CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 13 - MCQExams.com

If  $$\vec { u } =\vec { a } -\vec { b } ~;\vec{ v } =\vec { a } +\vec { b } ~~\&~ |\vec { a }| =|\vec { b }| =2,$$ then $$\left| \vec { u } \times \vec { \upsilon  }  \right| $$ is equal to:
  • $$\sqrt { 2\left( 4-\left( \vec { a } .\vec { b } \right) ^{ 2 } \right) } $$
  • $${ 2 }\sqrt { \left( 16+\left( \vec { a } .\vec { b } \right) ^{ 2 } \right) } $$
  • $${ 2 }\sqrt { \left( 4-\left( \vec { a } .\vec { b } \right) ^{ 2 } \right) } $$
  • $${ 2 }\sqrt { \left( 16-\left( \vec { a } .\vec { b } \right) ^{ 2 } \right) } $$
$$\vec{r}.\hat{i}=2\vec{r}.\hat{j}=4\vec{r}.\hat{k}$$ and $$\left|\vec{r}\right|=\sqrt{84}$$, then $$\left|\vec{r}.\left(2\hat{i}-3\hat{j}+\hat{k}\right)\right|$$ is equal to 
  • $$0$$
  • $$2$$
  • $$4$$
  • $$6$$
If $$\bar{a} = \hat{i} + \hat{j} - 2 \hat{k}, \bar{b} = 2 \hat{i} - 0 \hat{j} + \hat{k}, \bar{c} = 3 \hat{i} - \hat{k}$$ and $$\bar{c} = m \bar{a} + n \bar{b}$$ then m + n = ....
  • 0
  • 1
  • 2
  • -1
If the position vectors of $$A, B, C, D$$ are $$3\hat{i} + 2\hat{j} + \hat{k}, 4\hat{i} + 5\hat{j} + 5\hat{k}, 4\hat{i} + 2\hat{j} - 2\hat{k}, 6\hat{i} + 5\hat{j} - \hat{k}$$ respectively then the position vector of the point of intersection of $$\bar{AB}$$ and $$\bar{CD}$$ is
  • $$2\hat{i} + \hat{j} - 3\hat{k}$$
  • $$2\hat{i} - \hat{j} + 3\hat{k}$$
  • $$2\hat{i} + \hat{j} + 3\hat{k}$$
  • $$2\hat{i} - \hat{j} - 3\hat{k}$$
Let $$\vec{a}=\hat{i}-\hat{j},\vec{b}=\hat{i}-\hat{j}=\vec{c}=\hat{i}-\hat{j}$$, if $$\vec{d}$$ is a unit vector such that $$\vec{a}.\vec{d}=0=|\vec{b}\vec{c}\vec{d}|$$ then $$\vec{d}$$ equals:
  • $$\pm\dfrac{\hat{i}+\hat{j}-2\hat{k}}{\sqrt{6}}$$
  • $$\pm\dfrac{\hat{i}+\hat{j}-2\hat{k}}{\sqrt{3}}$$
  • $$\pm\dfrac{\hat{i}+\hat{j}+2\hat{k}}{\sqrt{3}}$$
  • $$\pm\hat{k}$$
If $$a=i-j,b=i+j,c=i+3j+5k$$ and $$n$$ is a unit vector such that $$b,n=0,a,n=0$$ then the value of $$|c,n|$$ is equal to
  • $$1$$
  • $$3$$
  • $$5$$
  • $$2$$
The value of $$|\vec{a} \times \hat{i} |^2 + |\vec{a} \times \hat{j} |^2 + |\vec{a} \times \hat{k} |^2$$ is 
  • $$a^2$$
  • $$2a^2$$
  • $$3a^2$$
  • none of these
The values of $$\lambda$$ such that $$(x, y, z) \neq (0, 0, 0)$$ and $$(\hat{i} + \hat{j} + 3\hat{k})x + (3\hat{i} - 3\hat{j} + \hat{k})y + (-4\hat{i} + 5\hat{j})z = \lambda(x\hat{i} + y\hat{j} + z\hat{k})$$ are
  • $$0, 1$$
  • $$0, -1$$
  • $$1, -1$$
  • $$0, 1, -1$$
Let $$\vec{u}$$, $$\vec{v}$$, $$\vec{w}$$ be such that $$\left | \vec{u} \right |$$ = 1, $$\left | \vec{v} \right |$$ = 2, $$\left | \vec{w} \right |$$ = 3 . If the projection $$\vec{v}$$ along $$\vec{u}$$ is equal to that of $$\vec{w}$$ along $$\vec{u}$$ and $$\vec{v}$$, $$\vec{w}$$ are perpendicular to each other , then $$\left | \vec{u} \vec{v} + \vec{w} \right |$$ equals 
