
(-3, 7, 4)
, respectively is
Report Question
0%
-\hat i +12 \hat j +4\hat k
0%
5\hat i+2\hat j-4\hat k
0%
-5\hat i +2\hat j+4\hat k
0%
\hat i+\hat j+ \hat k
Explanation
Required vector
=|\vec{AB}|=(-3-2) \hat i+(7-5)\hat j+(4-0)\hat k
=-5\hat i+2\hat j=4\hat k
If
\vec a, \vec b, \vec c
are three vectors such that
\vec a +\vec b+ \vec c=\vec 0
and
| \vec a| =2, | \vec b|=3, | \vec c| =5
, then value of
\vec a. \vec b+ \vec b. \vec c+ \vec c. \vec a
is
Report Question
0%
0
0%
1
0%
-19
0%
38
Explanation
Here,
\vec a+ \vec b+ \vec c=\vec 0
and
\vec a^2 =4, \vec b^2 =9, \vec c^2=25
\therefore ( \vec a+ \vec b+ \vec c). ( \vec a+ \vec b+\vec c)=\vec 0
\Rightarrow \vec a^2 +\vec a. \vec b+ \vec a. \vec c+\vec b. \vec a+\vec b^2 + \vec b. \vec c+ \vec c. \vec a+ \vec c. \vec b+ \vec c^2=\vec 0
\Rightarrow \vec a^2+ \vec b^2+\vec c^2+2( \vec a. \vec b+ \vec b. \vec c+ \vec c. \vec a)=0
[ \because \vec a. \vec b=\vec b. \vec a]
\Rightarrow 4+9+25+2( \vec a. \vec b+ \vec b. \vec c +\vec c. \vec a)=0
\Rightarrow \vec a. \vec b+ \vec b. \vec c+ \vec c. \vec a=\dfrac{-38}{2}=-19
The position vector of the point which divides the join of points
2 \vec a -3\vec b
and
\vec a+\vec b
in the ratio
3:1
is
Report Question
0%
\dfrac{3\vec a-2\vec b}{2}
0%
\dfrac{7\vec a-8\vec b}{4}
0%
\dfrac{3\vec a}{4}
0%
\dfrac{5\vec a}{4}
Explanation
Let the position vector of the point
R
divides the join of points
2\vec a-3\vec b
and
\vec a+\vec b
.
\therefore
Position vector
R=\dfrac{3( \vec a+\vec b)+1( 2\vec a-3\vec b)}{3+1}
Since, the position vector of a point
R
divides the line segment joining the points
P
and
Q
, whose position vectors are
\vec p
and
\vec q
in the ration
m:n
internally, is given by
\dfrac{m\vec q +n\vec p}{m+n}
\therefore R=\dfrac{5\vec a}{4}
If
\left| \bar { a } \right| =2,\ \left| \bar { b } \right| = 3, \left| \bar { c } \right| =4
then
\left[ \begin{matrix} \bar { a } +\bar { b } & \bar { b } +\bar { c } & \bar { c } -\bar { a } \end{matrix} \right]
is
Report Question
0%
24
0%
-24
0%
0
0%
448
If
\left| \bar { a } \right| =3,\ \left| \bar { b } \right| =4,
then the value of
\lambda
for which
\bar { a }+\lambda \bar { b },
is
Report Question
0%
\dfrac{9}{16}
0%
\dfrac{3}{4}
0%
\dfrac{3}{2}
0%
\dfrac{4}{3}
Let
\bar { p }
and
\bar { q }
be the position vectors of
P
and
Q
respectively, with respect to
O
and
\left| \bar { p } \right| =p,\ \left| \bar { q } \right| =q.
The points
R
and
S
divide
PQ
internally and externally in the ratio
2:3
respectively. If
OR
and
OS
are perpendicular; then
Report Question
0%
9p^2=4q^2
0%
4p^2=9q^2
0%
9p=4q
0%
4p=9q
The value of
\hat { i }. (\hat { j } \times \hat { k }) + \hat { j }. (\hat { i } \times \hat { k })+\hat { k }. (\hat { i } \times \hat { j })
is
Report Question
0%
0
0%
-1
0%
1
0%
3
If
\overrightarrow {a}
is non zero vector of magnitude 'a ' and
\lambda
a nonzero scalar then
\lambda \overrightarrow {a}
is unit vector
Report Question
0%
\lambda =1
0%
\lambda = -1
0%
a = | \lambda|
0%
a = 1 / | \lambda |
Explanation
|\lambda\bar{a}| \space is \space a \space unit \space vector
So \space its \space magnitude \space is \space 1
|\lambda \bar{a}|=|\lambda||\bar{a}|=|\lambda|a=1
\Rightarrow a=\frac{1}{|\lambda|}
Hence\space answer\space is\space (D)
In triangle ABC , which of the following is not true.
