Explanation
We have,
Let the vertices of triangle is
→OA=(6→i+4→j+5→k)
→OB=(4→i+5→j+6→k)
→OC=(5→i+6→j+4→k)
Now,
→AB=→OB−→OA
→AB=(4→i+5→j+6→k)−(6→i+4→j+5→k)
→AB=4→i+5→j+6→k−6→i−4→j−5→k
→AB=−2→i+→j+→k
→BC=→OC−→OB
→BC=(5→i+6→j+4→k)−(4→i+5→j+6→k)
→BC=5→i+6→j+4→k−4→i−5→j−6→k
→BC=→i+→j−2→k
→CA=→OA−→OC
→CA=(6→i+4→j+5→k)−(5→i+6→j+4→k)
→CA=6→i+4→j+5→k−5→i−6→j−4→k
→CA=→i−2→j+→k
|AB|=√(−2)2+12+12=√6
|BC|=√12+12+(−2)2=√6
|CA|=√12+(−2)2+12=√6
Then,
AB=BC=CA=√6
Step 1: Using triangle law of vector addition, find the resultant of two vectors
⇒→AB+→BC=→AC
Step 2: Solve the vector sum and Compare with the given options
⇒→AB+→BC−→AC=→0
Or →AB+→BC+→CA=→0
So, →AB+→BC−→CA≠→0
Hence, Option (C) is incorrect
Please disable the adBlock and continue. Thank you.