  • $$\sqrt{14}$$
  • $$\sqrt{7}$$
  • 2
  • 14
Vector $$\vec { x }$$ satisfying the relation $$\vec { A } . \overline { x } = c$$ and $$\vec { A } \times \vec { x } = \vec { B }$$ is
  • $$\frac { c \vec { A } - ( \overline { A } \times \vec { B } ) } { | \vec { A } | }$$
  • $$\frac { c \vec { A } - ( \vec { A } \times \vec { B } ) } { | \vec { A } | ^ { 2 } }$$
  • $$\frac { c \vec { A } + ( \vec { A } \times \vec { B } ) } { | \vec { A } | ^ { 2 } }$$
  • None
For any vector $$\vec a$$, the value of $${ (\vec a\times \hat i) }^{ 2 }+{ (\vec a\times \hat j) }^{ 2 }+{ (\vec a\times \hat k) }^{ 2 }$$ is equal to
  • $$4{ |\vec a| }^{ 2 }$$
  • $$2{ |\vec a| }^{ 2 }$$
  • $${|\vec a |}^{ 2 }$$
  • $$3{ |\vec a| }^{ 2 }$$
let $$\bar { a } $$ be a unit vector and $$\bar { b } $$ be a non-zero vector not parallel to $$\bar { a } $$ if two sides of a triangle are represented by the vectors $$\sqrt { 3 } \left( \bar { a } \times \bar { b }  \right) \quad and\quad \bar { b } - \left( \bar { a } .\bar { b }  \right) \bar { a } $$ then the angles of triangle are 
  • $$90^{ \circ },{ 60 }^{ \circ },{ 30 }^{ \circ }$$
  • $$45^{ \circ },{ 45 }^{ \circ },{ 90 }^{ \circ }$$
  • $$60^{ \circ },{ 60 }^{ \circ },{ 60 }^{ \circ }$$
  • $$75^{ \circ },{ 45 }^{ \circ },{ 60 }^{ \circ }$$
In a triangle ABC, if $$A=(0, 0), B=(3, 3\sqrt{3}), C=(-3\sqrt{3}, 3)$$ then the vector of magnitude $$2\sqrt{2}$$ units directed along $$\overline{AO}$$, where O is the circumcentre of triangle ABC is?
  • $$(1-\sqrt{3})\bar{i}+(1+\sqrt{3})\bar{j}$$
  • $$\sqrt{3}\bar{i}+2\bar{j}$$
  • $$\bar{i}-\sqrt{3}\bar{j}$$
  • $$\bar{i}+2\bar{j}$$
In a parallelogram ABD, $$|\overset { \_  }{ A\overset { \rightarrow  }{ B }  } |=a,|\overset { \_  }{ A\overset { \rightarrow  }{ D }  } |=b$$ and $$|\overset { \_ \\ \quad \quad \rightarrow  }{ AC } |=c,$$, $$\overset { \_ \rightarrow  }{ AB } .\overset { \_ \rightarrow  }{ DB } $$ has the value :
  • $$\frac { 1 }{ 2 } ({ 3a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 })$$
  • $$\frac { 1 }{ 2 } ({ a }^{ 2 }-{ b }^{ 2 }+{ c }^{ 2 })$$
  • $$\frac { 1 }{ 2 } ({ a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 })$$
  • $$\frac { 1 }{ 3 } ({ b }^{ 2 }+{ c }^{ 2 }-{ a }^{ 2 })$$
If the position vectors of the vertices $$A,B$$ and $$C$$ of a $$\Delta ABC$$ are respectively $$4\hat{i}+7\hat{j}+8\hat{k},2\hat{i}+3\hat{j}+4\hat{k}$$ and $$2\hat{i}+5\hat{j}+7\hat{k}$$, then the position vector of the point, where the bisector of $$\angle A$$ meets $$BC$$ is:
  • $$\frac{1}{2}(4\hat{i}+8\hat{j}+11\hat{k})$$
  • $$\frac{1}{3}(6\hat{i}+13\hat{j}+18\hat{k})$$
  • $$\frac{1}{4}(8\hat{i}+14\hat{j}+19\hat{k})$$
  • $$\frac{1}{3}(6\hat{i}+8\hat{j}+15\hat{k})$$
