Explanation
We have,
Let the vertices of triangle is
$$ \overrightarrow{OA}=\left( 6\overrightarrow{i}+4\overrightarrow{j}+5\overrightarrow{k} \right) $$
$$ \overrightarrow{OB}=\left( 4\overrightarrow{i}+5\overrightarrow{j}+6\overrightarrow{k} \right) $$
$$ \overrightarrow{OC}=\left( 5\overrightarrow{i}+6\overrightarrow{j}+4\overrightarrow{k} \right) $$
Now,
$$ \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA} $$
$$ \overrightarrow{AB}=\left( 4\overrightarrow{i}+5\overrightarrow{j}+6\overrightarrow{k} \right)-\left( 6\overrightarrow{i}+4\overrightarrow{j}+5\overrightarrow{k} \right) $$
$$ \overrightarrow{AB}=4\overrightarrow{i}+5\overrightarrow{j}+6\overrightarrow{k}-6\overrightarrow{i}-4\overrightarrow{j}-5\overrightarrow{k} $$
$$ \overrightarrow{AB}=-2\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k} $$
$$ \overrightarrow{BC}=\overrightarrow{OC}-\overrightarrow{OB} $$
$$ \overrightarrow{BC}=\left( 5\overrightarrow{i}+6\overrightarrow{j}+4\overrightarrow{k} \right)-\left( 4\overrightarrow{i}+5\overrightarrow{j}+6\overrightarrow{k} \right) $$
$$ \overrightarrow{BC}=5\overrightarrow{i}+6\overrightarrow{j}+4\overrightarrow{k}-4\overrightarrow{i}-5\overrightarrow{j}-6\overrightarrow{k} $$
$$ \overrightarrow{BC}=\overrightarrow{i}+\overrightarrow{j}-2\overrightarrow{k} $$
$$ \overrightarrow{CA}=\overrightarrow{OA}-\overrightarrow{OC} $$
$$ \overrightarrow{CA}=\left( 6\overrightarrow{i}+4\overrightarrow{j}+5\overrightarrow{k} \right)-\left( 5\overrightarrow{i}+6\overrightarrow{j}+4\overrightarrow{k} \right) $$
$$ \overrightarrow{CA}=6\overrightarrow{i}+4\overrightarrow{j}+5\overrightarrow{k}-5\overrightarrow{i}-6\overrightarrow{j}-4\overrightarrow{k} $$
$$ \overrightarrow{CA}=\overrightarrow{i}-2\overrightarrow{j}+\overrightarrow{k} $$
$$ \left| AB \right|=\sqrt{{{\left( -2 \right)}^{2}}+{{1}^{2}}+{{1}^{2}}}=\sqrt{6} $$
$$ \left| BC \right|=\sqrt{{{1}^{2}}+{{1}^{2}}+{{\left( -2 \right)}^{2}}}=\sqrt{6} $$
$$ \left| CA \right|=\sqrt{{{1}^{2}}+{{\left( -2 \right)}^{2}}+{{1}^{2}}}=\sqrt{6} $$
Then,
$$AB=BC=CA=\sqrt{6}$$
$${\textbf{Step 1: Using triangle law of vector addition, find the resultant of two vectors}}$$
$$ \Rightarrow \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} $$
$${\textbf{Step 2: Solve the vector sum and Compare with the given options}}$$
$$ \Rightarrow \overrightarrow {AB} + \overrightarrow {BC} - \overrightarrow {AC} = \overrightarrow 0 $$
$${\text{Or }}\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = \overrightarrow 0 $$
$${\text{So, }}$$$$\overrightarrow {AB} + \overrightarrow {BC} - \overrightarrow {CA} \ne \overrightarrow 0 $$
$${\textbf{Hence, Option (C) is incorrect}}$$
Please disable the adBlock and continue. Thank you.