Report Question
0%
\bar {AB} + \bar {BC} + \bar {CA} = \bar {0}
0%
\bar {AB} + \bar {BC} - \bar {AC} = \bar {0}
0%
\bar {AB} + \bar {BC} - \bar {CA} = \bar {0}
0%
\bar {AB} - \bar {CB} + \bar {CA} = \bar {0}
Explanation
\textbf{Step -1: Apply triangle law of vector addition and check which option is not true.}
\text{On applying the triangle law of addition in the given triangle, we have}
\overline {AB}+\overline{BC}=\overline{AC}\ldots(i)
\overline {AB}+\overline{BC}=-\overline{CA}
\mathbf{(\because \overline{AC}=-\overline{CA})}
\overline{AB}+\overline{BC}+\overline{CA}=0\ldots(ii)
\therefore \text{Option A is true.}
\text{Equation }(i)\text{ can be writen as, }
\overline{AB}+\overline{BC}-\overline{AC}=0
\therefore \text{Option B is true.}
\text{Equation }(ii)\text{ can be written as, }
\overline{AB}-\overline{CB}+\overline{CA}=0
\mathbf{(\because \overline{BC}=-\overline{CB})}
\therefore \text{Option D is true.}
\text{Hence, option C is not true.}
\textbf{Therefore, Option C is correct.}
The value of
\hat {i} .( \hat {j} \times \hat {k}) + \hat {j} . ( \hat {i} \times \hat {k}) + \hat {k} .( \hat {i} \times \hat {j})
Report Question
0%
0
0%
-1
0%
1
0%
3
Explanation
\overrightarrow {i} . ( \overrightarrow { j} \times \overrightarrow {k} ) + \overrightarrow {j} .( \overrightarrow {i} \times \overrightarrow {k}) + \overrightarrow {k} ( \overrightarrow {i} \times \overrightarrow {j})
\overrightarrow {i} . \overrightarrow {i'} + \overrightarrow {j} .( - \overrightarrow {j}) + \overrightarrow {k} . \overrightarrow {k} = | i|^2 - | j|^2 + |k|^2
= 1 - 1 +1 = +1
hence answer is ( C).
Three vectors of magnitudes
a,\ 2a,3a
meeting a point and three directions are along the diagonals of three adjacent faces of a cube. The magnitude of their resultant is
Report Question
0%
3a
0%
5a
0%
2a
0%
4a
Explanation
Solution:
Let the vectors of magnitudes
a,2a,3a
act along
OP,OQ,OR
respectively.Then vectors are
OP,OQ,OR
are
a\left(\cfrac{\vec i+\vec j}{\sqrt2}\right),
2a\left(\cfrac{\vec j+\vec k}{\sqrt2}\right),
3a\left(\cfrac{\vec k+\vec i}{\sqrt2}\right)
respectively.
Their resultant say
R
is given by
\vec R =
a\left(\cfrac{\vec i+\vec j}{\sqrt2}\right)+
2a\left(\cfrac{\vec j+\vec k}{\sqrt2}\right)+
3a\left(\cfrac{\vec k+\vec i}{\sqrt2}\right)
=\cfrac{a}{\sqrt2}(4\vec i+3\vec j+5\vec k)
\therefore |\vec R|=\sqrt{\cfrac{a^2}2(16+9+25)}=5a
Hence, B is the correct answer.
If
\vec {x}
is a vector whose initial point divides the line joining
5\hat{i}
, and
5\hat{j}
in the ratio
\lambda :1
and the terminal point is the origin. Also given
\left | \vec {x} \right |\leq \sqrt{37}
, then
\lambda
belongs to
Report Question
0%
\left [ -\dfrac{1}{6} ,\dfrac{1}{6}\right ]
0%
(-\infty ,-6)\cup \left ( -\dfrac{1}{6} ,\infty \right )
0%
(-\infty ,-8)
0%
(1,\infty )
Explanation
From the condition given for
\vec x
we have
\displaystyle \frac{|\lambda(5j)+5i|}{\lambda+1}\leq\sqrt{37}
25(\lambda^{2}+1)\leq 37(\lambda+1)^{2}
\Rightarrow(6\lambda+1)(\lambda+6)\geq 0
\displaystyle \lambda\in(-\infty, -6)\mathrm\cup (-\frac{1}{6}, \infty)
A scooterist follows a track on a ground that turns to his left by an angle 60
^{0}
after every 400 m. Starting from the given point displacement of the scooterist at the third turn and eighth turn are :
Report Question
0%
800\mathrm{ m}; 0\mathrm{ m}
0%
800\mathrm{m},\ 800\sqrt{3}\mathrm{m}
0%
800\mathrm{m};400\sqrt{3}\mathrm{m}
0%
800; 800\sqrt{3}\mathrm{m}
Explanation
Let
\bar { { x }_{ 1 } } ,\bar { { x }_{ 2 } } ,\bar { { x }_{ 3 } } ,.....\bar { { x }_{ 8 } }
be the positions of scooterist after
{ 1 }^{ st },{ 2 }^{ nd },{ 3 }^{ rd }......,{ 8 }^{ th }
turn respectively.