$$If\quad |\overrightarrow { a } |$$ =2 and $$\quad |\overrightarrow { b } |$$=3 and $$\quad |\overrightarrow { a } |$$.$$\quad |\overrightarrow { b } |$$ =Then (a x (a x (a x (a x b)))) is equal to 
  • $$4\hat { b } $$
  • $$-4\hat { b }$$
  • $$4\hat { a } $$
  • $$-4\hat { a } $$
If C is the mid-point of AB and P is any point outside AB , then
  • $$\overrightarrow{PA}$$ + $$\overrightarrow{PB}$$ + $$\overrightarrow{PC}$$ = 0
  • $$\overrightarrow{PA}$$ + $$\overrightarrow{PB}$$ + 2$$\overrightarrow{PC}$$ = $$\overrightarrow{0}$$
  • $$\overrightarrow{PA}$$ $$\overrightarrow{PB}$$ = $$\overrightarrow{PC}$$
  • $$\overrightarrow{PA}$$ $$\overrightarrow{PB}$$ = 2$$\overrightarrow{PC}$$
If $$\overset { \rightarrow  }{ a } $$ and $$\overset { \rightarrow  }{ b } $$ are vectors such that $$|\overset { \rightarrow  }{ a } +\overset { \rightarrow  }{ b } |=\sqrt { 29 } $$ and $$\overset { \rightarrow  }{ a } \times (2\overset { \wedge  }{ i } +3\overset { \wedge  }{ j } +4\overset { \wedge  }{ k } )=(2\overset { \wedge  }{ i } +3\overset { \wedge  }{ j } +4\overset { \wedge  }{ k } )\times \overset { \rightarrow  }{ b } $$, then a possible value of $$(\overset { \rightarrow  }{ a } +\overset { \rightarrow  }{ b } )(-7\overset { \wedge  }{ i } +2\overset { \wedge  }{ j } +3\overset { \wedge  }{ k } )$$ is 
  • 0
  • 3
  • 4
  • 8
If $$\hat{u}$$ and $$\hat{v}$$ are unit vectors and $$\theta$$ is the acute angle between them , then 2$$\hat{u}$$ 3$$\hat{v}$$ is a unit vector for
  • No value of $$\theta$$
  • Exactly one value of $$\theta$$
  • Exactly two values of $$\theta$$
  • More than two values of $$\theta$$
Let $$\vec{a}$$ = $$\hat{i}$$  $$\hat{j}$$, $$\vec{b}$$ = $$\hat{j}$$  $$\hat{k}$$, $$\vec{c}$$ = $$\hat{k}$$  $$\hat{i}$$. If $$\vec{d}$$ is a unit vector such that $$\vec{a}.\vec{d}$$ = 0 = $$\left | \vec{b}\vec{c}\vec{d} \right |$$ then $$\vec{d}$$ equals :
  • $$\dfrac{\hat{i} + \hat{j} 2\hat{k}}{\sqrt{6}}$$
  • $$\dfrac{\hat{i} + \hat{j} \hat{k}}{\sqrt{3}}$$
  • $$\dfrac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$$
  • $$ \hat{k}$$
The value of $$\lambda $$ for $$\left( x,y,z \right) \neq \left( 0,0,0 \right) $$ and $$\left( i+j+3k \right) x+\left( 3i-3j+k \right) y+\left( -4i+5j \right) z=\lambda \left( xi+yj+zk \right) $$ are
  • 0, -1
  • 0, 1
  • -2, 0
  • 0, 2
If $$\overset { \rightarrow  }{ a } ,\overset { \rightarrow  }{ b } ,\overset { \rightarrow  }{ c } $$ are unit vectors such that $$\overset { \rightarrow  }{ a } +\overset { \rightarrow  }{ b } +\overset { \rightarrow  }{ c } =0$$ then the value of $$\overset { \rightarrow  }{ a. } \overset { \rightarrow  }{ b } +\overset { \rightarrow  }{ b } .\overset { \rightarrow  }{ c } +\overset { \rightarrow  }{ c } .\overset { \rightarrow  }{ a. } $$ is 
  • 1
  • -1
  • -3/2
  • none of these
