Processing math: 1%

CBSE Questions for Class 12 Commerce Maths Vector Algebra Quiz 7 - MCQExams.com

If 2ab=|a||b| then the angle between a and b is 
  • 30o
  • 0o
  • 90o
  • 60o
For non-zero vectors \overrightarrow{a} and \overrightarrow{b} if |\overrightarrow{a}+\overrightarrow{b}| < |\overrightarrow{a}-\overrightarrow{b}|, then \overrightarrow{a} and \overrightarrow{b} are
  • Collinear
  • Perpendicular to each other
  • Inclined at an acute angle
  • Inclined at an obtuse angle
Let \vec {a} = i + 2j + k, \vec {b} = i - j + k and \vec {c} = i + j - k, a vector in the plane \vec {a} and \vec {b} whose projection on \vec {c} is \dfrac {1}{\sqrt {3}} is _____
  • 3i + j - 3k
  • 4i + j - 4k
  • i + j - 2k
  • 2i + j + 2k
The value of x if x(\hat { i } +\hat { j } +\hat { k } ) is a unit vector is
  • \pm \cfrac { 1 }{ \sqrt { 3 } }
  • \pm \sqrt { 3 }
  • \pm 3
  • \pm \cfrac{1}{3}
If \vec { a } and \vec { b } are two unit vector and \theta is the angle between them, then \left( \vec { a } +\vec { b }  \right) is a unit vector if \theta =
  • \dfrac { \pi }{ 3 }
  • \dfrac { \pi }{ 4 }
  • \dfrac { \pi }{ 2 }
  • \dfrac { 2\pi }{ 3 }
The position vector of a point which is 2 units away from 3\hat i + 4\hat j + 2\hat k along the x-axis is:
  • \hat i + 4\hat j + 2\hat k
  • 3\hat i + 2\hat j + 2\hat k
  • 5\hat i + 4\hat j + 2\hat k
  • 3\hat i + 4\hat j + \hat k
The projection of \vec {i} - \vec {j} on z-axis is
  • 0
  • 1
  • -1
  • 2
The vector b = 3j + 4k is to be written as the sum of a vector b_{1} parallel to a = i + j and a vector b_{2} perpendicular to a. Then b_{1} is equal to
  • \dfrac {3}{2}(i + j)
  • \dfrac {2}{3}(i + j)
  • \dfrac {1}{2}(i + j)
  • \dfrac {1}{3}(i + j)
If \vec a, \vec b and \vec c are three non-coplanar vectors, then (\vec a +\vec  b -\vec  c) \cdot [(\vec a - \vec b) \times (\vec b - \vec c) equals
  • \vec 0
  • \vec a.(\vec b\times \vec c)
  • \vec a.(\vec c\times \vec b)
  • 3\vec a.(\vec b\times \vec c)
If \overrightarrow { a } is vector of magnitude x , m is non-zero scalar and m\overrightarrow { a } is a unit vector then x in terms of m is:
  • m=x
  • x=\left| m \right|
  • x=\cfrac { 1 }{ \left| m \right| }
  • x=m/2
If \vec { a } ,\vec { b } ,\vec { c } are mutually perpendicular unit vectors, then \left| \vec { a } +\vec { b } +\vec { c }  \right| is equal to
  • 3
  • \sqrt { 3 }
  • Zero
  • 1
If \overrightarrow{b} and \overrightarrow{c} are the position vectors of the points B and C respectively, then the position vector of the point D such that \overrightarrow{BD}=4\overrightarrow{BC} is
  • 4(\overrightarrow{c}-\overrightarrow{b})
  • -4(\overrightarrow{c}-\overrightarrow{b})
  • 4\overrightarrow{c}-3\overrightarrow{b}
  • 4\overrightarrow{c}+3\overrightarrow{b}
Consider the vectors \bar{a}=\hat{i}-2\hat{j}+\hat{k} and \bar{b}=4\hat{i}-4\hat{j}+7\hat{k}
Find the scalar projection of \bar{a} on \bar{b}.