Thus its motion can be visualized as hexagon inscribed in circle of radius
400m
.
Let
\bar { { x }_{ 0 } }
be its initial position.
\therefore
After
{ 3 }^{ rd }
turn
{ x }_{ 3 } -{ x }_{ 0 }=800m
After
{ 8 }^{ th }
turn
{ x }_{ 0 } - { x }_{ 2 } = 800\cos30^{0} = 400\sqrt 3m
The vectors
\overrightarrow{AB} = 3\hat{i} + 4\hat{k}
and
\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}
are the sides of a triangle
ABC
, then the length of the median through
A
is:
Report Question
0%
\sqrt{72}
0%
\sqrt{33}
0%
\sqrt{45}
0%
\sqrt{18}
Explanation
Take A as the origin(0,0)
so
\vec {AB}= 3\hat i + 4\hat k
and
AC = 5\hat i – 2\hat j + 4\hat k
will become position vector.
So coordinate of B is
(3,0,4)
and C is
(5,-2,4)
.
The mid point of BC can be easily found by midpoint formula of two points as
D(4,-1,4).
so length of median through
A
is
AD
=\sqrt{(4-0)^2+(-1-0)^2+(4-0)^2}
=\sqrt{33}
\mathrm{l}\mathrm{n}
a triangle O
\mathrm{A}\mathrm{B},\ \mathrm{E}
is the mid-point of
\mathrm{O}\mathrm{B}
and
\mathrm{D}
is a point on
\mathrm{A}\mathrm{B}
such that
\mathrm{A}\mathrm{D}
:
\mathrm{D}\mathrm{B}=2: 1
. lf
\mathrm{O}\mathrm{D}
and
\mathrm{A}\mathrm{E}
interesect at
\mathrm{P}
, then the ratio
\displaystyle\frac{OP}{PD}
is
Report Question
0%
1:2
0%
3:2
0%
8:3
0%
4:3
Explanation
\Delta OAB
let
O=(0,0),A=(x_1,y_1),B=(x_2,y_2)
Then,
E=(\dfrac{x_2}{2},\dfrac{y_2}{2})
,
D=(\dfrac{2x_2+x_1}{3},\dfrac{2y_2+y_1}{3})
Equation of OD is:
y-0=\dfrac{2y_2+y_1}{2x_2+x_1}(x-0)
y=\dfrac{2y_2+y_1}{2x_2+x_1}x
........(1)
Equation of AE is:
(y-y_1)=\dfrac{y_2-2y_1}{x_2-2x_1}(x-x_1)
From eq(1)
(\dfrac{2y_2+y_1}{2x_2+x_1})(x)-y_1=\dfrac{y_2-2y_1}{x_2-2x_1}(x-x_1)
so
x=\dfrac{(2x_2+x_1)}{5} =\dfrac{3(\dfrac{2x_2+x_1}{3})+2(0)}{(3+2)}
so ratio
OP:PD=3:2
In a quadrilateral
PQRS,\ \vec{PQ}=\vec{a}, \vec{QR}=\vec{b}, \vec{SP}=\vec{a} - \vec{b}.\ M
is the mid-point of
QR
and
X
is a point on
SM
such that
\vec{SX}=\dfrac{4}{5}\vec{SM}
, then
\vec{PX}
is
Report Question
0%
\dfrac{1}{5}\vec{PR}
0%
\dfrac{3}{5}\vec{PR}
0%
\dfrac{2}{5}\vec{PR}
0%
None of these
Explanation
Choose
P
as the origin of reference.
\vec{PR}=\vec{a}+\vec{b}
,
\vec{PS}=-(\vec{a}-\vec{b})=\vec{b}-\vec{a}
\vec{PM}=\vec{a}+\dfrac{\vec{b}}{2}
Given :
\vec{SX}=\dfrac{4}{5}\vec{SM}
\vec{PX}-(\vec{b}-\vec{a})=\dfrac{4}{5}\left \{ \vec{a} +\dfrac{\vec{b}}{2}-(\vec{b}-\vec{a})\right \}
\Rightarrow \vec{PX}=\dfrac{3}{5}(\vec{a}+\vec{b})
=\dfrac{3}{5}\vec{PR}
Hence, option
B.
The position vectors of
A
and
B
are
2\hat{i}+2\hat{j}+\hat{k}
and
2\hat{i}+4\hat{j}+4\hat{k}.