If $$\overline { a } =-2\overline { i } +3\overline { j } +4\overline { k } $$ and $$\overline { b } =-2\overline { i } -2\overline { j } +3\overline { k } $$ then $$\overline { a } .\overline { b } $$ is 
  • 2
  • -2
  • 6
  • none of these
Let position vector of the orthocentre of $$\triangle ABC$$ be $$\overrightarrow{r}$$. then, which of the following statement(s) is\are correct (Given position vector of points $$a\hat{i},b\hat{j},c\hat{k}$$ and $$abc=0$$)

  • $$\displaystyle \overrightarrow { r } .\bar { i } =\frac{a}{\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}+\frac{1}{{c}^{2}}}$$
  • $$\displaystyle \overrightarrow { r } .\bar { i } =\frac{1}{a\left(\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}+\frac{1}{{c}^{2}} \right) }$$
  • $$\displaystyle \frac {\overrightarrow { r } .\bar { i }}{\overrightarrow { r } .\bar { j }}+\frac {\overrightarrow { r } .\bar { j }}{\overrightarrow { r } .\bar { k }}+\frac {\overrightarrow { r } .\bar { k }}{\overrightarrow { r } .\bar { i }}=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}$$
  • $$\displaystyle \frac {\overrightarrow { r } .\bar { i }}{\overrightarrow { r } .\bar { j }}+\frac {\overrightarrow { r } .\bar { j }}{\overrightarrow { r } .\bar { k }}+\frac {\overrightarrow { r } .\bar { k }}{\overrightarrow { r } .\bar { i }}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}$$
If C is the mid point of AB and P is any point outside AB , then
  • $$\overrightarrow{PA}$$ + $$\overrightarrow{PB}$$ + $$\overrightarrow{PC}$$ = 0
  • $$\overrightarrow{PA}$$ + $$\overrightarrow{PB}$$ + $$2\overrightarrow{PC}$$ = $$\overrightarrow{0}$$
  • $$\overrightarrow{PA}$$ + $$\overrightarrow{PB}$$ = $$\overrightarrow{PC}$$
  • $$\overrightarrow{PA}$$ + $$\overrightarrow{PB}$$ = $$2\overrightarrow{PC}$$
A particle in a plane from A to E along the shown path. It is given that AB=BC=DE=10 metre. Then the magnitude of net displacement of particle is :
1337385_0185cb4e36554daba9ee1f911656980b.PNG
  • 10 m
  • 15 m
  • 5 m
  • 20 m
Let $$a=\displaystyle\sum_{i < j}\left(\dfrac{1}{^{n}C_i}+\dfrac{1}{^{n}C_j}\right)$$ and $$b=\displaystyle\sum_{i < j}\left(\dfrac{i}{^{n}C_i}+\dfrac{j}{^{n}C_j}\right)$$, then?
  • $$b=(n-1)a$$
  • $$b=(n+1)a$$
  • $$b=\dfrac{n}{2}a$$
  • $$b=na$$
In parallelogram ABCD, $$|\overline { AB } |=a,|\overline { AD } |=b$$ and $$|\overline { AC } |=c$$ then $$\overline { DB } ,\overline { AB } $$ has the value
  • $$\frac {3a^2+b^2-c^2}{2}$$
  • $$\frac {3b^2+c^2-a^2}{2}$$
  • $$\frac {3c^2+b^2-a^2}{2}$$
  • $$\frac {a^2+b^2+c^2}{2}$$
If $$ \sum_{i=1}^{n} \vec{a}_{i}=\vec{0} $$ where $$ \left|\vec{a}_{i}\right|=1 \forall i,  $$ then the value of $$ \sum_{1 \leq i<j \leq n} \vec{a}_{i} \cdot \vec{a}_{j}  $$ is
  • $$-n/2$$
  • $$-n$$
  • $$n/2$$
  • $$n$$