  • 1
  • \dfrac{19}{9}
  • \dfrac{17}{9}
  • \dfrac{23}{9}
The magnitude of the scalar p for which the vector p\left( -3\hat { i } -2\hat { j } +13\hat { k }  \right) is of unit length is:
  • \dfrac{1}{8}
  • \dfrac{1}{64}
  • \sqrt { 182 }
  • \dfrac{1}{\sqrt { 182 }}
Let \vec{v_1}, \vec{v_2}, \vec{v_3} , \vec{v_4} be unit vectors in the xy - plane, one each in the interior of the four quadrants. Which of the following statements is necesserily true?
  • \vec{v_1}, \vec{v_2}, \vec{v_3} , \vec{v_4} = 0
  • There exist i, j with 1 \le i \le j \le 4 such that \vec{v_i} + \vec{v_j} is in the first quadrant.
  • There exist i, j with 1 \le i \le j \le 4 such that \vec{v_i} + \vec{v_j} < 0
  • There exist i, j with 1 \le i \le j \le 4 such that \vec{v_i} + \vec{v_j} >0
If the position vector \overrightarrow{a} of the point (5, n) is such that |\overrightarrow{a}|=13, then the value/values of n be
  • \pm 8
  • \pm 12
  • 8 only
  • 12 only
If \overrightarrow a and \overrightarrow b are unit vectors, then angle between \overrightarrow a and \overrightarrow b for \sqrt 3 \overrightarrow a - \overrightarrow b to be unit vector is
  • 60^o
  • 45^o
  • 30^o
  • 90^o
If a\times b=c, b\times c=a and a,b,c be the mod of the vectors a,b,c respectively, then
  • a=1, b=1
  • c=1, a=1
  • a\cdot \left( b\times c \right) =1
  • b=1,c=a
Let u, v and w be such that \left| u \right| =1, \left| v \right| =3 and \left| w \right| =2. If the projection of v along u is equal to that of w along u and vectors v and w are perpendicular to each other, then \left| u-v+w \right| equals
  • 2
  • \sqrt { 7 }
  • \sqrt { 14 }
  • 14
A vector R is given by R=A\times \left( B\times C \right) , which of the following is true?
  • R must be perpendicular to B
  • R is parallel to A
  • R must be parallel to B
  • None of the above
If a=\hat{i}+\hat{j}, b=2\hat{j}-\hat{k} and r\times a=b\times a, r\times b=a\times b, then a unit vector in the direction of {r} is?
  • \displaystyle\frac{1}{\sqrt{11}}(\hat{i}+3\hat{j}-\hat{k})
  • \displaystyle \frac{1}{\sqrt{11}}(\hat{i}-3\hat{j}+\hat{k})
  • \displaystyle \frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})
  • None of these
The resultant of P and Q is R. If Q is doubled, R is also doubled and if Q is reversed, R is again doubled. Then, P^{2} : Q^{2} : R^{2} given by
  • 2 : 2 : 3
  • 3 : 2 : 2
  • 2 : 3 : 2
  • 2 : 3 : 1
If the scalar projection of the vector xi-j+k on the vector 2i-j+5k is \dfrac { 1 }{ \sqrt { 30 }  } then value of x is equal to
  • \dfrac { -5 }{ 2 }
  • 6
  • -6
  • 3
In the given diagram, if PQ=A, QR=B and RS=C, then PS will be equal to : 
671333_36bf027e8880479cb3f3b590b9e93fca.jpg
  • A-B+C
  • A+B-C
  • A+B+C
  • A-B-C
  • -A-B-C
Let \square PQRS be a quadrilateral. If M and N are midpoints of the sides PQ and RS respectively then \overline {PS} + \overline {QR} =
  • 3\overline {MN}
  • 4\overline {MN}
  • 2\overline {MN}
  • 2\overline {NM}
If \vec{a} and \vec{b} are the vectors determined by two adjacent sides of regular hexagon, then vector EF is
  • (\vec{a} + \vec{b})
  • (\vec{a} - \vec{b})
  • 2 \vec{a}
  • 2\vec{b}