The length of the internal bisector of
\angle BOA
of the triangle
AOB
is
Report Question
0%
\displaystyle \sqrt { \dfrac { 136 }{ 9 } }
0%
\displaystyle \sqrt { \dfrac { 139 }{ 9 } }
0%
\displaystyle \dfrac { 20 }{ 3 }
0%
\displaystyle \sqrt { \dfrac { 217 }{ 9 } }
Explanation
Here
OA=3,OB=6
\therefore
Internal bisector
OD
divides
AB
in the ratio
1:2
\Rightarrow
Position vector of
D
is
\displaystyle \left( 2,\frac { 8 }{ 3 } ,2 \right)
\displaystyle \therefore \left| OD \right| =\sqrt { 4+\dfrac { 64 }{ 9 } +4 } =\sqrt { \dfrac { 136 }{ 9 } }
ABCD
is a quadrilateral,
E
is the point of intersection of the line joining the midpoints of the opposite sides. If
O
is any point and
\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = \vec{x OE},
then
x
is equal to
Report Question
0%
3
0%
9
0%
7
0%
4
Explanation
Let
\vec{OA} = \vec{a}, \vec{OB} = \vec{b}, \vec{OC} = \vec{c}
and
\vec{OD} = \vec{d}
.
Therefore,
\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = \vec{a} + \vec{b} + \vec{c} + \vec{d}
.
The midpoint
P
of
AB
, is
\displaystyle \dfrac{\vec{a} + \vec{b}}{2}
.
The position vector of the midpoint
Q
of
{CD}
, is
\displaystyle \dfrac{\vec{c} + \vec{d}}{2}
.
Therefore, the position vector of the midpoint of
{PQ}
is
\displaystyle \dfrac{\vec{a} + \vec{b} + \vec{c} + \vec{d}}{4}
.
Similarly, the position vector of the midpoint of
RS
is
\displaystyle \dfrac{\vec{a} + \vec{b} + \vec{c} + \vec{d}}{4}
, i.e.,
\vec{OE} =\displaystyle \dfrac{\vec{a} + \vec{b} + \vec{c} + \vec{d}}{4} \Rightarrow x = 4
Hence, option '
D
' is correct.
If
\overrightarrow{b}
is a vector whose initial point divides the join of
5\widehat{i}
and
5\widehat{j}
in the ratio
k : 1
and whose terminal point is the origin and
|\vec b| \leq \sqrt{37}
, then
k
lies in the interval
Report Question
0%
\left[-6, -\dfrac{1}{6}\right]
0%
\left(- \infty, -6 \right] \cup \left[-\dfrac{1}{6}, \infty \right)
0%
\left[0, 6 \right]
0%
None of these
Explanation
The point that divides 5
\widehat{i}
and 5
\widehat{j}
in the ratio of
k : 1
is
\displaystyle \dfrac{(5 \widehat{j}) k + (5\widehat{i})1}{k + 1}
\therefore \displaystyle \vec b = \frac{5 \widehat{i} + 5 k \widehat{j}}{k + 1}
Also,
|\vec b| \leq \sqrt{37}
\Rightarrow \displaystyle \dfrac{1}{k+1} \sqrt{25 + 25 k^2} \leq \sqrt{37}
or
5\sqrt{1 + k^2} \leq \sqrt{37} (k + 1)
Squaring both sides, we get
25 (1 + k^2) \leq 37 (k^2 + 2k +1)
or
6k^2 + 37k + 6 \geq 0
or
(6k + 1) (k + 6) \geq 0
k \in (-\infty, - 6] \cup \left [ - \dfrac{1}{6}, \infty \right )
If
\vec{a},\vec{b},\vec{c}
are three non-zero vectors such that
\vec{a}\times \vec{b}=\vec{c}
and
\vec{b}\times \vec{c}=\vec{a}
, then choose the
incorrect
option(s)
Report Question
0%
\vec{a}. \vec{b}=\vec{b}. \vec{c}=\vec{c} . \vec{a}=0
0%
\left | \vec{b} \right |=\left | \vec{c} \right |
0%
\vec{a}
is a unit vector
0%
\vec{c}
is a unit vector
Explanation
\vec{a}\times \vec{b}=\vec{c}\Rightarrow \vec{a}.\vec{c}=0=\vec{b}.\vec{c}
\vec{b}\times \vec{c}=\vec{a}\Rightarrow \vec{a}.\vec{b}=0=\vec{a}.\vec{c}
\Rightarrow \vec{a},\vec{b},\vec{c}
are mutually pependicular vectors.