If the vectors $$\vec{a}$$ , $$\vec{b}$$ , $$\vec{c}$$ satisfying $$\vec{a}$$ + $$\vec{b}$$ + 2$$\vec{c}$$ = 0 . If $$\left | \vec{a} \right |$$ = 1 , $$\left | \vec{b} \right |$$ = 4 , $$\left | \vec{c} \right |$$ = 2 , then $$\vec{a}.\vec{b}$$ + $$\vec{b}.\vec{c}$$ + $$\vec{c}.\vec{a}$$ = 
  • $$-\dfrac{7}{2}$$
  • $$-\dfrac{17}{2}$$
  • $$\dfrac{17}{2}$$
  • $$\dfrac{7}{2}$$
The projection of the join of the point (3, 4, 2), (5, 1, 8) on the line whose d.c.'s are $$\left( \dfrac { 2 }{ 7 } ,-\dfrac { 3 }{ 7 } ,\dfrac { 6 }{ 7 }  \right) $$ is 
  • 7
  • $$\left( \dfrac { 46 }{ 13 } \right) $$
  • $$\left( \dfrac { 42 }{ 13 } \right) $$
  • $$\left( \dfrac { 38 }{ 13 } \right) $$
If $$a$$,$$b$$ and care three mutually perpendicular vectors, then the projection of the vector $$ \left|\frac{a}{|a|}+m \frac{b}{|b|}+n \frac{(a \times b)}{|a \times b|}\right. $$ along the angle bisector of the vector $$a$$ and $$b$$ is
  • $$ \frac{l^{2}+m^{2}}{\sqrt{l^{2}+m^{2}-n^{2}}} $$
  • $$ \sqrt{1^{2}+m^{2}+n^{2}} $$
  • $$ \frac{\sqrt{1^{2}+m^{2}}}{\sqrt{l^{2}-m^{2}+n^{2}}} $$
  • $$ \frac{1+m}{\sqrt{2}} $$
Let OAB be a regular triangle with side unity (o being otogin). Also M, N are the points of intersection of AB, M being closer to A and N closer to B. Position vectors of A, B, M and N are $$\vec { a } ,\vec { b } ,\vec { m } $$ and $$\vec { n } $$ respectively. Which of the following hold (s) good ?
  • $$\vec { m } =x\vec { a } +y\vec { b } \Rightarrow \dfrac { 2 }{ 3 } $$ and $$y=\dfrac { 1 }{ 3 } $$
  • $$\vec { m } =x\vec { a } +y\vec { b } \Rightarrow x=\dfrac { 5 }{ 6 } $$ and $$y=\dfrac { 1 }{ 6 } $$
  • $$\vec { m } .\vec { n } $$ equals $$\dfrac { 13 }{ 18 } $$
  • $$\vec { m } .\vec { n } $$ equals $$\dfrac { 15 }{ 18 } $$
The position vector of A is $$2\vec { i } +3\vec { j } +4\vec { k } $$$$\vec { AB } =5\vec { i } +7\vec { j } +6\vec { k } $$, then the position vector of B is
  • $$-7\vec { i } -10\vec { j } -10\vec { k } $$
  • $$7\vec { i } -10\vec { j } +10\vec { k } $$
  • $$7\vec { i } +10\vec { j } -10\vec { k } $$
  • $$7\vec { i } +10\vec { j } +10\vec { k } $$
The position vector of a point lying on the joining the points whose position vectors are $$\overline i + \overline j -\overline k$$ and $$\overline i - \overline j +\overline k$$ is
  • $$\overline j$$
  • $$\overline i$$
  • $$\overline k$$
  • $$\overline 0$$
Area of diagonals is, ..., where diagonals are
$$a = 2 \hat {i} - 3 \hat { j } + 5 \hat { k } $$, and $$b = - \hat { i} + \hat { j} + \hat { k }$$
  • $$\sqrt { 21.5 }$$
  • $$\sqrt { 31.5 }$$
  • $$\sqrt { 28.5 }$$
  • $$\sqrt{ 38.5 }$$
If $$\bar { a } ,\bar { b } ,\bar { c } $$ are position vectors of the points A,B,C respectively such that $$9\bar { a } -7\bar { b } -2\bar { c } =\bar { 0 } $$ then point B divides AC in the ratio.....