If p=\hat {i} + \hat{j}, q=4\hat{k}-\hat{j} and r=\hat{i}+\hat{k}, then the unit vector in the direction of 3p+q-2r is
  • \dfrac{1}{3}(\hat{i}+2\hat{j}+2\hat{k})
  • \dfrac{1}{3}(\hat{i}-2\hat{j}-2\hat{k})
  • \dfrac{1}{3}(\hat{i}-2\hat{j}+2\hat{k})
  • \hat{i}-2\hat{j}+2\hat{k}
If a.b=0 and a+b makes an angle of { 60 }^{ o } with b, then \left| a \right| is equal to
  • 0
  • \cfrac { 1 }{ \sqrt { 3 } } \left| b \right|
  • \cfrac { 1 }{ \left| b \right| }
  • \left| b \right|
  • \sqrt { 3 } \left| b \right|
If a\cdot b =0 and a + b makes an angle 60^o with a, then
  • |a| = 2 |b|
  • 2 |a| = |b|
  • |a| = \sqrt 3 |b|
  • |a| = |b|
  • \sqrt 3 |a | = |b|
Let ABCD be a parallelogram. If AB=\hat { i } +3\hat { j } +7\hat { k } , AD=2\hat { i } +3\hat { j } -5\hat { k } and p is a unit vector parallel to AC, then p is equal to
  • \dfrac { 1 }{ 3 } \left( 2\hat { i } +\hat { j } +2\hat { k } \right)
  • \dfrac { 1 }{ 3 } \left( 2\hat { i } +2\hat { j } +2\hat { k } \right)
  • \dfrac { 1 }{ 7 } \left( 3\hat { i } +6\hat { j } +2\hat { k } \right)
  • \dfrac { 1 }{ 7 } \left( 6\hat { i } +2\hat { j } +3\hat { k } \right)
  • \dfrac { 1 }{ 7 } \left( 6\hat { i } +2\hat { j } -3\hat { k } \right)
Let u, v and w be vectors such that u + v + w = 0. If |u| = 3, |v| = 4 and |w| = 5, then u . v + v . w + w.u is equal to
  • 0
  • -25
  • 25
  • 50
  • 47
Let P\left( 1,2,3 \right) and Q\left( -1,-2,-3 \right) be the two points and let O be the origin. Then, \left| PQ+OP \right| is equal to
  • \sqrt { 13 }
  • \sqrt { 14 }
  • \sqrt { 24 }
  • \sqrt { 12 }
  • \sqrt { 8 }
If \widehat i + \widehat j, \widehat j + \widehat k, \widehat i + \widehat k are the position vectors of the vertices of a \Delta ABC taken in order, then \angle A is equal to
  • \dfrac {\pi}{2}
  • \dfrac {\pi}{5}
  • \dfrac {\pi}{6}
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{3}
The angle between the two vectors \hat { i } +\hat { j } +\hat { k } and  2\hat { i } -2\hat { j } +2\hat { k } is equal to
  • \cos ^{ -1 }{ \left( \dfrac { 2 }{ 3 } \right) }
  • \cos ^{ -1 }{ \left( \dfrac { 1 }{ 6 } \right) }
  • \cos ^{ -1 }{ \left( \dfrac { 5 }{ 6 } \right) }
  • \cos ^{ -1 }{ \left( \dfrac { 1 }{ 18 } \right) }
  • \cos ^{ -1 }{ \left( \dfrac { 1 }{ 3 } \right) }
If a=\hat { i } +\hat { j } +\hat { k } , b=4\hat { i } +3\hat { j } +4\hat { k } and c=\hat { i } +\alpha \hat { j } +\beta \hat { k } are coplanar and \left| c \right| =\sqrt { 3 } , then
  • \alpha =\sqrt { 2 } ,\beta =1
  • \alpha =1,\beta =\pm 1
  • \alpha =\pm 1,\beta =1
  • \alpha =\pm 1,\beta =-1
  • \alpha =-1,\beta =\pm 1
If \vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} , |\vec{b}| = 5 and the angle between \vec{a} and \vec{b} is \dfrac{\pi}{6} , then the area of the triangle formed by these two vectors as two sides is 
  • \dfrac{15}{4}
  • \dfrac{15}{2}
  • 15
  • \dfrac{15\sqrt 3}{2}
  • 15 \sqrt 3
If \lambda (3 \widehat i + 2 \widehat j - 6 \widehat k) is a unit vector, then the values of \lambda are
  • \pm \dfrac{1}{7}
  • \pm 7
  • \pm \sqrt{43}
  • \pm \dfrac{1}{\sqrt{43}}
  • \pm \dfrac{1}{\sqrt{}7}
Let a,b,c be three non-zero vectors such that no two of these are collinear. If the vectors a+2b is collinear with c and b+3c is collinear with a (\lambda being some non-zero scalar), then a+2b+6c equals to
  • \lambda a
  • \lambda b
  • \lambda c
  • 0
Let a,b,c be three non-zero vectors such that a+b+c=0, then \lambda b\times a+b\times c+c\times a=0, where \lambda is
  • 1
  • 2
  • -1
  • -2
Let \vec { a } =\hat { i } +\hat { j } -\hat { k } ,\vec { b } =\hat { i } -\hat { j } +\hat { k } and \vec { c } be a unit vector perpendicular to \vec { a } and coplanar with \vec { a } and \vec { b } , then \vec { c } is
  • \cfrac { 1 }{ \sqrt { 2 } } \left( \hat { j } +\hat { k } \right)
  • \cfrac { 1 }{ \sqrt { 2 } } \left( \hat { j } -\hat { k } \right)
  • \cfrac { 1 }{ \sqrt { 6 } } \left( \hat { i } -2\hat { j } +\hat { k } \right)
  • \cfrac { 1 }{ \sqrt { 6 } } \left( 2\hat { i } -\hat { j } +\hat { k } \right)
If a=2i+2j+3k, b=-1+2j+k and c = 3i + j, then a+tb this perpendicular to c; if t is equal to 
  • 2
  • 4
  • 6
  • 8
If 3p + 2q =i + j + k and 3p - 2q = i - j - k, then the angle between p and q is
  • \dfrac {\pi}{6}
  • \dfrac {\pi}{4}
  • \dfrac {\pi}{3}
  • \dfrac {\pi}{2}
  • \pi
If \overline{a},\overline{b},\overline{c}, are unit vectors such that \overline{a}+\overline{b}+\overline{c}+\overline{c.a}=
  • \dfrac{3}{2}
  • -\dfrac{3}{2}
  • \dfrac{1}{2}
  • -\dfrac{1}{2}
If the scalar projection of the vectors xi-j+k on the vector 2i-j+5k is \cfrac { 1 }{ \sqrt { 30 }  } , then the value of x is equal to 
  • -\cfrac { 5 }{ 2 }
  • 6
  • -6
  • 3
a and c are unit vectors and |b| = 4. If angle between b and c is \cos^{-1}\left (\dfrac {1}{4}\right ) and a\times b = 2a\times c, then b= \lambda a + 2c, where \lambda is equal to
  • \pm \dfrac {1}{4}
  • \pm \dfrac {1}{2}
  • \pm 4
  • None of the above
Let \vec{OB} =\hat { i } +2\hat { j } +2\hat { k } and \vec{OA} =4\hat { i } +2\hat { j } +2\hat { k } . The distance of the point B from the straight line passing through A and parallel to the vector 2\hat { i } +3\hat { j } +6\hat { k } is
  • \dfrac { 7\sqrt { 5 } }{ 9 }
  • \dfrac { 5\sqrt { 7 } }{ 9 }
  • \dfrac { 3\sqrt { 5 } }{ 7 }
  • \dfrac { 9\sqrt { 5 } }{ 7 }
  • \dfrac { 9\sqrt { 7 } }{ 5 }
Given that A+B+C=0. Out of three vectors, two are equal in magnitude and the magnitude of third vector is \sqrt{2} times that of either of the two having equal magnitude. Then, the angles between the vectors are given by.
  • 30^o, 60^o, 90^o
  • 45^o, 45^o, 90^o
  • 45^o, 60^o, 90^o
  • 90^o, 135^o, 135^o
The vectors 2\hat{i} + 3\hat{j}, 5\hat{i}+ 6\hat{j } and 8\hat{i }+ \lambda\hat{j }have their initial points at ( 1, 1 ) . Find the value of \lambda so that the vectors terminate on one straight line.
  • 9
  • 8
  • 7
  • 6
If \overline {e} = l\overline {i} + m\overline {j} + n\overline {k} is a unit vector, the maximum value of lm + mn + nl is
  • -\dfrac {1}{2}
  • 0
  • 1
  • \dfrac {3}{2}
If |\vec {a}| = 3, |\vec {b}| = 4 and |\vec {a} - \vec {b}| = 7 then |\vec {a} + \vec {b}| =
  • 1
  • 2
  • 3
  • 4
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Commerce Maths Quiz Questions and Answers