\therefore \vec{a}\times \vec{b}=\vec{c}\Rightarrow \left | \vec{a} \right |\left | \vec{b} \right |=\left | \vec{c} \right |
\vec{b}\times \vec{c}=\vec{a}\Rightarrow \left | \vec{b} \right |\left | \vec{c} \right |=\left | \vec{a} \right |
\therefore \left | \vec{b} \right |^{2}\left | \vec{c} \right |=\left | \vec{c} \right |\Rightarrow \left | \vec{b} \right |=1
\therefore \left | \vec{a} \right |=\left | \vec{c} \right |
Hence, options B , C and D are incorrect.
If the vectors
\hat i - \hat j, \hat j + \hat k
and
\vec a
form a triangle, then
\vec a
may be
Report Question
0%
- \hat i - \hat k
0%
\hat i - 2 \hat j - \hat k
0%
2 \hat i + \hat j + \hat k
0%
\hat i + \hat k
Explanation
If
\vec{p}, \vec{q}, \vec{r}
form a triangle, only three cases exist :
1.
\vec{p} + \vec{q} = \vec{r}
2.
\vec{q} + \vec{r} = \vec{p}
3.
\vec{r} + \vec{p} = \vec{q}
Similarly, 1.
\vec{a} = \vec{i} + \vec{k}
2.
\vec{a} = (\vec{j} + \vec{k}) - (\vec{i} - \vec{j}) = - \vec{i} + 2\vec{j} + \vec{k}
3.
\vec{a} = -(\vec{j} + \vec{k}) + (\vec{i} - \vec{j}) = \vec{i} - 2\vec{j} - \vec{k}
Vectors
\vec a = \hat i + 2 \hat j + 3 \hat k, \vec b = 2 \hat i - \hat j + \hat k
and
\vec c = 3 \hat i + \hat j + 4 \hat k
are so placed that the end point of one vector is the starting point of the next vector, then the vectors are
Report Question
0%
Not coplanar
0%
Coplanar but cannot form a triangle
0%
Coplanar and form a triangle
0%
Coplanar and can form a right-angled triangle
Explanation
Given
\vec{AB}=\vec{a}=\hat{i}+2\hat{j}+3\hat{k}
\vec{BC}=\vec{b}=2\hat{i}-\hat{j}+\hat{k}
\vec{AC}=\vec{c}=3\hat{i}+\hat{j}+4\hat{k}
To check coplanar
[\vec{a}\vec{b}\vec{c}]=0
\begin{vmatrix}1&2&3\\ 2&-1&1\\ 3&1&4 \end{vmatrix}
=0
1(-5)-2(5)+3(5)=0
It is coplanar
Now to check a triangular
\vec{AC}=\vec{AB}+\vec{BC}
\hat{i}+2\hat{j}+3\hat{k}+2\hat{i}-\hat{j}+\hat{k}=\vec{AC}
3\hat{i}+\hat{j}+4\hat{k}=3\hat{i}+\hat{j}+4\hat{k}=\vec{AC}
So condition is followed it is triangular
ABCD
a parallelogram,
A_1
and
B_1
are the midpoints of sides
BC
and
CD
, respectively. If
\vec{AA_1} + \vec{AB_1} = \lambda \vec{AC}
, then
\lambda
is equal to
Report Question
0%
\displaystyle \dfrac{1}{2}
0%
1
0%
\displaystyle \dfrac{3}{2}
0%
2
Explanation
Let P.V. of
A, B
and
D
be
\vec 0, \vec b,
and
\vec d
, respectively.
Then P.V. of
C, \vec c = \vec b + \vec d
Also, P.V of
A_1 = \vec b + \displaystyle \dfrac{\vec d}{2}
and P.V. of
B_1 = \vec d + \displaystyle \dfrac{\vec b}{2}
\Rightarrow \vec{AA_1} + \vec{AB_1} = \displaystyle \dfrac{3}{2} (\vec b + \vec d) = \dfrac{3}{2} \vec{AC}
L_{1}and L_{2}
are two lines whose vector equations are
L_{1}:\vec{r}=\lambda \left ( (\cos \theta+\sqrt{3})\hat{i}+(\sqrt{2}\sin\theta)\hat{j}+(\cos \theta-\sqrt{3})\hat{k} \right )
L_{2}:\vec{r}=\mu \left ( a \hat{i}+b \hat{j}+c\hat{k} \right ),
Where
\lambda\ and\ \mu
are scalars and
\alpha
is the acute angle
between
L_{1}\ and\ L_{2}
. If the angle '
\alpha
'is independent
of
\theta
then the value of '
\alpha
' is
Report Question
0%
\dfrac{\pi}{6}
0%
\dfrac{\pi}{4}
0%
\dfrac{\pi}{3}
0%
\dfrac{\pi}{2}
Explanation
we know that
cos\alpha=\dfrac{L_1.L_2}{|L_1|.|L_2|}
where
\alpha
is the angle between the vectors
L_1,L_2
.
\implies cos\alpha=\dfrac{\lambda\mu(a(cos\theta+\sqrt 3)+b(\sqrt 2sin\theta)+c(cos\theta-\sqrt 3))}{\lambda\mu(\sqrt{a^2+b^2+c^2}).(\sqrt{cos^2\theta+3+2\sqrt 3cos\theta+2sin^2\theta+cos^2\theta+3-2\sqrt 3cos\theta})}
\implies cos\alpha=\dfrac{(a+c)cos\theta+\sqrt 3(a-c)+b\sqrt 2sin\theta}{8(\sqrt{a^2+b^2+c^2})}
For
\alpha
to be independent of
\theta
a+c=0
..........(1)
and
b=0
........(2)
Therefore,
cos\alpha=\dfrac{\sqrt 3(a-c)}{\sqrt 8.(\sqrt{a^2+c^2})}
\implies cos\alpha=\dfrac{\sqrt 3(2a)}{(\sqrt{8\times2a^2})}
\implies cos\alpha=\dfrac{\sqrt 3}{2}
\implies \alpha=\dfrac{\pi}{6}
\overrightarrow{AR}
is
Report Question
0%
\dfrac{1}{5}(2\vec {b}+\vec {c})
0%
\dfrac{1}{6}(2\vec {b}+\vec {c})
0%
\dfrac{1}{7}(\vec {b}+2\vec {c})
0%
\dfrac{1}{7}(2\vec {b}+\vec {c})
Explanation
Choosing
A
as the origin of reference , we find
\bar{b}
and
\, \bar{c}
are the position vectors of
B
and
C
respectively.
Position vector of
P
is
\displaystyle \dfrac{\bar{b}}{3}
Position vector of
Q
is
\displaystyle \dfrac{2\bar{b}+\bar{c}}{3}
\therefore
Lets take
R
divides
AQ
in the ratio
(1-t):t
\displaystyle \overline{r}=(1-t)\overline{o}+t\left(\dfrac{2\overline{b}+\overline{c}}{3}\right)
where
t
is a scalar
\overrightarrow { r } =t\left( \dfrac { 2b+c }{ 3 } \right)
Lets take
R
divides
CP
in the ratio
s:1-s
is
\overline{r}=(1-s)\overline{c}+s \overline{\dfrac{b}{3}}
, where
s
is a scalar
If
AQ
and
CP
are to intersect
\displaystyle t\left(\dfrac{2\overline{b}+\overline{c}}{3}\right)=(1-s)\overline{c}+s\overline{ \dfrac{b}{3}}
for same
t
and
s
Equating like components
\displaystyle \dfrac{2t}{3}=\dfrac{s}{3}
and
\displaystyle \dfrac{t}{3}=1-s
On solving we get,
\displaystyle t=\dfrac{3}{7}
and
\displaystyle s=\dfrac{6}{7}
\therefore
\displaystyle \overline{AR}=\dfrac{3}{7}\left(\dfrac{2\overline{b}+\overline{c}}{3}\right)=\dfrac{1}{7}(2\overline{b}+\overline{c})
In a parallelogram
OABC,
vectors
\vec{a}, \vec{b}, \vec{c}
are, respectively, the position vectors of vertices
A, B, C
with reference to
O
as origin. A point
E
is taken on the side
BC
which divides it in the ratio of
2 : 1
. Also, the line segment
AE
intersects the line bisecting the angle
\angle
AOC internally at point
P
. If
CP
when extended meets
AB
in point
F,
then t
he position vector of point
P
is
Report Question
0%
\displaystyle \dfrac{|\vec{a}| |\vec{c}|}{3 |\vec{c}| + 2 |\vec{a}|} \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right )
0%
\displaystyle \dfrac{3|\vec{a}| |\vec{c}|}{3 |\vec{c}| + 2 |\vec{a}|} \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right )
0%
\displaystyle \dfrac{2|\vec{a}| |\vec{c}|}{3 |\vec{c}| + 2 |\vec{a}|} \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right )
0%
None of these
Explanation
Let the position vector of
A
and
C
be
\vec{a}
and
\vec{c}
respectively. Therefore,
Position vector of
B = \vec{b} = \vec{a} + \vec{c}
...........................................................
(i)
Also Position vector of
E = \displaystyle \dfrac{\vec{b} + 2 \vec{c}}{3} = \dfrac{\vec{a} + 3 \vec{c}}{3}
............................................................
(ii)
Now point
P
lies on angle bisector of
\angle AOC.
Thus,
Position vector of point
P =\displaystyle \lambda \left ( \frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} \right )
............................................................................
(iii)
Also let
P
divides
EA
in ration
\mu : 1
. Therefore,
Position vector of
P
\displaystyle = \dfrac{\mu \vec{a} + \dfrac{\vec{a} + 3 \vec{c}}{3}}{\mu + 1} = \dfrac{(3 \mu + 1) \vec{a} + 3 \vec{c}}{3 (\mu + 1)}
................................................................................
(iv)
Comparing
(iii)
and
(iv),
we get
\lambda \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right ) = \dfrac{ (3 \mu + 1) \vec{a} + 3 \vec{c}}{3 (\mu + 1)}
\Rightarrow \displaystyle \dfrac{\lambda}{|\vec{a}|} = \dfrac{3 \mu + 1}{3 (\mu + 1)}
and
\displaystyle \dfrac{\lambda}{|\vec{c}|} = \dfrac{1}{\mu + 1}
\Rightarrow \displaystyle \dfrac{3 |\vec{c}| - |\vec{a}|}{3 |\vec{a}|} = \mu
\displaystyle \Rightarrow \dfrac{\lambda}{|\vec{c}|} = \dfrac{1}{\dfrac{3 |\vec{c}| - \vec{a}}{3 |\vec{a}|}+1}
\Rightarrow \displaystyle \lambda = \dfrac{3 |\vec{a}| |\vec{c}|}{3 |\vec{c}| + 2 |\vec{a}|}
Hence, position vector of
P
is
\displaystyle \dfrac{3 |\vec{a}| |\vec{c}|}{ 3 |\vec{c}| + 2 |\vec{c}|} \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right )
Let
F
divides
AB
in ratio
t : 1,
then position vector of
F
is
\displaystyle \dfrac{t \vec{b} + \vec{a}}{ t + 1}
The ratio
\displaystyle \dfrac{OX}{XC}
is
Report Question
0%
\dfrac{3}{4}
0%
\dfrac{1}{3}
0%
\dfrac{2}{5}
0%
\dfrac{1}{2}
Explanation
Let the position vectors of
A, B, C
and
D
be
\vec{a}, \vec{b}, \vec{c}
and
\vec{d}
, respectively.
Then,
OA : CB = 2 : 1
\Rightarrow \vec{OA} = 2 \vec{CB}
\Rightarrow \vec{a} = 2 (\vec{b} - \vec{c})
....
(i)
and
OD : AB = 1 : 3
3\vec{OD} = \vec{AB}
\Rightarrow 3\vec{d} = (\vec{b} - \vec{a}) = \vec{b} - 2 (\vec{b} - \vec{c})
[Using
(i)
]
= -\vec{b}+ 2\vec{c}
.....
(ii)
Let
OX : XC = \lambda : 1
and
AX : XD =\mu : 1
Now,
X
divides
OC
in the ratio
\lambda : 1
.
Therefore,
P.V of
X = \displaystyle \frac{\lambda \vec{c}}{\lambda + 1}
....
(iii)
X
also divides
AD
in the ratio
\mu : 1
.
Therefore,
P.V. of
\displaystyle X = \dfrac{\mu \vec{d} + \vec{a}}{\mu + 1}
...
(iv)
From
(iii)
and
(iv)
, we get
\displaystyle \dfrac{\lambda \vec{c}}{\lambda + 1} = \dfrac{\mu \vec{d} + \vec{a}}{\mu + 1}
or
\displaystyle \left ( \frac{\lambda}{\lambda + 1} \right ) \vec{c} = \left ( \frac{\mu}{\mu + 1} \right )\vec{d} + \left ( \frac{1}{\mu + 1} \right ) \vec{a}
or
\displaystyle \left (\dfrac{\lambda}{\lambda + 1} \right ) \vec{c} = \left ( \dfrac{\mu}{\mu + 1} \right ) \left ( \dfrac{-\vec{b} + 2 \vec{c}}{3} \right ) + \left ( \dfrac{1}{\mu + 1} \right ) 2 \left ( \vec{b} - \vec{c} \right )
....(using
(i)
and
(ii)
)
or
\displaystyle \left ( \frac{\lambda}{\lambda + 1} \right ) \vec{c}= \left ( \frac{6 - \mu}{3 (\mu + 1)} \right ) \vec{b} + \left ( \frac{2 \mu}{3 (\mu + 1)} - \frac{2}{\mu + 1} \right ) \vec{c}
or
\displaystyle \left ( \dfrac{\lambda}{\lambda + 1} \right ) \vec{c} = \left ( \dfrac{6 - \mu}{3 (\mu + 1)} \right ) \vec{b} + \left ( \dfrac{2\mu - 6}{3 (\mu + 1)} \right ) \vec{c}
or
\displaystyle \left ( \frac{6 - \mu}{3 (\mu + 1)} \right )\vec{b} + \left ( \frac{2 \mu - 6}{3 (\mu + 1)} - \frac{\lambda}{\lambda + 1} \right ) \vec{c} = \vec{0}
or
\displaystyle \dfrac{6 - \mu}{3 (\mu + 1)} = 0
and
\displaystyle \dfrac{2 \mu - 6}{3 (\mu + 1)} - \dfrac{\lambda}{\lambda + 1} = 0
(as
\vec{b}
and
\vec{c}
are non-collinear)
or
\displaystyle \mu = 6, \lambda = \dfrac{2}{5}
Hence,
OX : XC = 2 : 5
The projection of the line joining the points
(3, 4, 5)
and
(4, 6, 3)
on the line joining the points
(-1, 2, 4)
and
(1, 0, 5)
is
Report Question
0%
\dfrac{4}{3}
0%
\dfrac{2}{3}
0%
\dfrac{1}{3}
0%
\dfrac{1}{2}
Explanation
Let
AB=(4-3)\hat i+(6-4)\hat j+(3-5)\hat k=\hat i+2\hat j-2\hat k
and
PQ=(1+1)\hat i+(0-2)\hat j+(5-4)\hat k=2\hat i-2\hat j+\hat k
Hence projection of
AB
on
PQ
is
=\left |\cfrac{AB\cdot PQ}{|AB||PQ|}\right |
=\left |\cfrac{1(2)+2(-2)-2(1)}{\sqrt{3}\sqrt{3}}\right |
=\cfrac{4}{3}
A parallelogram is constructed on the vectors
\bar{\alpha }
and
\bar{\beta }
. A vector which coincides with the altitude of the parallelogram and perpendicular to the side
\bar{\alpha }
expressed in terms of the vectors
\bar{\alpha }
and
\bar{\beta }
is
Report Question
0%
\displaystyle \bar{\beta }+\dfrac{\bar{\beta }-\bar{\alpha }}{\left ( \bar{\alpha } \right )^{2}}\bar{\alpha }
0%
\displaystyle \dfrac{\left ( \bar{\alpha }\times \bar{\beta } \right )\times \bar{\alpha }}{\left ( \bar{\alpha } \right )^{2}}
0%
\displaystyle \dfrac{\bar{\beta }\cdot \bar{\alpha }}{\left ( \alpha \right )^{2}}\bar{\alpha }+\bar{\beta }
0%
\displaystyle \left | \bar{\beta } \right |\dfrac{\bar{\alpha }\times \left ( \bar{\alpha }\times \bar{\beta } \right )}{\left ( \alpha \right )^{2}}
Explanation
(\alpha\times\beta)
will give us the perpendicular vector or the normal to the plane where the parallelogram is lying.
Now
(\alpha\times \beta)\times \alpha
will give the vector parallel to the altitude of the parallelogram which is perpendicular to side
\bar {\alpha}
.
Thus the unit vector of the altitude of the given parallelogram perpendicular to
\bar{\alpha}
will be
=\dfrac{(\alpha\times\beta)\times\alpha}{|\alpha|^{2}}
\vec{a} = 2 \widehat{i} - \widehat{j} + \widehat{k}, \vec{b} = \widehat{i} + 2\widehat{j} - \widehat{k}
and
\vec{c} = \widehat{i} + \widehat{j} - 2 \widehat{k}
. A vector coplanar with
\vec{b}
and
\vec{c}
whose projection on
\vec{a}
is magnitude
\displaystyle \sqrt{\dfrac{2}{3}}
is
Report Question
0%
2 \widehat{i} + 3 \widehat{j} - 3 \widehat{k}
0%
- 2 \widehat{i} - \widehat{j} + 5 \widehat{k}
0%
2 \widehat{i} + 3 \widehat{j} + 3 \widehat{k}
0%
2 \widehat{i} + \widehat{j} + 5 \widehat{k}
Explanation
Let the required vector be
\vec{r}
, then
\vec{r} = x_1 \vec{b} + x_2 \vec{c}
and
\vec{r} \cdot \vec{a} = \displaystyle \sqrt{\dfrac{2}{3}} (|\vec{a}|) = 2
Now,
\vec{r} \cdot \vec{a} = x_1 \vec{a} \cdot \vec{b} + x_2 \vec{a} \cdot \vec{c}
\Rightarrow 2 = x_1 (2 - 2 - 1) + x_2 (2 - 1 - 2)
\Rightarrow x_1 + x_2 = -2
\Rightarrow \vec{r} = x_1 (\widehat{i} + 2 \widehat{j} - \widehat{k}) + x_2 (\widehat{i} + \widehat{j} - 2 \widehat{k})
= \widehat{i} (x_1 + x_2) + \widehat{j} (2x_1 + x_2) - \widehat{k} (2x_2 + x_1)
= - 2\widehat{i} + \widehat{j} (x_1 - 2) - \widehat{k} (-4 - x_1)
,
where
x_1 \in R
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 12 Commerce Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page