  • Internally 7:2
  • Externally 9:2
  • Internally 9:7
  • Externally 2:7
A vector $$A=\overrightarrow { l } =\overrightarrow { xj } =3\overrightarrow { k } $$ is rotated through an angle and is also doubled in magnitude resulting in$$\overrightarrow { B } =4\overrightarrow { l } +\left( 4x-2 \right) \overrightarrow { j } +2\overrightarrow { k } $$. An acceptable value of x is
  • 1
  • 2
  • 3
  • 4/3
A stone projected vertically upwards raises 's' feets in 't' seconds where $$_{ S }=112t-{ 16t }^{ 2 }$$ then the maximum height it reached is
  • 195 ft
  • 194 ft
  • 196 ft
  • 216 ft
Given $$\overline { a } = x \hat { i } + y \hat { j } + 2 \hat { k } , \overline { b } = \hat { i } - \hat { j } + \hat { k } , \overline { c } = \hat { i } + 2 \hat { j } ;( \overline { a } \hat {  } \overline { b } ) = \pi / 2 , \overline { a } .\overline { c } = 4$$ then
  • $$[ \overline { a } \overline { b } \overline { c } ] ^ { 2 } = \left| \overline { a } \right| $$
  • $$[ \overline { a } \overline { b } \overline { c } ]= \left| \overline { a } \right| $$
  • $$[ \overline { a } \overline { b } \overline { c } ]= 0$$
  • none of these
If $$ \vec { a } $$ and $$ \vec { b } $$ are vectors such that $$ | \vec { a } + \vec { b } | = \sqrt { 29 } $$ and $$ \vec { a } \times ( 2 \hat { i } + 3 \hat { j } + 4 \hat { k } ) = ( 2 \hat { i } + 3 \hat { j } + 4 \hat { k } ) \times \vec { b } , $$ then
a possible value of $$ ( \vec { a } + \vec { b } ) \cdot ( - 7 \hat { i } + 2 \hat { j } + 3 \hat { k } ) $$ is
  • 0
  • 3
  • 4
  • 8
For any three  $$\vec { a } , \vec { b } , \vec { c } ( \vec { a } - \vec { b } ) ( \vec { b } - \vec { c } ) \times ( \vec { c } - \vec { a } )$$ is equal to
  • $$\vec { b } \cdot ( \vec { c } \times \vec { a } )$$
  • $$2 \vec { a } \cdot ( \vec { b } \times \vec { c } )$$
  • $$0$$
  • none of these
The point D,E,F divide BC, CA and Ab of the triangle ABC in the ratio 1 : 4, 3 : 2 and 3 : 7 respectively and the point K divides AB in the ratio 1 : 3 then $$(\overrightarrow { AD } + \overrightarrow { BE } +\overrightarrow { CF }) : \overrightarrow { CK }$$ is equal to 
  • 5 : 2
  • 2:5
  • 1:1
  • none of these
$$\left( \vec { r } .\vec { i }  \right) \left( \vec { r } \times \vec { i }  \right) +\left( \vec { r } .\vec { j }  \right) \left( \vec { r } \times \vec { j } + \right) \left( \vec { r } .\vec { k }  \right) \left( \vec { r } \times \vec { k }  \right) $$is equal to
  • $$3\vec { r } $$
  • $$\vec { r } $$
  • $$\vec { 0 } $$
  • None of these
If u = $$\hat{j} + 4 \hat{K}, V = \hat{i} - 3 \hat{K} w = cos \theta \hat{i} + sin \theta \hat{j}$$ are vectors in 3- dimensional space, then the maximum possible value of $$|u \times v.w|$$ is 
  • $$\sqrt{13}$$
  • $$\sqrt{14}$$
  • 5
  • 7
If u = $$\hat{j} + 4\hat{k}, V = \hat{i} =- 3K and W = cos \theta i + sin \theta \hat{i}$$ are vectors in 3-dimension space, then the maximum possible value of $$|u \times v. w|$$ is 
  • $$\sqrt 13$$
  • $$\sqrt 14$$
  • 5
  • 7
If $$\hat{i}\times (\vec{a}\times \hat{i})+\hat{j}\times (\vec{a}\times \hat{j})+\hat{k}\times (\vec{a}\times \hat{k})=.....\left\{(\vec{a}.\hat{i})\hat{i}+(\vec{a}.\hat{j})\hat{j}+(\vec{a}.\hat{k})\hat{k}\right\}$$
  • $$-1$$
  • $$0$$
  • $$2$$
  • $$None\ of\ these$$
The magnitude of two vectors which can be represented in the form i+j+(2x)k is $$\sqrt{18}$$. Then the unit vector that is perpendicular to these two vectors is
  • $$\frac{-i+j}{\sqrt{2}}$$
  • $$\frac{i-j}{8\sqrt{2}}$$
  • $$\frac{-i+j}{8}$$
  • $$\frac{-i+j}{2\sqrt{2}}$$
The length of vector $$ \overrightarrow{A G} $$ is
  • $$\sqrt{17}$$
  • $$\sqrt{51} / 3$$
  • $$3 / \sqrt{6}$$
  • $$\sqrt{59} / 4$$
For non-zero vectors $$ \vec{a}, \vec{b} $$ and $$ \vec{c},|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}| $$ holds if and only if
  • $$ \vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0 $$
  • $$\vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0 $$
  • $$ \vec{c} \cdot \vec{a}=0, \vec{a} \cdot \vec{b}=0 $$
  • $$\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers