Explanation
$$\begin{vmatrix}\vec{a}+\vec{b}+\vec{c}\end{vmatrix}=\sqrt{(\vec{a}+\vec{b}+\vec{c})^2} =\sqrt{a^2+b^2+c^2+2\begin{pmatrix}\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}\end{pmatrix}} $$ {Modulus formula for vectors}
$$\because\,\vec{a}.\begin{pmatrix}\vec{b}+\vec{c}\end{pmatrix}=0,\;\vec{b}.\begin{pmatrix}\vec{c}+\vec{a}\end{pmatrix}=0\,\&\,\vec{c}.\begin{pmatrix}\vec{a}+\vec{b}\end{pmatrix}=0$$ [As the given conditions of being perpendicular}
$$\Rightarrow \vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}=0$$ {expanding the previous expression and substituting in the first expression}
$$\Rightarrow \begin{vmatrix}\vec{a}+\vec{b}+\vec{c}\end{vmatrix}=\sqrt{a^2+b^2+c^2}=\sqrt{3^2+4^2+5^2}=5\sqrt{2}$$
If the sum of two unit vectors is also a unit vector, then the angle between the two vectors is
In the pentagon ABCDE, join AC and AD.
By triangle law,
In $$\Delta ABC$$,
$$\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} $$
In $$\Delta ACD$$,
$$\overrightarrow {AD} + \overrightarrow {DC} = \overrightarrow {AC} $$
In $$\Delta AED$$,
$$\overrightarrow {AE} + \overrightarrow {ED} = \overrightarrow {AD} $$
Now,
$$\overrightarrow {AB} + \overrightarrow {AE} + \overrightarrow {BC} + \overrightarrow {DC} + \overrightarrow {ED} + \overrightarrow {AC} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \left( {\overrightarrow {AE} + \overrightarrow {ED} } \right) + \overrightarrow {DC} + \overrightarrow {AC} $$
$$ = \overrightarrow {AC} + \left( {\overrightarrow {AD} + \overrightarrow {DC} } \right) + \overrightarrow {AC} $$
$$ = \overrightarrow {AC} + \overrightarrow {AC} + \overrightarrow {AC} $$
$$ = 3\overrightarrow {AC} $$
Let $$xy$$ plane divides the line joining the points $$A\left( { - 1,3,4} \right)$$ and $$B\left( {2, - 5,6} \right)$$ in the ratio $$k:1$$.
$$x = \cfrac{{2k - 1}}{{k + 1}}$$
$$y = \cfrac{{ - 5k + 3}}{{k + 1}}$$
$$z = \cfrac{{6k - 4}}{{k + 1}}$$
Since the plane is $$xy$$ plane, so $$z = 0$$,
$$\cfrac{{6k - 4}}{{k + 1}} = 0$$
$$6k - 4 = 0$$
$$6k = 4$$
$$k = \cfrac{4}{6}$$
$$k = \cfrac{2}{3}$$
Therefore, the ratio is $$2:3$$ internally.
Please disable the adBlock and continue. Thank you.