Explanation
A zero vector can never be a unit vector
\therefore option A is not correct
Let as assume four unit vectors in the xy plane as shown in the figure
\underset { { V }_{ 1 } }{ \rightarrow } =\dfrac { i }{ \sqrt { 2 } } +\dfrac { j }{ \sqrt { 2 } } \\ \underset { { V }_{ 2 } }{ \rightarrow } =-\dfrac { i }{ \sqrt { 2 } } +\dfrac { j }{ \sqrt { 2 } } \\ \underset { { V }_{ 3 } }{ \rightarrow } =-\dfrac { i }{ \sqrt { 2 } } -\dfrac { j }{ \sqrt { 2 } } \\ \underset { { V }_{ 4 } }{ \rightarrow } =\dfrac { i }{ \sqrt { 2 } } -\dfrac { j }{ \sqrt { 2 } }
If we add up any of the two vectors it will either lies on the x aisx or the y axis, none of them lies in the first quardrant
\therefore option B is not correct
Sum of any two vectors less than or greater than zero does not make any sense
\therefore options C and D are incorrect
So none of the options are correct.
Scalar projection of \vec { a } on \vec { b } =\dfrac { \left| \vec { a } .\vec { b } \right| }{ \left| \vec { b } \right| }
let \vec { a } \ =xi-j+k and \vec { b } =2i-j+5k
Then projection of \vec { a } on \vec { b } =\dfrac { (xi-j+k).(2i-j+5k) }{ \left| 2i-j+5k \right| }
Given scalar projection =\dfrac { 1 }{ \sqrt { 30 } }
\Rightarrow \dfrac { 1 }{ \sqrt { 30 } } =\dfrac { 2x+1+5 }{ \sqrt { { 2 }^{ 2 }+{ (-1) }^{ 2 }+{ 5 }^{ 2 } } } \\ \Rightarrow \dfrac { 1 }{ \sqrt { 30 } } =\dfrac { 2x+1+5 }{ \sqrt { 30 } } \\ \Rightarrow 2x+1+5=1\\ \Rightarrow x=-\dfrac { 5 }{ 2 }
Please disable the adBlock and continue. Thank you.